
Exercise 1: Ever Given

1 Ever Given
In March 2021, a container ship Ever Given blocked Suez Canal. Consider your are the captain of one
of the ships that is waiting for passing through Suez Canal. You want to arrive your destination as
soon as possible. However, because of the obstruction, your ship is idle near by Suez Canal and you
have no idea when the canal will be available again. You have two options:

• to wait until the canal is available, and you can pass through the canal in F unit of time; or

• to go around Africa via the Cape of Good Hope, and you can arrive your destination in S units
of time.

Note that F stands for fast, S stands for slow, and F < S.

Answer the following questions:

1. What is an instance in this problem?
S, F , and the time when the canal is available.

2. What is the cost in this problem?
The total units of time it takes to arrive the destination.

3. Consider the following strategy ALGS−F that keeps waiting until the (S − F )-th time unit:

Algorithm 1 ALGS−F

1: t← the current time
2: while t < S − F do
3: if The canal is available then
4: Pass through the canal
5: else
6: Wait
7: Turn around and take the Cape of Good Hope route . the canal is still blocked at the
S − F -th unit of time

(a) Prove that ALGS−F is (2− F
S )-competitive.

(Hint:
i. Let a be the actual time when the canal is available. How much is the optimal cost

when a < S − F? How much is the cost of ALGS−F ?
ii. Let a be the actual time when the canal is available. How much is the optimal cost

when a ≥ S − F? How much is the cost of ALGS−F ?
)

Proof. Assume that the canal becomes available actually at the a-unit of time. There are
two cases: a < S − F or a ≥ S − F .

• If a < S − F , OPT = a+ F and ALGS−F = a+ F .
• If a ≥ S − F , OPT = S and ALGS−F = (S − F ) + S.

1



Hence,

The competitive ratio of the algorithm ALGS−F = max{a+ F

a+ F
,

(S − F ) + S

S
}

≤ (S − F ) + S

S

=2− F

S

(b) Show that your analysis is tight.
We show the analysis is tight by designing an instance such that the ratio of the algorithm
cost to the optimal cost on the same instance matches the competitive ratio upper bound.

Consider the instance that the canal becomes available at the (S − F + ε)-th unit of time,
where ε > 0 but tends to 0. In this instance, the algorithm cost is (S − F ) + S, while the
optimal cost is S. The ratio of the algorithm cost on the input to the optimal cost on the
same input is 2S−F

S = 2− F
S , which matches the upper bound of the algorithm’s competitive

ratio. Therefore, the analysis is tight.

2 Buy on the B
2 -th day1

Recall the Ski Rental problem mentioned in the lecture. Now, assume that B ≥ 1 is even and consider
the algorithm ALG B

2
which buys the ski on the B

2 -th day. Answer the following questions:

1. Prove that ALG B
2

is at least (3− 2
B )-competitive.

Consider the adversary where there are B
2 number of skiing days. The optimal strategy is to rent

for B
2 days, and the optimal cost is B

2 . The algorithm ALG B
2

rents for B
2 − 1 days and buys on

the B
2 -th day. Therefore, the algorithm pays B

2 − 1 + B. The ratio between the algorithm cost
and the optimal cost is

B
2 −1+B

B
2

= 3− 2
B .

2. Prove that ALG B
2

is (3− 2
B )-competitive.

(Hint:
Consider the case where the number of skiing days d < B

2 , d ≥ B, and B
2 ≤ d < B. The last

case is the most tricky one, where the algorithm buys the ski but the optimal keeps renting the
ski. The ratio between the algorithm cost and the optimal cost in this case is

B
2 −1+B

d . You need
to find a good value of d so you can get rid of it from the ratio while still having a valid upper
bound.
)

• If d < B
2 , both the algorithm and the optimal algorithm do not buy the ski. The ratio

between the algorithm cost and the optimal cost is 1.
• If d ≥ B, the algorithm buys the ski on the B

2 -th day and the optimal strategy is buying
the ski on the first day. The ratio between the algorithm cost and the optimal cost is
B
2 −1+B

B = 3
2 −

1
B .

• If B
2 ≤ d < B, the algorithm buys the ski on the B

2 -th day and the optimal strategy keeps
renting the ski for d days. In this case, the ratio is

B
2 −1+B

d where B
2 ≤ d < B. The formula

is maximized when d = B
2 .2 Therefore,

B
2 −1+B

d ≤
B
2 −1+B

B
2

= 3− 2
B .

Therefore, for any d and even B, the ratio ALG(B,d)
OPT(B,d) ≤ max{1, 3

2 −
1
B , 3−

2
B } = 3− 2

B .
1Also try buying on the 2B-th day.
2Intuitively, if d is larger, the optimal strategy pays more and the algorithm is punished less for its wrong decision.

That’s a simple explanation of why a small d gives a larger upper bound for this case.

2



3 Two-store Ski-Rental
Recall the Ski Rental problem mentioned in the lecture. Now, consider that there are two stores, 1
and 2, where you can buy or rent a pair of skis. Let r1 and B1 be the renting and buying prices from
Store 1, respectively. For Store 2, r2 and B2 are defined symmetrically. Note that there is no specific
relation between r1 and r2 or B1 and B2, except that B1 and B2 are both larger than max{r1, r2}.
Design a 2-competitive algorithm and show the competitiveness.

Algorithm 2 ALG
1: On the d-th day
2: if d ·min{r1, r2} ≥ min{B1, B2} then
3: Buy a pair of skis from the store with the lower buying price
4: else
5: Rent a pair of skis from the store with the lower renting price

Analysis. Let d∗ be the smallest integer such that d∗ ·min{r1, r2} ≥ min{B1, B2}. The analysis
proceeds in two cases:

• If there are at most d∗− 1 skiing days, the optimal solution is to rent the ski every day from the
store with the lower renting price. The algorithm behaves the same as the optimal strategy in
this case.

• If there are at least d∗ skiing days, the optimal solution is to buy the ski on the first day
from the store with the lower buying price, and the optimal cost is min{B1, B2}. In this case,
the algorithm first rents for d∗ − 1 days from the store with the lower renting price and pays
in total (d∗ − 1) · min{r1, r2} for renting. Then, on the d∗-th day, the algorithm buys from
the store with the lower buying price and pays min{B1, B2}. In total, the algorithm pays
(d∗ − 1) ·min{r1, r2} + min{B1, B2} < 2 ·min{B1, B2} = 2 · OPT, where the inequality comes
from the definition of d∗.

3


	Ever Given
	Buy on the B2-th dayAlso try buying on the 2B-th day.
	Two-store Ski-Rental

