

Introduction to Software Testing

This extensively classroom-tested text takes an innovative approach to
explaining software testing that defines it as the process of applying a few
precise, general-purpose criteria to a structure or model of the software.
The text incorporates cutting-edge developments, including techniques to
test modern types of software such as OO, web applications, and
embedded software. This revised second edition significantly expands
coverage of the basics, thoroughly discussing test automaton frameworks,
and adds new, improved examples and numerous exercises. Key features
include:

 The theory of coverage criteria is carefully, cleanly explained to help
students understand concepts before delving into practical
applications.

 Extensive use of the JUnit test framework gives students practical
experience in a test framework popular in industry.

 Exercises feature specifically tailored tools that allow students to check
their own work.

 Instructor’s manual, PowerPoint slides, testing tools for students, and
example software programs in Java are available from the book’s
website.

Paul Ammann is Associate Professor of Software Engineering at George
Mason University. He earned the Volgenau School’s Outstanding
Teaching Award in 2007. He led the development of the Applied
Computer Science degree, and has served as Director of the MS Software
Engineering program. He has taught courses in software testing, applied
object-oriented theory, formal methods for software engineering, web
software, and distributed software engineering. Ammann has published
more than eighty papers in software engineering, with an emphasis on
software testing, security, dependability, and software engineering
education.

Jeff Offutt is Professor of Software Engineering at George Mason

University. He leads the MS in Software Engineering program, teaches
software engineering courses at all levels, and developed new courses on
several software engineering subjects. He was awarded the George Mason
University Teaching Excellence Award, Teaching with Technology, in
2013. Offutt has published more than 165 papers in areas such as model-
based testing, criteria-based testing, test automaton, empirical software
engineering, and software maintenance. He is Editor-in-Chief of the
Journal of Software Testing, Verification and Reliability; helped found the
IEEE International Conference on Software Testing; and is the founder of
the μJava project.

INTRODUCTION TO
SOFTWARE
TESTING

Paul Ammann
George Mason University

Jeff Offutt
George Mason University

University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty
Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port
Melbourne, VIC 3207, Australia 4843/24, 2nd Floor, Ansari Road, Daryaganj,
Delhi – 110002, India 79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107172012
DOI: 10.1017/9781316771273

© Paul Ammann and Jeff Offutt 2017

This publication is in copyright. Subject to statutory exception and to the
provisions of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United States of America by Sheridan Books, Inc.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloguing in Publication Data
Names: Ammann, Paul, 1961– author. — Offutt, Jeff, 1961– author.
Title: Introduction to software testing / Paul Ammann, George Mason
University, Jeff Offutt, George Mason University.
Description: Edition 2. — Cambridge, United Kingdom; New York, NY, USA:
Cambridge University Press, [2016]
Identifiers: LCCN 2016032808 — ISBN 9781107172012 (hardback)
Subjects: LCSH: Computer software–Testing.
Classification: LCC QA76.76.T48 A56 2016 — DDC 005.3028/7–dc23
LC record available at https://lccn.loc.gov/2016032808

ISBN 978-1-107-17201-2 Hardback

Additional resources for this publication at https://cs.gmu.edu/~offutt/softwaretest/.

Cambridge University Press has no responsibility for the persistence or accuracy of

http://www.cambridge.org
http://www.cambridge.org/9781107172012
https://lccn.loc.gov/2016032808
https://cs.gmu.edu/~offutt/softwaretest/

URLs for external or third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

Contents

List of Figures

List of Tables

Preface to the Second Edition

Part 1 Foundations

1 Why Do We Test Software?
1.1 When Software Goes Bad
1.2 Goals of Testing Software
1.3 Bibliographic Notes

2 Model-Driven Test Design
2.1 Software Testing Foundations
2.2 Software Testing Activities
2.3 Testing Levels Based on Software Activity
2.4 Coverage Criteria
2.5 Model-Driven Test Design

2.5.1 Test Design
2.5.2 Test Automation
2.5.3 Test Execution
2.5.4 Test Evaluation
2.5.5 Test Personnel and Abstraction

2.6 Why MDTD Matters
2.7 Bibliographic Notes

3 Test Automation
3.1 Software Testability
3.2 Components of a Test Case
3.3 A Test Automation Framework

3.3.1 The JUnit Test Framework
3.3.2 Data-Driven Tests

3.3.3 Adding Parameters to Unit Tests
3.3.4 JUnit from the Command Line

3.4 Beyond Test Automation
3.5 Bibliographic Notes

4 Putting Testing First
4.1 Taming the Cost-of-Change Curve

4.1.1 Is the Curve Really Tamed?
4.2 The Test Harness as Guardian

4.2.1 Continuous Integration
4.2.2 System Tests in Agile Methods
4.2.3 Adding Tests to Legacy Systems
4.2.4 Weaknesses in Agile Methods for Testing

4.3 Bibliographic Notes

5 Criteria-Based Test Design
5.1 Coverage Criteria Defined
5.2 Infeasibility and Subsumption
5.3 Advantages of Using Coverage Criteria
5.4 Next Up
5.5 Bibliographic Notes

Part 2 Coverage Criteria

6 Input Space Partitioning
6.1 Input Domain Modeling

6.1.1 Interface-Based Input Domain Modeling
6.1.2 Functionality-Based Input Domain Modeling
6.1.3 Designing Characteristics
6.1.4 Choosing Blocks and Values
6.1.5 Checking the Input Domain Model

6.2 Combination Strategies Criteria
6.3 Handling Constraints Among Characteristics
6.4 Extended Example: Deriving an IDM from JavaDoc

6.4.1 Tasks in Designing IDM-Based Tests
6.4.2 Designing IDM-Based Tests for Iterator

6.5 Bibliographic Notes

7 Graph Coverage

7.1 Overview
7.2 Graph Coverage Criteria

7.2.1 Structural Coverage Criteria
7.2.2 Touring, Sidetrips, and Detours
7.2.3 Data Flow Criteria
7.2.4 Subsumption Relationships Among Graph Coverage

Criteria
7.3 Graph Coverage for Source Code

7.3.1 Structural Graph Coverage for Source Code
7.3.2 Data Flow Graph Coverage for Source Code

7.4 Graph Coverage for Design Elements
7.4.1 Structural Graph Coverage for Design Elements
7.4.2 Data Flow Graph Coverage for Design Elements

7.5 Graph Coverage for Specifications
7.5.1 Testing Sequencing Constraints
7.5.2 Testing State Behavior of Software

7.6 Graph Coverage for Use Cases
7.6.1 Use Case Scenarios

7.7 Bibliographic Notes

8 Logic Coverage
8.1 Semantic Logic Coverage Criteria (Active)

8.1.1 Simple Logic Expression Coverage Criteria
8.1.2 Active Clause Coverage
8.1.3 Inactive Clause Coverage
8.1.4 Infeasibility and Subsumption
8.1.5 Making a Clause Determine a Predicate
8.1.6 Finding Satisfying Values

8.2 Syntactic Logic Coverage Criteria (DNF)
8.2.1 Implicant Coverage
8.2.2 Minimal DNF
8.2.3 The MUMCUT Coverage Criterion
8.2.4 Karnaugh Maps

8.3 Structural Logic Coverage of Programs
8.3.1 Satisfying Predicate Coverage
8.3.2 Satisfying Clause Coverage
8.3.3 Satisfying Active Clause Coverage
8.3.4 Predicate Transformation Issues

8.3.5 Side Effects in Predicates
8.4 Specification-Based Logic Coverage
8.5 Logic Coverage of Finite State Machines
8.6 Bibliographic Notes

9 Syntax-Based Testing
9.1 Syntax-Based Coverage Criteria

9.1.1 Grammar-Based Coverage Criteria
9.1.2 Mutation Testing

9.2 Program-Based Grammars
9.2.1 BNF Grammars for Compilers
9.2.2 Program-Based Mutation

9.3 Integration and Object-Oriented Testing
9.3.1 BNF Integration Testing
9.3.2 Integration Mutation

9.4 Specification-Based Grammars
9.4.1 BNF Grammars
9.4.2 Specification-Based Mutation

9.5 Input Space Grammars
9.5.1 BNF Grammars
9.5.2 Mutating Input Grammars

9.6 Bibliographic Notes

Part 3 Testing in Practice

10 Managing the Test Process
10.1 Overview
10.2 Requirements Analysis and Specification
10.3 System and Software Design
10.4 Intermediate Design
10.5 Detailed Design
10.6 Implementation
10.7 Integration
10.8 System Deployment
10.9 Operation and Maintenance
10.10 Implementing the Test Process
10.11 Bibliographic Notes

11 Writing Test Plans

11.1 Level Test Plan Example Template
11.2 Bibliographic Notes

12 Test Implementation
12.1 Integration Order
12.2 Test Doubles

12.2.1 Stubs and Mocks: Variations of Test Doubles
12.2.2 Using Test Doubles to Replace Components

12.3 Bibliographic Notes

13 Regression Testing for Evolving Software
13.1 Bibliographic Notes

14 Writing Effective Test Oracles
14.1 What Should Be Checked?
14.2 Determining Correct Values

14.2.1 Specification-Based Direct Verification of Outputs
14.2.2 Redundant Computations
14.2.3 Consistency Checks
14.2.4 Metamorphic Testing

14.3 Bibliographic Notes

List of Criteria

Bibliography

Index

Figures

1.1 Cost of late testing
2.1 Reachability, Infection, Propagation, Revealability (RIPR) model
2.2 Activities of test engineers
2.3 Software development activities and testing levels – the “V Model”
2.4 Model-driven test design
2.5 Example method, CFG, test requirements and test paths
3.1 Calc class example and JUnit test
3.2 Minimum element class
3.3 First three JUnit tests for Min class
3.4 Remaining JUnit test methods for Min class
3.5 Data-driven test class for Calc
3.6 JUnit Theory about sets
3.7 JUnit Theory data values
3.8 AllTests for the Min class example
4.1 Cost-of-change curve
4.2 The role of user stories in developing system (acceptance) tests
6.1 Partitioning of input domain D into three blocks
6.2 Subsumption relations among input space partitioning criteria
7.1 Graph (a) has a single initial node, graph (b) multiple initial nodes,

and graph (c) (rejected) with no initial nodes
7.2 Example of paths
7.3 A Single-Entry Single-Exit graph
7.4 Test case mappings to test paths
7.5 A set of test cases and corresponding test paths
7.6 A graph showing Node Coverage and Edge Coverage
7.7 Two graphs showing prime path coverage
7.8 Graph with a loop
7.9 Tours, sidetrips, and detours in graph coverage
7.10 An example for prime test paths
7.11 A graph showing variables, def sets and use sets
7.12 A graph showing an example of du-paths

7.13 Graph showing explicit def and use sets
7.14 Example of the differences among the three data flow coverage

criteria
7.15 Subsumption relations among graph coverage criteria
7.16 CFG fragment for the if-else structure
7.17 CFG fragment for the if structure without an else
7.18 CFG fragment for the if structure with a return
7.19 CFG fragment for the while loop structure
7.20 CFG fragment for the for loop structure
7.21 CFG fragment for the do-while structure
7.22 CFG fragment for the while loop with a break structure
7.23 CFG fragment for the case structure
7.24 CFG fragment for the try-catch structure
7.25 Method patternIndex() for data flow example
7.26 A simple call graph
7.27 A simple inheritance hierarchy
7.28 An inheritance hierarchy with objects instantiated
7.29 An example of parameter coupling
7.30 Coupling du-pairs
7.31 Last-defs and first-uses
7.32 Quadratic root program
7.33 Def-use pairs under intra-procedural and inter-procedural data flow
7.34 Def-use pairs in object-oriented software
7.35 Def-use pairs in web applications and other distributed software
7.36 Control flow graph using the File ADT
7.37 Elevator door open transition
7.38 Watch–Part A
7.39 Watch–Part B
7.40 An FSM representing Watch, based on control flow graphs of the

methods
7.41 An FSM representing Watch, based on the structure of thesoftware
7.42 An FSM representing Watch, based on modeling state variables
7.43 ATM actor and use cases
7.44 Activity graph for ATM withdraw funds
8.1 Subsumption relations among logic coverage criteria
8.2 Fault detection relationships
8.3 Thermostat class
8.4 PC true test for Thermostat class

8.5 CC test assignments for Thermostat class
8.6 Calendar method
8.7 FSM for a memory car seat–Nissan Maxima 2012
9.1 Method Min and six mutants
9.2 Mutation testing process
9.3 Partial truth table for (a ∧ b)
9.4 Finite state machine for SMV specification
9.5 Mutated finite state machine for SMV specification
9.6 Finite state machine for bank example
9.7 Finite state machine for bank example grammar
9.8 Simple XML message for books
9.9 XML schema for books
12.1 Test double example: Replacing a component

Tables

6.1 First partitioning of triang()’s inputs (interface-based)
6.2 Second partitioning of triang()’s inputs (interface-based)
6.3 Possible values for blocks in the second partitioning in Table 6.2
6.4 Geometric partitioning of triang()’s inputs (functionality-based)
6.5 Correct geometric partitioning of triang()’s inputs (functionality-

based)
6.6 Possible values for blocks in geometric partitioning in Table 6.5
6.7 Examples of invalid block combinations
6.8 Table A for Iterator example: Input parameters and

characteristics
6.9 Table B for Iterator example: Partitions and base case
6.10 Table C for Iterator example: Refined test requirements
6.11 Table A for Iterator example: Input parameters and

characteristics (revised)
6.12 Table C for Iterator example: Refined test requirements

(revised)
7.1 Defs and uses at each node in the CFG for patternIndex()
7.2 Defs and uses at each edge in the CFG for patternIndex()
7.3 du-path sets for each variable in patternIndex()
7.4 Test paths to satisfy all du-paths coverage on patternIndex()
7.5 Test paths and du-paths covered in patternIndex()
8.1 DNF fault classes
8.2 Reachability for Thermostat predicates
8.3 Clauses in the Thermostat predicate on lines 28-30
8.4 Correlated active clause coverage for Thermostat
8.5 Correlated active clause coverage for cal() preconditions
8.6 Predicates from memory seat example
9.1 Java’s access levels
10.1 Testing objectives and activities during requirements analysis and

specification

10.2 Testing objectives and activities during system and software design
10.3 Testing objectives and activities during intermediate design
10.4 Testing objectives and activities during detailed design
10.5 Testing objectives and activities during implementation
10.6 Testing objectives and activities during integration
10.7 Testing objectives and activities during system deployment
10.8 Testing objectives and activities during operation and maintenance

Preface to the Second Edition

Much has changed in the field of testing in the eight years since the first
edition was published. High-quality testing is now more common in
industry. Test automation is now ubiquitous, and almost assumed in large
segments of the industry. Agile processes and test-driven development are
now widely known and used. Many more colleges offer courses on
software testing, both at the undergraduate and graduate levels. The ACM
curriculum guidelines for software engineering include software testing in
several places, including as a strongly recommended course [Ardis et al.,
2015].

The second edition of Introduction to Software Testing incorporates new
features and material, yet retains the structure, philosophy, and online
resources that have been so popular among the hundreds of teachers who
haveused the book.

What is new about the second edition?

The first thing any instructor has to do when presented with a new edition
of a book is analyze what must be changed in the course. Since we have
been in that situation many times, we want to make it as easy as possible
for our audience. We start with a chapter-to-chapter mapping.

First
Edition

Second
Edition Topic

Part I: Foundations

Chapter 1

Chapter 01
Chapter 02
Chapter 03
Chapter 04
Chapter 05

Why do we test software?
(motivation)
Model-driven test design
(abstraction)
Test automation (JUnit)
Putting testing first (TDD)

Criteria-based test design (criteria)
Part II: Coverage Criteria

Chapter 2
Chapter 3
Chapter 4
Chapter 5

Chapter 07
Chapter 08
Chapter 09
Chapter 06

Graph coverage
Logic coverage
Syntax-based testing
Input space partitioning

Part III: Testing in Practice

Chapter 6

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14

Managing the test process
Writing test plans
Test implementation
Regression testing for evolving
software
Writing effective test oracles

Chapter 7
Chapter 8
Chapter 9

N/A
N/A
N/A

Technologies
Tools
Challenges

The most obvious, and largest change, is that the introductory chapter 1
from the first edition has been expanded into five separate chapters. This is
a significant expansion that we believe makes the book much better. The
new part 1 grew out of our lectures. After the first edition came out, we
started adding more foundational material to our testing courses. These
new ideas were eventually reorganized into five new chapters. The new
chapter 011 has much of the material from the first edition chapter 1,
including motivation and basic definitions. It closes with a discussion of
the cost of late testing, taken from the 2002 RTI report that is cited in
every software testing research proposal. After completing the first edition,
we realized that the key novel feature of the book, viewing test design as
an abstract activity that is independent of the software artifact being used
to design the tests, implied a completely different process. This led to
chapter 02, which suggests how test criteria can fit into practice. Through
our consulting, we have helped software companies modify their test
processes to incorporate this model.

A flaw with the first edition was that it did not mention JUnit or other
test automation frameworks. In 2016, JUnit is used very widely in
industry, and is commonly used in CS1 and CS2 classes for automated
grading. Chapter 03 rectifies this oversight by discussing test automation
in general, the concepts that make test automation difficult, and explicitly

teaches JUnit. Although the book is largely technology-neutral, having a
consistent test framework throughout the book helps with examples and
exercises. In our classes, we usually require tests to be automated and
often ask students to try other “*-Unit” frameworks such as HttpUnit as
homework exercises. We believe that test organizations cannot be ready to
apply test criteria successfully before they have automated their tests.

Chapter 04 goes to the natural next step of test-driven development.
Although TDD is a different take on testing than the rest of the book, it’s
an exciting topic for test educators and researchers precisely because it
puts testing front and center—the tests become the requirements. Finally,
chapter 05 introduces the concept of test criteria in an abstract way. The
jelly bean example (which our students love, especially when we share), is
still there, as are concepts such as subsumption.

Part 2, which is the heart of the book, has changed the least for the
second edition. In 2014, Jeff asked Paul a very simple question: “Why are
the four chapters in part 2 in that order?” The answer was stunned silence,
as we realized that we had never asked which order they should appear in.
It turns out that the RIPR model, which is certainly central to software
testing, dictates a logical order. Specifically, input space partitioning does
not require reachability, infection, or propagation. Graph coverage criteria
require execution to “get to” some location in the software artifact under
test, that is, reachability, but not infection or propagation. Logic coverage
criteria require that a predicate not only be reached, but be exercised in a
particular way to affect the result of the predicate. That is, the predicate
must be infected. Finally, syntax coverage not only requires that a location
be reached, and that the program state of the “mutated” version be
different from the original version, but that difference must be visible after
execution finishes. That is, it must propagate. The second edition orders
these four concepts based on the RIPR model, where each chapter now has
successively stronger requirements. From a practical perspective, all we
did was move the previous chapter 5 (now chapter 06) in front of the graph
chapter (now chapter 07).

Another major structural change is that the second edition does not
include chapters 7 through 9 from the first edition. The first edition
material has become dated. Because it is used less than other material in
the book, we decided not to delay this new edition of the book while we
tried to find time to write this material. We plan to include better versions
of these chapters in a third edition.

We also made hundreds of changes at a more detailed level. Recent
research has found that in addition to an incorrect value propagating to the
output, testing only succeeds if our automated test oracle looks at the right
part of the software output. That is, the test oracle must reveal the failure.
Thus, the old RIP model is now the RIPR model. Several places in the
book have discussions that go beyond or into more depth than is strictly
needed. The second edition now includes “meta discussions,” which are
ancillary discussions that can be interesting or insightful to some students,
but unnecessarily complicated for others.

The new chapter 06 now has a fully worked out example of deriving an
input domain model from a widely used Java library interface (in section
06.4). Our students have found this helps them understand how to use the
input space partitioning techniques. The first edition included a section on
“Representing graphs algebraically.” Although one of us found this
material to be fun, we both found it hard to motivate and unlikely to be
used in practice. It also has some subtle technical flaws. Thus, we removed
this section from the second edition. The new chapter 08 (logic) has a
significant structural modification. The DNF criteria (formerly in section
3.6) properly belong at the front of the chapter. Chapter 08 now starts with
semantic logic criteria (ACC and ICC) in 08.1, then proceeds to syntactic
logic criteria (DNF) in 08.2. The syntactic logic criteria have also changed.
One was dropped (UTPC), and CUTPNFP has been joined by MUTP and
MNFP. Together, these three criteria comprise MUMCUT.

Throughout the book (especially part 2), we have improved the
examples, simplified definitions, and included more exercises. When the
first edition was published we had a partial solution manual, which
somehow took five years to complete. We are proud to say that we learned
from that mistake: we made (and stuck by!) a rule that we couldn’t add an
exercise without also adding a solution. The reader might think of this rule
as testing for exercises. We are glad to say that the second edition book
website debuts with a complete solution manual.

The second edition also has many dozens of corrections (starting with
the errata list from the first edition book website), but including many
more that we found while preparing the second edition. The second edition
also has a better index. We put together the index for the first edition in
about a day, and it showed. This time we have been indexing as we write,
and committed time near the end of the process to specifically focus on the
index. For future book writers, indexing is hard work and not easy to turn

over to a non-author!

What is still the same in the second edition?

The things that have stayed the same are those that were successful in the
first edition. The overall observation that test criteria are based on only
four types of structures is still the key organizing principle of the second
edition. The second edition is also written from an engineering viewpoint,
assuming that users of the book are engineers who want to produce the
highest quality software with the lowest possible cost. The concepts are
well grounded in theory, yet presented in a practical manner. That is, the
book tries to make theory meet practice; the theory is sound according to
the research literature, but we also show how the theory applies in practice.

The book is also written as a text book, with clear explanations, simple
but illustrative examples, and lots of exercises suitable for in-class or out-
of-class work. Each chapter ends with bibliographic notes so that
beginning research students can proceed to learning the deeper ideas
involved in software testing. The book website
(https://cs.gmu.edu/~offutt/softwaretest/) is rich in materials with solution
manuals, listings of all example programs in the text, high quality
PowerPoint slides, and software to help students with graph coverage,
logic coverage, and mutation analysis. Some explanatory videos are also
available and we hope more will follow. The solution manual comes in
two flavors. The student solution manual, with solutions to about half the
exercises, is available to everyone. The instructor solution manual has
solutions to all exercises and is only available to those who convince the
authors that they are using a book to teach a course.

Using the book in the classroom

The book chapters are built in a modular, component-based manner. Most
chapters are independent, and although they are presented in the order that
we use them, inter-chapter dependencies are few and they could be used in
almost any order. Our primary target courses at our university are a fourth-
year course (SWE 437) and a first-year graduate course (SWE 637).
Interested readers can search on those courses (“mason swe 437” or

https://cs.gmu.edu/~offutt/softwaretest/

“mason swe 637”) to see our schedules and how we use the book. Both
courses are required; SWE 437 is required in the software engineering
concentration in our Applied Computer Science major, and SWE 637 is
required in our MS program in software engineering2. Chapters 01 and 03
can be used in an early course such as CS2 in two ways. First, to sensitize
early students to the importance of software quality, and second to get
them started with test automation (we use JUnit at Mason). A second-year
course in testing could cover all of part 1, chapter 06 from part 2, and all or
part of part 3. The other chapters in part 2 are probably more than what
such students need, but input space partitioning is a very accessible
introduction to structured, high-end testing. A common course in north
American computer science programs is a third-year course on general
software engineering. Part 1 would be very appropriate for such a course.
In 2016 we are introducing an advanced graduate course on software
testing, which will span cutting-edge knowledge and current research. This
course will use some of part 3, the material that we are currently
developing for part 4, and selected research papers.

Teaching software testing

Both authors have become students of teaching over the past decade. In the
early 2000s, we ran fairly traditional classrooms. We lectured for most of
the available class time, kept organized with extensive PowerPoint slides,
required homework assignments to be completed individually, and gave
challenging, high-pressure exams. The PowerPoint slides and exercises in
the first edition were designed for this model.

However, our teaching has evolved. We replaced our midterm exam
with weekly quizzes, given in the first 15 minutes of class. This distributed
a large component of the grade through the semester, relieved much of the
stress of midterms, encouraged the students to keep up on a weekly basis
instead of cramming right before the exam, and helped us identify students
who were succeeding or struggling early in the term.

After learning about the “flipped classroom” model, we experimented
with recorded lectures, viewed online, followed by doing the “homework”
assignments in class with us available for immediate help. We found this
particularly helpful with the more mathematically sophisticated material
such as logic coverage, and especially beneficial to struggling students. As

the educational research evidence against the benefits of lectures has
mounted, we have been moving away from the “sage on a stage” model of
talking for two hours straight. We now often talk for 10 to 20 minutes,
then give in-class exercises3 where the students immediately try to solve
problems or answer questions. We confess that this is difficult for us,
because we love to talk! Or, instead of showing an example during our
lecture, we introduce the example, let the students work the next step in
small groups, and then share the results. Sometimes our solutions are
better, sometimes theirs are better, and sometimes solutions differ in
interesting ways that spur discussion.

There is no doubt that this approach to teaching takes time and cannot
acccomodate all of the PowerPoint slides we have developed. We believe
that although we cover less material, we uncover more, a perception
consistent with how our students perform on our final exams.

Most of the in-class exercises are done in small groups. We also
encourage students to work out-of-class assignments collaboratively. Not
only does evidence show that students learn more when they work
collaboratively (“peer-learning”), they enjoy it more, and it matches the
industrial reality. Very few software engineers work alone.

Of course, you can use this book in your class as you see fit. We offer
these insights simply as examples for things that work for us. We
summarize our current philosophy of teaching simply: Less talking, more
teaching.

Acknowledgments

It is our pleasure to acknowledge by name the many contributers to this
text. We begin with students at George Mason who provided excellent
feedback on early draft chapters from the second edition: Firass Almiski,
Natalia Anpilova, Khalid Bargqdle, Mathew Fadoul, Mark Feghali,
Angelica Garcia, Mahmoud Hammad, Husam Hilal, Carolyn Koerner,
Han-Tsung Liu, Charon Lu, Brian Mitchell, Tuan Nguyen, Bill Shelton,
Dzung Tran, Dzung Tray, Sam Tryon, Jing Wu, Zhonghua Xi, and Chris
Yeung.

We are particularly grateful to colleagues who used draft chapters of the
second edition. These early adopters provided valuable feedback that was
extremely helpful in making the final document classroom-ready. Thanks

to: Moataz Ahmed, King Fahd University of Petroleum & Minerals; Jeff
Carver, University of Alabama; Richard Carver, George Mason
University; Jens Hannemann, Kentucky State University; Jane Hayes,
University of Kentucky; Kathleen Keogh, Federation University Australia;
Robyn Lutz, Iowa State University; Upsorn Praphamontripong, George
Mason University; Alper Sen, Bogazici University; Marjan Sirjani,
Reykjavik University; Mary Lou Soffa, University of Virginia; Katie
Stolee, North Carolina State University; and Xiaohong Wang, Salisbury
University.

Several colleagues provided exceptional feedback from the first edition:
Andy Brooks, Mark Hampton, Jian Zhou, Jeff (Yu) Lei, and six
anonymous reviewers contacted by our publisher. The following
individuals corrected, and in some cases developed, exercise solutions:
Sana’a Alshdefat, Yasmine Badr, Jim Bowring, Steven Dastvan, Justin
Donnelly, Martin Gebert, JingJing Gu, Jane Hayes, Rama Kesavan,
Ignacio Martín, Maricel Medina-Mora, Xin Meng, Beth Paredes, Matt
Rutherford, Farida Sabry, Aya Salah, Hooman Safaee, Preetham
Vemasani, and Greg Williams. The following George Mason students
found, and often corrected, errors in the first edition: Arif Al-Mashhadani,
Yousuf Ashparie, Parag Bhagwat, Firdu Bati, Andrew Hollingsworth,
Gary Kaminski, Rama Kesavan, Steve Kinder, John Krause, Jae Hyuk
Kwak, Nan Li, Mohita Mathur, Maricel Medina Mora, Upsorn
Praphamontripong, Rowland Pitts, Mark Pumphrey, Mark Shapiro, Bill
Shelton, David Sracic, Jose Torres, Preetham Vemasani, Shuang Wang,
Lance Witkowski, Leonard S. Woody III, and Yanyan Zhu. The following
individuals from elsewhere found, and often corrected, errors in the first
edition: Sana’a Alshdefat, Alexandre Bartel, Don Braffitt, Andrew Brooks,
Josh Dehlinger, Gordon Fraser, Rob Fredericks, Weiyi Li, Hassan Mirian,
Alan Moraes, Miika Nurminen, Thomas Reinbacher, Hooman Rafat
Safaee, Hossein Saiedian, Aya Salah, and Markku Sakkinen. Lian Yu of
Peking University translated the the first edition into Mandarin Chinese.

We also want to acknowledge those who implicitly contributed to the
second edition by explicitly contributing to the first edition: Aynur
Abdurazik, Muhammad Abdulla, Roger Alexander, Lionel Briand, Renee
Bryce, GeorgeP. Burdell, Guillermo Calderon-Meza, Jyothi Chinman,
Yuquin Ding, Blaine Donley, Patrick Emery, Brian Geary, Hassan Gomaa,
Mats Grindal, Becky Hartley, Jane Hayes, Mark Hinkle, Justin
Hollingsworth, Hong Huang, Gary Kaminski, John King, Yuelan Li, Ling

Liu, Xiaojuan Liu, Chris Magrin, Darko Marinov, Robert Nilsson, Andrew
J. Offutt, Buzz Pioso, Jyothi Reddy, Arthur Reyes, Raimi Rufai, Bo
Sanden, Jeremy Schneider, Bill Shelton, Michael Shin, Frank Shukis, Greg
Williams, Quansheng Xiao, Tao Xie, Wuzhi Xu, and Linzhen Xue.

While developing the second edition, our graduate teaching assistants at
George Mason gave us fantastic feedback on early drafts of chapters: Lin
Deng, Jingjing Gu, Nan Li, and Upsorn Praphamontripong. In particular,
Nan Li and Lin Deng were instrumental in completing, evolving, and
maintaining the software coverage tools available on the book website.

We are grateful to our editor, Lauren Cowles, for providing unwavering
support and enforcing the occasional deadline to move the project along,
as well as Heather Bergmann, our former editor, for her strong support on
this long-running project.

Finally, of course none of this is possible without the support of our
families. Thanks to Becky, Jian, Steffi, Matt, Joyce, and Andrew for
helping us stay balanced.

Just as all programs contain faults, all texts contain errors. Our text is no
different. And, as responsibility for software faults rests with the
developers, responsibility for errors in this text rests with us, the authors.
In particular, the bibliographic notes sections reflect our perspective of the
testing field, a body of work we readily acknowledge as large and
complex. We apologize in advance for omissions, and invite pointers to
relevant citations.

1 To help reduce confusion, we developed the convention of using two digits for
second edition chapters. Thus, in this preface,chapter 01 implies the second
edition, whereas chapter 1 implies the first.

2 Our MS program is practical in nature, not research-oriented. The majority of
students are part-time students with five to tenyears of experience in the software
industry. SWE 637 begat this book when we realized Beizer’s classic text
[Beizer, 1990] was out ofprint.

3 These in-class exercises are not yet a formal part of the book website. But we
often draw them from regular exercises in the text. Interested readers can extract
recent versions from our course web pages with a search engine.

PART I

Foundations

1

Why Do We Test Software?

The true subject matter of the tester is not testing, but the design of test cases.

The purpose of this book is to teach software engineers how to test. This
knowledge is useful whether you are a programmer who needs to unit test
your own software, a full-time tester who works mostly from requirements
at the user level, a manager in charge of testing or development, or any
position in between. As the software industry moves into the second
decade of the 21st century, software quality is increasingly becoming
essential to all businesses and knowledge of software testing is becoming
necessary for all software engineers.

Today, software defines behaviors that our civilization depends on in
systems such as network routers, financial calculation engines, switching
networks, the Web, power grids, transportation systems, and essential
communications, command, and control services. Over the past two
decades, the software industry has become much bigger, is more
competitive, and has more users. Software is an essential component of
exotic embedded applications such as airplanes, spaceships, and air traffic
control systems, as well as mundane appliances such as watches, ovens,
cars, DVD players, garage door openers, mobile phones, and remote
controllers. Modern households have hundreds of processors, and new cars
have over a thousand; all of them running software that optimistic
consumers assume will never fail! Although many factors affect the
engineering of reliable software, including, of course, careful design and
sound process management, testing is the primary way industry evaluates
software during development. The recent growth in agile processes puts
increased pressure on testing; unit testing is emphasized heavily and test-
driven development makes tests key to functional requirements. It is clear
that industry is deep into a revolution in what testing means to the success

of software products.
Fortunately, a few basic software testing concepts can be used to design

tests for a large variety of software applications. A goal of this book is to
present these concepts in such a way that students and practicing engineers
can easily apply them to any software testing situation.

This textbook differs from other software testing books in several
respects. The most important difference is in how it views testing
techniques. In his landmark book Software Testing Techniques, Beizer
wrote that testing is simple—all a tester needs to do is “find a graph and
cover it.” Thanks to Beizer’s insight, it became evident to us that the
myriad of testing techniques present in the literature have much more in
common than is obvious at first glance. Testing techniques are typically
presented in the context of a particular software artifact (for example, a
requirements document or code) or a particular phase of the lifecycle (for
example, requirements analysis or implementation). Unfortunately, such a
presentation obscures underlying similarities among techniques.

This book clarifies these similarities with two innovative, yet
simplifying, approaches. First, we show how testing is more efficient and
effective by using a classical engineering approach. Instead of designing
and developing tests on concrete software artifacts like the source code or
requirements, we show how to develop abstraction models, design tests at
the abstract level, and then implement actualtests at the concrete level by
satisfying the abstract designs. This is the exact process that traditional
engineers use, except whereas they usually use calculus and algebra to
describe the abstract models, software engineers usually use discrete
mathematics. Second, we recognize that all test criteria can be defined
with a very short list of abstract models: input domain characterizations,
graphs, logical expressions, and syntactic descriptions. These are directly
reflected in the four chapters of Part II of this book.

This book provides a balance of theory and practical application,
thereby presenting testing as a collection of objective, quantitative
activities that can be measured and repeated. The theory is based on the
published literature, and presented without excessive formalism. Most
importantly, the theoretical concepts are presented when needed to support
the practical activities that test engineers follow. That is, this book is
intended for all software developers.

1.1 WHEN SOFTWARE GOES BAD

As said, we consider the development of software to be engineering. And
like any engineering discipline, the software industry has its shares of
failures, some spectacular, some mundane, some costly, and sadly, some
that have resulted in loss of life. Before learning about software disasters,
it is important to understand the difference between faults, errors, and
failures. We adopt the definitions of software fault, error, and failure from
the dependability community.

Definition 1.1 Software Fault: A static defect in the software.

Definition 1.2 Software Error: An incorrect internal state that is the
manifestation of some fault.

Definition 1.3 Software Failure: External, incorrect behavior with
respect to the requirements or another description of the expected
behavior.

Consider a medical doctor diagnosing a patient. The patient enters the
doctor’s office with a list of failures (that is, symptoms). The doctor then
must discover the fault, or root cause of the symptoms. To aid in the
diagnosis, a doctor may order tests that look for anomalous internal
conditions, such as high blood pressure, an irregular heartbeat, high levels
of blood glucose, or high cholesterol. In our terminology, these anomalous
internal conditions correspond to errors.

While this analogy may help the student clarify his or her thinking about
faults, errors, and failures, software testing and a doctor’s diagnosis differ
in one crucial way. Specifically, faults in software are design mistakes.
They do not appear spontaneously, but exist as a result of a decision by a
human. Medical problems (as well as faults in computer system hardware),
on the other hand, are often a result of physical degradation. This
distinction is important because it limits the extent to which any process
can hope to control software faults. Specifically, since no foolproof way
exists to catch arbitrary mistakes made by humans, we can never eliminate
all faults from software. In colloquial terms, we can make software
development foolproof, but we cannot, and should not attempt to, make it
damn-foolproof.

For a more precise example of the definitions of fault, error, and failure,

we need to clarify the concept of the state. A program state is defined
during execution of a program as the current value of all live variables and
the current location, as given by the program counter. The program
counter (PC) is the next statement in the program to be executed and can
be described with a line number in the file (PC = 5) or the statement as a
string (PC = “if (x > y)”). Most of the time, what we mean by a statement
is obvious, but complex structures such as for loops have to be treated
specially. The program line “for (i=1; i < N; i++)” actually has three
statements that can result in separate states. The loop initialization (“i=1”)
is separate from the loop test (“i < N”), and the loop increment (“i++”)
occurs at the end of the loop body. As an illustrative example, consider the
following Java method:

Sidebar

Programming Language Independence

This book strives to be independent of language, and most of the
concepts in the book are. At the same time, we want to illustrate these
concepts with specific examples. We choose Java, and emphasize that
most of these examples would be very similar in many other common

languages.

The fault in this method is that it starts looking for zeroes at index 1
instead of index 0, as is necessary for arrays in Java. For example,
numZero ([2, 7, 0]) correctly evaluates to 1, while numZero
([0, 7, 2]) incorrectly evaluates to 0. In both tests the faulty
statement is executed. Although both of these tests result in an error, only
the second results in failure. To understand the error states, we need to
identify the state for the method. The statefor numZero() consists of
values for the variables x, count, i, and the program counter (PC). For
the first example above, the state at the loop test on the very first iteration
of the loop is (x = [2, 7, 0], count = 0, i = 1, PC = “ i <
x.length”). Notice that this state is erroneous precisely because the
value of i should be zero on the first iteration. However, since the value of
count is coincidentally correct, the error state does not propagate to the
output, and hence the software does not fail. In other words, a state is in
error simply if it is not the expected state, even if all of the values in the
state, considered in isolation, are acceptable. More generally, if the
required sequence of states is s0, s1, s2, ..., and the actual sequence of states
is s0, s2, s3, ..., then state s2 is in error in the second sequence. The fault
model described here is quite deep, and this discussion gives the broad
view without going into unneeded details. The exercises at the end of the
section explore some of the subtleties of the fault model.

In the second test for our example, the error state is (x = [0, 7, 2],
count = 0, i = 1, PC = “ i < x.length”). In this case, the error
propagates to the variable count and is present in the return value of the
method. Hence a failure results.

The term bug is often used informally to refer to all three of fault, error,
and failure. This book will usually use the specific term, and avoid using
“bug.” A favorite story of software engineering teachers is that Grace
Hopper found a moth stuck in a relay on an early computing machine,
which started the use of bug as a problem with software. It is worth noting,
however, that the term bug has an old and rich history, predating software
by at least a century. The first use of bug to generally mean a problem we
were able to find is from a quote by Thomas Edison :

It has been just so in all of my inventions. The first step is an intuition, and

comes with a burst, then difficulties arise–this thing gives out and [it is]
then that ‘Bugs’–as such little faults and difficulties are called–show
themselves and months of intense watching, study and labor are requisite.
 — Thomas Edison

A very public failure was the Mars lander of September 1999, which
crashed due to a misunderstanding in the units of measure used by two
modules created by separate software groups. One module computed
thruster data in English units and forwarded the data to a module that
expected data in metric units. This is a very typical integration fault (but in
this case enormously expensive, both in terms of money and prestige).

One of the most famous cases of software killing people is the Therac-
25 radiation therapy machine. Software faults were found to have caused
at least three deaths due to excessive radiation. Another dramatic failure
was the launch failure of the first Ariane 5 rocket, which exploded 37
seconds after liftoff in 1996. The low-level cause was an unhandled
floating point conversion exception in an inertial guidance system
function. It turned out that the guidance system could never encounter the
unhandled exception when used on the Ariane 4 rocket. That is,
theguidance system function was correct for Ariane 4. The developers of
the Ariane 5 quite reasonably wanted to reuse the successful inertial
guidance system from the Ariane 4, but no one reanalyzed the software in
light of the substantially different flight trajectory of the Ariane 5.
Furthermore, the system tests that would have found the problem were
technically difficult to execute, and so were not performed. The result was
spectacular–and expensive!

The famous Pentium bug was an early alarm of the need for better
testing, especially unit testing. Intel introduced its Pentium microprocessor
in 1994, and a few months later, Thomas Nicely, a mathematician at
Lynchburg College in Virginia, found that the chip gave incorrect answers
to certain floating-point division calculations.

The chip was slightly inaccurate for a few pairs of numbers; Intel
claimed (probably correctly) that only one in nine billion division
operations would exhibit reduced precision. The fault was the omission of
five entries in a table of 1, 066 values (part of the chip’s circuitry) used by
a division algorithm. The five entries should have contained theconstant
+2, but the entries were not initialized and contained zero instead. The
MIT mathematician Edelman claimed that “the bug in the Pentium was an

easy mistake to make, and a difficult one to catch,” an analysis that misses
an essential point. This was a very difficult mistake to find during system
testing, and indeed, Intel claimed to have run millions of tests using this
table. But the table entries were left empty because a loop termination
condition was incorrect; that is, the loop stopped storing numbers before it
was finished. Thus, this would have been a very simple fault to find during
unit testing; indeed analysis showed that almost any unit level coverage
criterion would have found this multimillion dollar mistake.

The great northeast blackout of 2003 was started when a power line in
Ohio brushed against overgrown trees and shut down. This is called a fault
in the power industry. Unfortunately, the software alarm system failed in
the local power company, so system operators could not understand what
happened. Other lines also sagged into trees and switched off, eventually
overloading other power lines, which then cut off. This cascade effect
eventually caused a blackout throughout southeastern Canada and eight
states in the northeastern part of the US. This is considered the biggest
blackout in North American history, affecting 10 million people in Canada
and 40 million in the USA, contributing to at least 11 deaths and costing
up to $6 billion USD.

Some software failures are felt widely enough to cause severe
embarrassment to the company. In 2011, a centralized students data
management system in Korea miscalculated the academic grades of over
29, 000 middle and high school students. This led to massive confusion
about college admissions and a government investigation into the software
engineering practices of the software vendor, Samsung Electronics.

A 1999 study commissioned by the U.S. National Research Council and
the U.S. President’s commission on critical infrastructure protection
concluded that the current base of science and technology is inadequate for
building systems to control critical software infrastructure. A 2002 report
commissioned by the National Institute of Standards and Technology
(NIST) estimated that defective software costs the U.S. economy $59.5
billion per year. The report further estimated that 64% of the costs were a
result of user mistakes and 36% a result of design and development
mistakes, and suggested that improvements in testing could reduce this
cost by about a third, or $22.5 billion. Blumenstyk reported that web
application failures lead to huge losses in businesses; $150, 000 per hour
in media companies, $2.4 million per hour in credit card sales, and $6.5
million per hour in the financial services market.

Software faults do not just lead to functional failures. According to a
Symantec security threat report in 2007, 61 percent of all vulnerabilities
disclosed were due to faulty software. The most common are web
application vulnerabilities that can be attacked by some common attack
techniques using invalid inputs.

These public and expensive software failures are getting more common
and more widely known. This is simply a symptom of the change in
expectations of software. As we move further into the 21st century, we are
using more safety critical, real-time software. Embedded software has
become ubiquitous; many of us carry millions of lines of embedded
software in our pockets. Corporations rely more and more on large-scale
enterprise applications, which by definition have large user bases and high
reliability requirements. Security, which used to depend on cryptography,
then database security, then avoiding network vulnerabilities, is now
largely about avoiding software faults. The Web has had a major impact. It
features a deployment platform that offers software services that are very
competitive and available to millions of users. They are also distributed,
adding complexity, and must be highly reliable to be competitive. More so
than at any previous time, industry desperately needs to apply the
accumulated knowledge of over 30 years of testing research.

1.2 GOALS OF TESTING SOFTWARE

Surprisingly, many software engineers are not clear about their testing
goals. Is it to show correctness, find problems, or something else? To
explore this concept, we first must separate validation and verification.
Most of the definitions in this book are taken from standards documents,
and although the phrasing is ours, we try to be consistent with the
standards. Useful standards for reading in more detail are the IEEE
Standard Glossary of Software Engineering Terminology, DOD-STD-
2167A and MIL-STD-498 from the US Department of Defense, and the
British Computer Society’s Standard for Software Component Testing.

Definition 1.4 Verification: The process of determining whether the
products of a phase of the software development process fulfill the
requirements established during the previous phase.

Definition 1.5 Validation: The process of evaluating software at the

end of software development to ensure compliance with intended
usage.

Verification is usually a more technical activity that uses knowledge
about the individual software artifacts, requirements, and specifications.
Validation usually depends on domain knowledge; that is, knowledge of
the application for which the software is written. For example, validation
of software for an airplane requires knowledge from aerospace engineers
and pilots.

As a familiar example, consider a light switch in a conference room.
Verification asks if the lighting meets the specifications. The specifications
might say something like, “The lights in front of the projector screen can
be controlled independently of the other lights in the room.” If the
specifications are written down somewhere and thelights cannot be
controlled independently, then the lighting fails verification, precisely
because the implementation does not satisfy the specifications. Validation
asks whether users are satisfied, an inherently fuzzy question that has
nothing to do with verification. If the “independent control” specification
is neither written down nor satisfied, then, despite the disappointed users,
verification nonetheless succeeds, because the implementation satisfies the
specification. But validation fails, because the specification for the lighting
does not reflect the true needs of the users. This is an important general
point: validation exposes flaws in specifications.

The acronym “IV&V” stands for “Independent Verification and
Validation,” where “independent” means that the evaluation is done by
non-developers. Sometimes the IV&V team is within the same project,
sometimes the same company, and sometimes it is entirely an external
entity. In part because of the independent nature of IV&V, the process
often is not started until the software is complete and is often done by
people whose expertise is in the application domain rather than software
development. This can sometimes mean that validation is given more
weight than verification. This book emphasizes verification more than
validation, although most of the specific test criteria we discuss can be
used for both activities.

Beizer discussed the goals of testing in terms of the “test process
maturity levels” of an organization, where the levels are characterized by
the testers’ goals. He defined five levels, where the lowest level is not
worthy of being given a number.

Level
0

There is no difference between testing and debugging.

Level
1 The purpose of testing is to show correctness.

Level
2

The purpose of testing is to show that the software does not
work.

Level
3

The purpose of testing is not to prove anything specific, but to
reduce the risk of using the software.

Level
4

Testing is a mental discipline that helps all IT professionals
develop higher- quality software.

Level 0 is the view that testing is the same as debugging. This is the
view that is naturally adopted by many undergraduate Computer Science
majors. In most CS programming classes, the students get their programs
to compile, then debug the programs with a few inputs chosen either
arbitrarily or provided by the professor. This model does not distinguish
between a program’s incorrect behavior and a mistake within the program,
and does very little to help develop software that is reliable or safe.

In Level 1 testing, the purpose is to show correctness. While a
significant step up from the naive level 0, this has the unfortunate problem
that in any but the most trivial of programs, correctness is virtually
impossible to either achieve or demonstrate. Suppose we run a collection
of tests and find no failures. What do we know? Should we assume that we
have good software or just bad tests? Since the goal of correctness is
impossible, test engineers usually have no strict goal, real stopping rule, or
formal test technique. If a development manager asks how much testing
remains to be done, the test manager has no way to answer the question. In
fact, test managers are in a weak position because they have no way to
quantitatively express or evaluate theirwork.

In Level 2 testing, the purpose is to show failures. Although looking for
failures is certainly a valid goal, it is also inherently negative. Testers may
enjoy finding the problem, but the developers never want to find

problems–they want the software to work (yes, level 1 thinking can be
natural for the developers). Thus, level 2 testing puts testers and
developers into an adversarial relationship, which can be bad for team
morale. Beyond that, when our primary goal is to look for failures, we are
still left wondering what to do if no failures are found. Is our work done?
Is our software very good, or is the testing weak? Having confidence in
when testing is complete is an important goal for all testers. It is our view
that this level currently dominates the software industry.

The thinking that leads to Level 3 testing starts with the realization that
testing can show the presence, but not the absence, of failures. This lets us
accept the fact that whenever we use software, we incur some risk. The
risk may be small and the consequences unimportant, or the risk may be
great and the consequences catastrophic, but risk is always there. This
allows us to realize that the entire development team wants the same
thing–to reduce the risk of using the software. In level 3 testing, both
testers and developers work together to reduce risk. We see more and more
companies move to this testing maturity level every year.

Once the testers and developers are on the same “team,” an organization
can progress to real Level 4 testing. Level 4 thinking defines testing as a
mental discipline that increases quality. Various ways exist to increase
quality, of which creating tests that cause the software to fail is only one.
Adopting this mindset, test engineers can become the technical leaders of
the project (as is common in many other engineering disciplines). They
have the primary responsibility of measuring and improving software
quality, and their expertise should help the developers. Beizer used the
analogy of a spell checker. We often think that the purpose of a spell
checker is to find misspelled words, but in fact, the best purpose of a spell
checker is to improve our ability to spell. Every time the spell checker
finds an incorrectly spelled word, we have the opportunity to learn how to
spell the word correctly. The spell checker is the “expert” on spelling
quality. In the same way, level 4 testing means that the purpose of testing
is to improve the ability of the developers to produce high-quality
software. The testers should be the experts who train your developers!

As a reader of this book, you probably start at level 0, 1, or 2. Most
software developers go through these levels at some stage in their careers.
If you work in software development, you might pause to reflect on which
testing level describes your company or team. The remaining chapters in
Part I should help you move to level 2 thinking, and to understand the

importance of level 3. Subsequent chapters will give you the knowledge,
skills, and tools to be able to work at level 3. An ultimate goal of this book
is to provide a philosophical basis that will allow readers to become
“change agents” in their organizations for level 4 thinking, and test
engineers to become software quality experts. Although level 4 thinking
is currently rare in the software industry, it is common in more mature
engineeringfields.

These considerations help us decide at a strategic level why we test. At a
more tactical level, it is important to know why each test is present. If you
do not know why you are conducting each test, the test will not be very
helpful. What fact is each test trying to verify? It is essential to document
test objectives and test requirements, including the planned coverage
levels. When the test manager attends a planning meeting with the other
managers and the project manager, the test manager must be able to
articulate clearly how much testing is enough and when testing will
complete. In the 1990s, we could use the “date criterion,” that is, testing is
“complete” when the ship date arrives or when the budget is spent.

Figure 1.1 dramatically illustrates the advantages of testing early rather
than late. This chart is based on a detailed analysis of faults that were
detected and fixed during several large government contracts. The bars
marked‘A’ indicate what percentage of faults appeared in that phase.
Thus, 10% of faults appeared during the requirements phase, 40% during
design, and 50% during implementation. The bars marked ‘D’ indicated
the percentage of faults that were detected during each phase. About 5%
were detected during the requirements phase, and over 35% during system
testing. Lastly is the cost analysis. The solid bars marked ‘C’ indicate the
relative cost of finding and fixing faults during each phase. Since each
project was different, this is averaged to be based on a “unit cost.” Thus,
faults detected and fixed during requirements, design, and unit testing were
a single unit cost. Faults detected and fixed during integration testing cost
five times as much, 10 times as much during system testing, and 50 times
as much after the software is deployed.

Figure 1.1. Cost of late testing.

If we take the simple assumption of $1000 USD unit cost per fault, and
100 faults, that means we spend $39, 000 to find and correct faults during
requirements, design, and unit testing. During integration testing, the cost
goes upto $100, 000. But system testing and deployment are the serious
problems. We find more faults during system testing at ten times the cost,
for a total of $360, 000. And even though we only find a few faults after
deployment, the cost being 50 X unit means we spend $250, 000!
Avoiding the work early (requirements analysis and unit testing) saves
money in the short term. But it leaves faults in software that are like little
bombs, ticking away, and the longer they tick, the bigger the explosion
when they finally go off.

To put Beizer’s level 4 test maturity level in simple terms, the goal of
testing is to eliminate faults as early as possible. We can never be perfect,
but every time we eliminate a fault during unit testing (or sooner!), we
save money. The rest of this book will teach you how to do that.

EXERCISES
Chapter 1.

1. What are some factors that would help a development organization
move from Beizer’s testing level 2 (testing is to show errors) to
testing level 4 (a mental discipline that increases quality)?

2. What is the difference between software fault and software failure?
3. What do we mean by “level 3 thinking is that the purpose of testing is

to reduce risk?” What risk? Can we reduce the risk to zero?
4. The following exercise is intended to encourage you to think of

testing in a more rigorous way than you may be used to. The exercise

also hints at the strong relationship between specification clarity,
faults, and test cases1.
(a) Write a Java method with the signature

public static Vector union (Vector a,
Vector b)
The method should return a Vector of objects that are in either
of the two argument Vectors.

(b) Upon reflection, you may discover a variety of defects and
ambiguities in the given assignment. In other words, ample
opportunities for faults exist. Describe as many possible faults
as you can. (Note: Vector is a Java Collection class. If you
are using another language, interpret Vector as a list.)

(c) Create a set of test cases that you think would have a reasonable
chance of revealing the faults you identified above. Document a
rationale for each test in your test set. If possible, characterize
all of your rationales in some concise summary. Run your tests
against your implementation.

(d) Rewrite the method signature to be precise enough to clarify the
defects and ambiguities identified earlier. You might wish to
illustrate your specification with examples drawn from your test
cases.

5. Below are four faulty programs. Each includes test inputs that result
in failure. Answer the following questions about each program.

(a) Explain what is wrong with the given code. Describe the fault
precisely by proposing a modification to the code.

(b) If possible, give a test case that does not execute the fault. If
not, briefly explain why not.

(c) If possible, give a test case that executes the fault, but does not
result in an error state. If not, briefly explain why not.

(d) If possible give a test case that results in an error, but not a
failure. If not, briefly explain why not. Hint: Don’t forget about
the program counter.

(e) For the given test case, describe the first error state. Be sure to
describe the complete state.

(f) Implement your repair and verify that the given test now
produces the expected output. Submit a screen printout or other
evidence that your new program works.

6. Answer question (a) or (b), but not both, depending on your
background.
(a) If you do, or have, worked for a software development

company, what level of test maturity do you think the company
worked at? (0: testing=debugging, 1: testing shows correctness,
2: testing shows the program doesn’t work, 3: testing reduces
risk, 4: testing is a mental discipline about quality).

(b) If you have never worked for a software development company,
what level of test maturity do you think that you have? (0:
testing=debugging, 1: testing shows correctness, 2: testing
shows the program doesn’t work, 3: testing reduces risk, 4:
testing is a mental discipline about quality).

7. Consider the following three example classes. These are OO faults
taken from Joshua Bloch’s Effective Java, Second Edition. Answer
the following questions about each.

(a) Explain what is wrong with the given code. Describe the fault
precisely by proposing a modification to the code.

(b) If possible, give a test case that does not execute the fault. If
not, briefly explain why not.

(c) If possible, give a test case that executes the fault, but does not

result in an error state. If not, briefly explain why not.
(d) If possible give a test case that results in an error, but not a

failure. If not, briefly explain why not. Hint: Don’t forget about
the program counter.

(e) In the given code, describe the first error state. Be sure to
describe the complete state.

(f) Implement your repair and verify that the given test now
produces the expected output. Submit a screen printout or other
evidence that your new program works.

1.3 BIBLIOGRAPHIC NOTES

This textbook has been deliberately left uncluttered with references.
Instead, each chapter contains a Bibliographic Notes section, which
contains suggestions for further and deeper reading for readers who want
more. We especially hope that research students will find these sections
helpful.

Most of the terminology in testing is from standards documents,
including the IEEE Standard Glossary of Software Engineering
Terminology [IEEE, 2008], the US Department of Defense [Department of
Defense, 1988, Department of Defense, 1994], the US Federal Aviation
Administration FAA-DO178B, and the British Computer Society’s
Standard for Software Component Testing [British Computer Society,
2001].

Beizer [Beizer, 1990] first defined the testing levels in Section 1.2.
Beizer described them in terms of the maturity of individual developers
and used the term phase instead of level. We adapted the discussion to
organizations rather than individual developers and chose the term level to
mirror the language of the well-known Capability Maturity Model [Paulk
et al., 1995].

All books on software testing and all researchers owe major thanks to
the landmark books in 1979 by Myers [Myers, 1979], in 1990 by Beizer
[Beizer, 1990], and in 2000 by Binder [Binder, 2000]. Some excellent
overviews of unit testing criteria have also been published, including one
by White [White, 1987] and more recently by Zhu, Hall, and May [Zhu et
al., 1997]. The recent text from Pezze and Young [Pezze and Young,
2008] reports relevant processes, principles, and techniques from the

testing literature, and includes many useful classroom materials. The Pezze
and Young text presents coverage criteria in the traditional lifecycle-based
manner, and does not organize criteria into the four abstract models
discussed in this chapter. Another recent book by Mathur offers a
comprehensive, in-depth catalog of test techniques and criteria [Mathur,
2014].

Numerous other software testing books were not intended as textbooks,
or do not offer general coverage for classroom use. Beizer’s Software
System Testing and Quality Assurance [Beizer, 1984] and Hetzel’s The
Complete Guide to Software Testing [Hetzel, 1988] cover various aspects
of management and process for software testing. Several books cover
specific aspects of testing [Howden, 1987, Marick, 1995, Roper, 1994].
The STEP project at Georgia Institute of Technology resulted in a
comprehensive survey of the practice of software testing by Department of
Defense contractors in the 1980s [DeMillo et al., 1987].

The information for the Pentium bug and Mars lander was taken from
several sources, including by Edelman, Moler, Nuseibeh, Knutson, and
Peterson [Edelman, 1997, Knutson and Carmichael, 2000, Moler, 1995,
Nuseibeh, 1997, Peterson, 1997]. The well-written official accident report
[Lions, 1996] is our favorite source for understanding the details of the
Ariane 5 Flight 501 Failure. The information for the Therac-25 accidents
was taken from Leveson and Turner’s deep analysis [Leveson and Turner,
1993]. The details on the 2003 Northeast Blackout was taken from
Minkel’s analysis in Scientific American [Minkel, 2008] and Rice’s book
[Rice, 2008]. The information about the Korean education information
system was taken from two newspaper articles [Min-sang and Sang-soo,
2011, Korea Times, 2011].

The 1999 study mentioned was published in an NRC / PITAC report
[PITAC, 1999, Schneider, 1999]. The data in Figure 1.1 were taken from a
NIST report that was developed by the Research Triangle Institute [RTI,
2002]. The figures on web application failures are due to Blumenstyk
[Blumenstyk, 2006]. The figures about faulty software leading to security
vulnerabilities are from Symantec [Symantec, 2007].

Finally, Rick Hower’s QATest website is a good resource for current,
elementary, information about software testing: www.softwareqatest.com.

1 Liskov’s Program Development in Java, especially chapters 9 and 10, is a great

http://www.softwareqatest.com

source for students who wish to learn more about this.

2

Model-Driven Test Design

Designers are more efficient and effective if they can raise their level of
abstraction.

This chapter introduces one of the major innovations in the second edition
of Introduction to Software Testing. Software testing is inherently
complicated and our ultimate goal, completely correct software, is
unreachable. The reasons are formal (as discussed below in section 2.1)
and philosophical. As discussed in Chapter 1, it’s not even clear that the
term “correctness” means anything when applied to a piece of engineering
as complicated as a large computer program. Do we expect correctness out
of a building? A car? A transportation system? Intuitively, we know that
all large physical engineering systems have problems, and moreover, there
is no way to say what correct means. This is even more true for software,
which can quickly get orders of magnitude more complicated than physical
structures such as office buildings or airplanes.

Instead of looking for “correctness,” wise software engineers try to
evaluate software’s “behavior” to decide if the behavior is acceptable
within consideration of a large number of factors including (but not limited
to) reliability, safety, maintainability, security, and efficiency. Obviously
this is more complex than the naive desire to show the software is correct.

So what do software engineers do in the face of such overwhelming
complexity? The same thing that physical engineers do–we use
mathematics to “raise our level of abstraction. ” The Model-Driven Test
Design (MDTD) process breaks testing into a series of small tasks that
simplify test generation. Then test designers isolate their task, and work at
a higher level of abstraction by using mathematical engineering structures
to design test values independently of the details of software or design
artifacts, test automation, and test execution.

A key intellectual step in MDTD is test case design. Test case design
can be the primary determining factor in whether tests successfully find
failures in software. Tests can be designed with a “human-based”
approach, where a test engineer uses domain knowledge of the software’s
purpose and his or her experience to design tests that will be effective at
finding faults. Alternatively, tests can be designed to satisfy well-defined
engineering goals such as coverage criteria. This chapter describes the task
activities and then introduces criteria-based test design. Criteria-based test
design will be discussed in more detail in Chapter 5, then specific criteria
on four mathematical structures are described in Part II. After these
preliminaries, the model-driven test design process is defined in detail. The
book website has simple web applications that support the MDTD in the
context of the mathematical structures in Part II.

2.1 SOFTWARE TESTING FOUNDATIONS

One of the most important facts that all software testers need to know is
that testing can show only the presence of failures, not their absence. This
is a fundamental, theoretical limitation; to be precise, the problem of
finding all failures in a program is undecidable. Testers often call a test
successful (or effective) if it finds an error. While this is an example of
level 2 thinking, it is also a characterization that is often useful and that we
will use throughout the book. This section explores some of the theoretical
underpinnings of testing as a way to emphasize how important the MDTD
is.

The definitions of fault and failure in Chapter 1 allow us to develop the
reachability, infection, propagation, and revealability model (“RIPR”).
First, we distinguish testing from debugging.

Definition 2.6 Testing: Evaluating software by observing its
execution.

Definition 2.7 Test Failure: Execution of a test that results in a
software failure.

Definition 2.8 Debugging: The process of finding a fault given a
failure.

Of course the central issue is that for a given fault, not all inputs will
“trigger” the fault into creating incorrect output (a failure). Also, it is often
very difficult to relate a failure to the associated fault. Analyzing these
ideas leads to the fault/failure model, which states that four conditions are
needed for a failure to be observed.

Figure 2.1 illustrates the conditions. First, a test must reach the location
or locations in the program that contain the fault (Reachability). After the
location is executed, the state of the program must be incorrect (Infection).
Third, the infected state must propagate through the rest of the execution
and cause some output or final state of the program to be incorrect
(Propagation). Finally, the tester must observe part of the incorrect portion
of the final program state (Revealability). If the tester only observes parts
of the correct portion of the final program state, the failure is not revealed.
This is shown in the cross-hatched intersection in Figure 2.1. Issues with
revealing failures will be discussed in Chapter 4 when we present test
automation strategies.

Figure 2.1. Reachability, Infection, Propagation, Revealability (RIPR) model.

Collectively, these four conditions are known as the fault/failure model,
or the RIPR model.

It is important to note that the RIPR model applies even when the fault
is missing code (so-called faults of omission). In particular, when
execution passes through the location where the missing code should be,
the program counter, which is part of the program state, necessarily has the
wrong value.

From a practitioner’s view, these limitations mean that software testing
is complex and difficult. The common way to deal with complexity in
engineering is to use abstraction by abstracting out complicating details
that can be safely ignored by modeling the problem with some
mathematical structures. That is a central theme of this book, which we
begin by analyzing the separate technical activities involved in creating
good tests.

2.2 SOFTWARE TESTING ACTIVITIES

In this book, a test engineer is an Information Technology (IT)
professional who is in charge of one or more technical test activities,
including designing test inputs, producing test case values, running test
scripts, analyzing results, and reporting results to developers and
managers. Although we cast the description in terms of test engineers,
every engineer involved in software development should realize that he or
she sometimes wears the hat of a test engineer. The reason is that each
software artifact produced over the course of a product’s development has,
or should have, an associated set of test cases, and the person best
positioned to define these test cases is often the designer of the artifact. A
test manager is in charge of one or more test engineers. Test managers set
test policies and processes, interact with other managers on the project,
and otherwise help the engineers test software effectively and efficiently.

Figure 2.2 shows some of the major activities of test engineers. A test
engineer must design tests by creating test requirements. These
requirements are then transformed into actual values and scripts that are
ready for execution. These executable tests are run against the software,
denoted P in the figure, and the results are evaluated to determine if the
tests reveal a fault in the software. These activities may be carried out by
one person or by several, and the process is monitored by a test manager.

Figure 2.2. Activities of test engineers.

One of a test engineer’s most powerful tools is a formal coverage
criterion. Formal coverage criteria give test engineers ways to decide what
test inputs to use during testing, making it more likely that the tester will
find problems in the program and providing greater assurance that the
software is of high quality and reliability. Coverage criteria also provide
stopping rules for the test engineers. The technical core of this book
presents the coverage criteria that are available, describes how they are
supported by tools (commercial and otherwise), explains how they can
best be applied, and suggests how they can be integrated into the overall
development process.

Software testing activities have long been categorized into levels, and
the most often used level categorization is based on traditional software
process steps. Although most types of tests can only be run after some part
of the software is implemented, tests can be designed and constructed
during all software development steps. The most time-consuming parts of
testing are actually the test design and construction, so test activities can
and should be carried out throughout development.

2.3 TESTING LEVELS BASED ON SOFTWARE
ACTIVITY

Tests can be derived from requirements and specifications, design
artifacts, or the source code. In traditional texts, a different level of testing
accompanies each distinct software development activity:

 Acceptance Testing : assess software with respect to requirements or
users’ needs.

 System Testing : assess software with respect to architectural design
and overall behavior.

 Integration Testing : assess software with respect to subsystem design.
 Module Testing: assess software with respect to detailed design.
 Unit Testing : assess software with respect to implementation.

Figure 2.3, often called the “V model,” illustrates a typical scenario for
testing levels and how they relate to software development activities by
isolating each step. Information for each test level is typically derived from
the associated development activity. Indeed, standard advice is to design
the tests concurrently with each development activity, even though the
software will not be in an executable form until the implementation phase.
The reason for this advice is that the mere process of designing tests can
identify defects in design decisions that otherwise appear reasonable. Early
identification of defects is by far the best way to reduce their ultimate cost.
Note that this diagram is not intended to imply a waterfall process. The
synthesis and analysis activities generically apply to any development
process.

Figure 2.3. Software development activities and testing levels – the “V Model”.

The requirements analysis phase of software development captures the
customer’s needs. Acceptance testing is designed to determine whether the
completed software in fact meets these needs. In other words, acceptance
testing probes whether the software does what the users want. Acceptance

testing must involve users or other individuals who have strong domain
knowledge.

The architectural design phase of software development chooses
components and connectors that together realize a system whose
specification is intended to meet the previously identified requirements.
System testing is designed to determine whether the assembled system
meets its specifications. It assumes that the pieces work individually, and
asks if the system works as a whole. This level of testing usually looks for
design and specification problems. It is a very expensive place to find
lower-level faults and is usually not done by the programmers, but by a
separate testing team.

The subsystem design phase of software development specifies the
structure and behavior of subsystems, each of which is intended to satisfy
some function in the overall architecture. Often, the subsystems are
adaptations of previously developed software. Integration testing is
designed to assess whether the interfaces between modules (defined
below) in a subsystem have consistent assumptions and communicate
correctly. Integration testing must assume that modules work correctly.
Some testing literature uses the terms integration testing and system testing
interchangeably; in this book, integration testing does not refer to testing
the integrated system or subsystem. Integration testing is usually the
responsibility of members of the development team.

The detailed design phase of software development determines the
structure and behavior of individual modules. A module is a collection of
related units that are assembled in a file, package, or class. This
corresponds to a file in C, a package in Ada, and a class in C++ and Java.
Module testing is designed to assess individual modules in isolation,
including how the component units interact with each other and their
associated data structures. Most software development organizations make
module testing the responsibility of the programmer; hence the common
term developer testing.

Implementation is the phase of software development that actually
produces code. A program unit, or procedure, is one or more contiguous
program statements, with a name that other parts of the software use to call
it. Units are called functions in C and C++, procedures or functions in
Ada, methods in Java, and subroutines in Fortran. Unit testing is designed
to assess the units produced by the implementation phase and is the
“lowest” level of testing. In some cases, such as when building general-

purpose library modules, unit testing is done without knowledge of the
encapsulating software application. As with module testing, most software
development organizations make unit testing the responsibility of the
programmer, again, often called developer testing. It is straightforward to
package unit tests together with the corresponding code through the use of
tools such as JUnit for Java classes.

Because of the many dependencies among methods in classes, it is
common among developers using object-oriented (OO) software to
combine unit and module testing and use the term unit testing or
developertesting.

Not shown in Figure 2.3 is regression testing, a standard part of the
maintenance phase of software development. Regression testing is done
after changes are made to the software, to help ensure that the updated
software still possesses the functionality it had before the updates.

Mistakes in requirements and high-level design end up being
implemented as faults in the program; thus testing can reveal them.
Unfortunately, the software faults that come from requirements and design
mistakes are visible only through testing months or years after the original
mistake. The effects of the mistake tend to be dispersed throughout
multiple software components; hence such faults are usually difficult to
pin down and expensive to correct. On the positive side, even if tests
cannot be executed, the very process of defining tests can identify a
significant fraction of the mistakes in requirements and design. Hence, it is
important for test planning to proceed concurrently with requirements
analysis and design and not be put off until late in a project. Fortunately,
through techniques such as use case analysis, test planning is becoming
better integrated with requirements analysis in standard software practice.

Although most of the literature emphasizes these levels in terms of
when they are applied, a more important distinction is on the types of
faults that we are looking for. The faults are based on the software artifact
that we are testing, and the software artifact that we derive the tests from.
For example, unit and module tests are derived to test units and modules,
and we usually try to find faults that can be found when executing the units
and modules individually.

One final note is that OO software changes the testing levels. OO
software blurs the distinction between units and modules, so the OO
software testing literature has developed a slight variation of these levels.
Intra-method testing evaluates individual methods. Inter-method testing

evaluates pairs of methods within the same class. Intra-class testing
evaluates a single entire class, usually as sequences of calls to methods
within the class. Finally, inter-class testing evaluates more than one class
at the same time. The first three are variations of unit and module testing,
whereas inter-class testing is a type of integration testing.

2.4 COVERAGE CRITERIA

The essential problem with testing is the numbers. Even a small program
has a huge number of possible inputs. Consider a tiny method that
computes the average of three integers. We have only three input
variables, but each can have any value between -MAXINT and
+MAXINT. On a 32-bit machine, each variable has a possibility of over 4
billion values. With three inputs, this means the method has over 80
Octillion possible inputs!

So no matter whether we are doing unit testing, integration testing, or
system testing, it is impossible to test with all inputs. The input space is, to
all practical purposes, infinite. Thus a test designer’s goal could be
summarized in a very high-level way as searching a huge input space,
hoping to find the fewest tests that will reveal the most problems. This is
the source of two key problems in testing: (1) how do we search? and (2)
when do we stop? Coverage criteria give us structured, practical ways to
search the input space. Satisfying a coverage criterion gives a tester some
amount of confidence in two crucial goals: (A) we have looked in many
corners of the input space, and (B) our tests have a fairly low amount of
overlap.

Coverage criteria have many advantages for improving the quality and
reducing the cost of test data generation. Coverage criteria can maximize
the “bang for the buck,” with fewer tests that are effective at finding more
faults. Well-designed criteria-based tests will be comprehensive, yet factor
out unwanted redundancy. Coverage criteria also provide traceability from
software artifacts such as source, design models, requirements, and input
space descriptions. This supports regression testing by making it easier to
decide which tests need to be reused, modified, or deleted. From an
engineering perspective, one of the strongest benefits of coverage criteria
is they provide a “stopping rule” for testing; that is, we know in advance
approximately how many tests are needed and we know when we have

“enough” tests. This is a powerful tool for engineers and managers.
Coverage criteria also lend themselves well to automation. As we will

formalize in Chapter 5, a test requirement is a specific element of a
software artifact that a test case must satisfy or cover, and a coverage
criterion is a rule or collection of rules that yield test requirements. For
example, the coverage criterion “cover every statement” yields one test
requirement for each statement. The coverage criterion “cover every
functional requirement” yields one test requirement for each functional
requirement. Test requirements can be stated in semi-formal, mathematical
terms, and then manipulated algorithmically. This allows much of the test
data design and generation process to be automated.

The research literature presents a lot of overlapping and identical
coverage criteria. Researchers have invented hundreds of criteria on
dozens of software artifacts. However, if we abstract these artifacts into
mathematical models, many criteria turn out to be exactly the same. For
example, the idea of covering pairs of edges in finite state machines was
first published in 1976, using the term switch cover. Later, the same idea
was applied to control flow graphs and called two-trip, still again, the same
idea was “invented” for state transition diagrams and called transition-pair
(we define this formally using the generic term edge-pair in Chapter 7).
Although they looked very different in the research literature, if we
generalize these structures to graphs, all three ideas are the same.
Similarly, node coverage and edge coverage have each been defined
dozens of times.

Sidebar
Black-Box and White-Box Testing

Black-box testing and the complementary white-box testing are old and
widely used terms in software testing. In black-box testing, we derive
tests from external descriptions of the software, including
specifications, requirements, and design. In white-box testing, on the
other hand, we derive tests from the source code internals of the
software, specifically including branches, individual conditions, and
statements. This somewhat arbitrary distinction started to lose
coherence when the term gray-box testing was applied to developing
tests from design elements, and the approach taken in this book
eliminates the need for the distinction altogether.

Some older sources say that white-box testing is used for system testing
and black-box testing for unit testing. This distinction is certainly false,
since all testing techniques considered to be white-box can be used at
the system level, and all testing techniques considered to be black-box
can be used on individual units. In reality, unit testers are currently
more likely to use white-box testing than system testers are, simply
because white-box testing requires knowledge of the program and is
more expensive to apply, costs that can balloon on a large system.
This book relies on developing tests from mathematical abstractions
such as graphs and logical expressions. As will become clear in Part II,
these structures can be extracted from any software artifact, including
source, design, specifications, or requirements. Thus asking whether a
coverage criterion is black-box or white-box is the wrong question. One
more properly should ask from what level of abstraction is the structure
drawn.

In fact, all test coverage criteria can be boiled down to a few dozen
criteria on just four mathematical structures: input domains, graphs, logic
expressions, and syntax descriptions (grammars). Just like mechanical,
civil, and electrical engineers use calculus and algebra to create abstract
representations of physical structures, then solve various problems at this
abstract level, software engineers can use discrete math to create abstract
representations of software, then solve problems such as test design.

The core of this book is organized around these four structures, as
reflected in the four chapters in Part II. This structure greatly simplifies
teaching test design, and our classroom experience with the first edition of
this book helped us realize this structure also leads to a simplified testing
process. This process allows test design to be abstracted and carried out
efficiently, and also separates test activities that need different knowledge
and skill sets. Because the approach is based on these four abstract models,
we call it the Model-Driven Test Design process (MDTD).

Sidebar
MDTD and Model-Based Testing

Model-based testing (MBT) is the design of software tests from an
abstract model that represents one or more aspects of the software. The
model usually, but not always, represents some aspects of the behavior

of the software, and sometimes, but not always, is able to generate
expected outputs. The models are often described with UML diagrams,
although more formal models as well as other informal modeling
languages are also used. MBT typically assumes that the model has
been built to specify the behavior of the software and was created
during a design stage of development.
The ideas presented in this book are not, strictly speaking, exclusive to
model-based testing. However, there is much overlap with MDTD and
most of the concepts in this book can be directly used as part of MBT.
Specifically, we derive our tests from abstract structures that are very
similar to models. An important difference is that these structures can
be created after the software is implemented, by the tester as part of
test design. Thus, the structures do not specify behavior; they represent
behavior. If a model was created to specify the software behavior, a
tester can certainly use it, but if not, a tester can create one. Second, we
create idealized structures that are more abstract than most modeling
languages. For example, instead of UML statecharts or Petri nets, we
design our tests from graphs. If model-based testing is being used, the
graphs can be derived from a graphical model. Third, model-based
testing explicitly does not use the source code implementation to design
tests. In this book, abstract structures can be created from the
implementation via things like control flow graphs, call graphs, and
conditionals in decision statements.

2.5 MODEL-DRIVEN TEST DESIGN

Academic teachers and researchers have long focused on the design of
tests. We define test design to be the process of creating input values that
will effectively test software. This is the most mathematical and
technically challenging part of testing, however, academics can easily
forget that this is only a small part of testing.

The job of developing tests can be divided into four discrete tasks: test
design, test automation, test execution, and test evaluation. Many
organizations assign the same person to all tasks. However, each task
requires different skills, background knowledge, education, and training.
Assigning the same person to all these tasks is akin to assigning the same
software developer to requirements, design, implementation, integration,

and configuration control. Although this was common in previous decades,
few companies today assign the same engineers to all development tasks.
Engineers specialize, sometimes temporarily, sometimes for a project, and
sometimes for their entire career. But should test organizations still assign
the same people to all test tasks? They require different skills, and it is
unreasonable to expect all testers to be good at all tasks, so this clearly
wastes resources. The following subsections analyze each of these tasks in
detail.

2.5.1 Test Design

As said above, test design is the process of designing input values that will
effectively test software. In practice, engineers use two general approaches
to designing tests. In criteria-based test design, we design test values that
satisfy engineering goals such as coverage criteria. In human-based test
design, we design test values based on domain knowledge of the program
and human knowledge of testing. These are quite different activities.

Criteria-based test design is the most technical and mathematical job in
software testing. To apply criteria effectively, the tester needs knowledge
of discrete math, programming, and testing. That is, this requires much of
a traditional degree in computer science. For somebody with a degree in
computer science or software engineering, this is intellectually stimulating,
rewarding, and challenging. Much of the work involves creating abstract
models and manipulating them to design high-quality tests. In software
development, this is analogous to the job of software architect; in building
construction, this is analogous to the job of construction engineer. If an
organization uses people who are not qualified (that is, do not have the
required knowledge), they will spend time creating ineffective tests and be
dissatisfied at work.

Human-based test design is quite different. The testers must have
knowledge of the software’s application domain, of testing, and of user
interfaces. Human-based test designers explicitly attempt to find stress
tests, tests that stress the software by including very large or very small
values, boundary values, invalid values, or other values that the software
may not expect during typical behavior. Human-based testers also
explicitly consider actions the users might do, including unusual actions.
This is much harder than developers may think and more necessary than

many test researchers and educators realize. Although criteria-based
approaches often implicitly include techniques such as stress testing, they
can be blind to special situations, and may miss problems that human-
based tests would not. Although almost no traditional CS is needed, an
empirical background (biology or psychology) or a background in logic
(law, philosophy, math) is helpful. If the software is embedded on an
airplane, a human-based test designer should understand piloting; if the
software runs an online store, the test designers should understand
marketing and the products being sold. For people with these abilities,
human-based test design is intellectually stimulating, rewarding, and
challenging–but often not to typical CS majors, who usually want to build
software!

Many people think of criteria-based test design as being used for unit
testing and human-based test design as being used for system testing.
However, this is an artificial distinction. When using criteria, a graph is
just a graph and it does not matter if it started as a control flow graph, a
call graph, or an activity diagram. Likewise, human-based tests can and
should be used to test individual methods and classes. The main point is
that the approaches are complementary and we need both to fully test
software.

2.5.2 Test Automation

The final result of test design is input values for the software. Test
automation is the process of embedding test values into executable scripts.
Note that automated tool support for test design is not considered to be test
automation. This is necessary for efficient and frequent execution of tests.
The programming difficulty varies greatly by the software under test
(SUT). Some tests can be automated with basic programming skills,
whereas if the software has low controllability or observability (for
example, with embedded, real-time, or web software), test automation will
require more knowledge and problem-solving skills. The test automator
will need to add additional software to access the hardware, simulate
conditions, or otherwise control the environment. However, many domain
experts using human-based testing do not have programming skills. And
many criteria-based test design experts find test automation boring. If a
test manager asks a domain expert to automate tests, the expert is likely to

resist and do poorly; if a test manager asks a criteria-based test designer to
automate tests, the designer is quite likely to go looking for a development
job.

2.5.3 Test Execution

Test execution is the process of running tests on the software and recording
the results. This requires basic computer skills and can often be assigned to
interns or employees with little technical background. If all tests are
automated, this is trivial. However, few organizations have managed to
achieve 100% test automation. If tests must be run by hand, this becomes
the most time-consuming testing task. Hand-executed tests require the
tester to be meticulous with bookkeeping. Asking a good test designer to
hand execute tests not only wastes a valuable (and possibly highly paid)
resource, the test designer will view it as a very tedious job and will soon
look for other work.

2.5.4 Test Evaluation

Test evaluation is the process of evaluating the results of testing and
reporting to developers. This is much harder than it may seem, especially
reporting the results to developers. Evaluating the results of tests requires
knowledge of the domain, testing, user interfaces, and psychology. The
knowledge required is very much the same as for human-based test
designers. If tests are well-automated, then most test evaluation can (and
should) be embedded in the test scripts. However, when automation is
incomplete or when correct output cannot neatly be encoded in assertions,
this task gets more complicated. Typical CS or software engineering
majors will not enjoy this job, but to the right person, this is intellectually
stimulating, rewarding, and challenging.

2.5.5 Test Personnel and Abstraction

These four tasks focus on designing, implementing and running the tests.
Of course, they do not cover all aspects of testing. This categorization

omits important tasks like test management, maintenance, and
documentation, among others. We focus on these because they are
essential to developing test values.

A challenge to using criteria-based test design is the amount and type of
knowledge needed. Many organizations have a shortage of highly
technical test engineers. Few universities teach test criteria to
undergraduates and many graduate classes focus on theory, supporting
research rather than practical application. However, the good news is that
with a well-planned division of labor, a single criteria-based test designer
can support a fairly large number of test automators, executors and
evaluators.

The model-driven test design process explicitly supports this division of
labor. This process is illustrated in Figure 2.4, which shows test design
activities above the line and other test activities below.

Figure 2.4. Model-driven test design.

The MDTD lets test designers “raise their level of abstraction ” so that a
small subset of testers can do the mathematical aspects of designing and
developing tests. This is analogous to construction design, where one
engineer creates a design that is followed by many carpenters, plumbers,
and electricians. The traditional testers and programmers can then do their
parts: finding values, automating the tests, running tests, and evaluating
them. This supports the truism that “testers ain’t mathematicians.”

The starting point in Figure 2.4 is a software artifact. This could be
program source, a UML diagram, natural language requirements, or even a
user manual. A criteria-based test designer uses that artifact to create an
abstract model of the software in the form of an input domain, a graph,
logic expressions, or a syntax description. Then a coverage criterion is

applied to create test requirements. A human-based test designer uses the
artifact to consider likely problems in the software, then creates
requirements to test for those problems. These requirements are sometimes
refined into a more specific form, called the test specification. For
example, if edge coverage is being used, a test requirement specifies which
edge in a graph must be covered. A refined test specification would be a
complete path through the graph.

Once the test requirements are refined, input values that satisfy the
requirements must be defined. This brings the process down from the
design abstraction level to the implementation abstraction level. These are
analogous to the abstract and concrete tests in the model-based testing
literature. The input values are augmented with other values needed to run
the tests (including values to reach the point in the software being tested,
to display output, and to terminate the program). The test cases are then
automated into test scripts (when feasible and practical), run on the
software to produce results, and results are evaluated. It is important that
results from automation and execution be used to feed back into test
design, resulting in additional or modified tests.

This process has two major benefits. First, it provides a clean separation
of tasks between test design, automation, execution and evaluation.
Second, raising our abstraction level makes test design much easier.
Instead of designing tests for a messy implementation or complicated
design model, we design at an elegant mathematical level of abstraction.
This is exactly how algebra and calculus has been used in traditional
engineering for decades.

Figure 2.5 illustrates this process for unit testing of a small Java method.
The Java source is shown on the left, and its control flow graph is in the
middle. This is a standard control flow graph with the initial node marked
as a dotted circle and the final nodes marked as double circles (this
notation will be defined rigorously in Chapter 7). The nodes are annotated
with the source statements from the method for convenience.

Figure 2.5. Example method, CFG, test requirements and test paths.

The first step in the MDTD process is to take this software artifact, the
indexOf() method, and model it as an abstract structure. The control flow
graph from Figure 2.5 is turned into an abstract version. This graph can be
represented textually as a list of edges, initial nodes, and final nodes, as
shown in Figure 2.5 under Edges. If the tester uses edge-pair coverage,
(fully defined in Chapter 7), six requirements are derived. For example,
test requirement #3, [2, 3, 2], means the subpath from node 2 to 3 and back
to 2 must be executed. The Test Paths box shows three complete test
paths through the graph that will cover all six test requirements.

2.6 WHY MDTD MATTERS

The MDTD represents several years of introspection and deep thinking
about the meaning and role of software testing. The first key insight was
that the definitions and applications of test criteria are independent of the
level of testing (unit, integration, system, etc.). This led to a powerful
abstraction process that greatly simplifies testing, and was a major
innovation of the first edition of this book. The analogy to the role of
algebra and calculus in traditional engineering gives very strong support to
the long-term viability of this idea.

This insight led us to a broader understanding of software testing
activities and tasks. The separation of human-based and criteria-based test
design is an important distinction, and the recognition that they are
complementary, not competitive, activities is key to this book. All too
often, academic researchers focus on criteria-based test design without
respecting human-based test design, and practitioners and consultants
focus on human-based test design without regard to criteria-based test
design. Unfortunately this artificial split has reduced communication to the

detriment of the field.
Figure 2.4 illustrates how viewing test design as separate from test

construction and execution can help distinguish test activities in
meaningful ways, and combine them in an efficient process. Just as with
software development and most traditional engineering activities, different
people can be assigned to different activities. This allows test engineers to
be more efficient, more effective, and have greater job satisfaction.

The four structures mentioned in Section 2.4 form the heart of this book.
Each is used in a separate chapter in Part II to develop methods to design
tests and to define criteria on the structures. The ordering in Part II follows
the RIPR model of Section 2.1. The first structure, the input domain, is
based on simple sets. The criteria in Chapter 6 help testers explore the
input domain and do not explicitly satisfy any of the RIPR conditions.
Chapter 7 uses graphs to design tests. The criteria require tests to “get to”
certain places in the graph, thus satisfying reachability. Chapter 8 uses
logic expressions to design tests. The criteria require tests to explore
various truth assignments to the logic expressions, thus requiring that the
tests not only reach the logic expressions, but also that they infect the state
of the program. Chapter 9 uses grammars to design tests. These tests are
not only required to reach locations and infect the program state, but the
infection must also propagate to external behavior. Thus each chapter in
Part II goes deeper into the RIPR model.

EXERCISES
Chapter 2.

1. How are faults and failures related to testing and debugging?
2. Answer question (a) or (b), but not both, depending on your

background.
(a) If you do, or have, worked for a software development

company, how much effort did your testing / QA team put into
each of the four test activities? (test design, automation,
execution, evaluation)

(b) If you have never worked for a software development company,
which of the four test activities do you think you are best
qualified for? (test design, automation, execution, evaluation)

2.7 BIBLIOGRAPHIC NOTES

The elementary result that finding all failures in a program is undecidable
is due to Howden [Howden, 1976].

The fault/failure model was developed independently by Offutt and
Morell in their dissertations [DeMillo and Offutt, 1993, Morell, 1990,
Morell, 1984, Offutt, 1988]. Morell used the terms execution, infection,
and propagation [Morell, 1984, Morell, 1990], and Offutt used
reachability, sufficiency, and necessity [DeMillo and Offutt, 1993, Offutt,
1988]. This book merges the two sets of terms by using what we consider
to be the most descriptive terms: reachability, infection, and propagation
(RIP). The first edition of this book stopped there, but in 2014 Li and
Offutt [Li and Offutt, 2016] extended the model by noting that automated
test oracles necessarily only look at part of the output state. Even when the
outputs are checked by hand, most humans will not be able to look at
everything. Thus, the failure is only revealed to the tester if the tester looks
at the “right” part of the output. Thus, this edition extends the old RIP
model to the RIPR model.

Although this book does not focus heavily on the theoretical
underpinnings of software testing, students interested in research should
study such topics more in depth. A number of the papers are quite old, and
often do not appear in current literature, and their ideas are beginning to
disappear. The authors strongly encourage the study of the older papers.
Among those are truly seminal papers in the 1970s by Goodenough and
Gerhart [Goodenough and Gerhart, 1975] and Howden [Howden, 1976],
and DeMillo, Lipton, Sayward, and Perlis [DeMillo et al., 1979, DeMillo
et al., 1978]. These papers were followed up and refined by Weyuker and
Ostrand [Weyuker and Ostrand, 1980], Hamlet [Hamlet, 1981], Budd and
Angluin [Budd and Angluin, 1982], Gourlay [Gourlay, 1983], Prather
[Prather, 1983], Howden [Howden, 1985], and Cherniavsky and Smith
[Cherniavsky and Smith, 1986]. Later theoretical papers were contributed
by Morell [Morell, 1984], Zhu [Zhu, 1996], and Wah [Wah, 1995, Wah,
2000]. Every PhD student’s adviser will certainly have his or her own
favorite theoretical papers.

The definition of unit is from Stevens, Myers and Constantine [Stevens
et al., 1974], and the definition of module is from Sommerville
[Sommerville, 1992]. The definition of integration testing is from Beizer
[Beizer, 1990]. The clarification for OO testing levels with the terms intra-

method, inter-method, and intra-class testing is from Harrold and
Rothermel [Harrold and Rothermel, 1994] and inter-class testing is from
Gallagher, Offutt and Cincotta [Gallagher et al., 2007].

Pimont and Rault’s switch cover paper was published in 1976 [Pimont
and Rault, 1976]. The British Computer Society standard that used the
term two-trip appeared in 1997 [British Computer Society, 2001]. Offutt et
al.’s transition-pair paper was published in 2003 [Offutt et al., 2003].

The research literature on model-based testing is immense and growing,
including a three-part special issue in Software Testing, Verification, and
Reliability, edited by Ammann, Fraser, and Wotawa [Ammann et al.,
2012a, Ammann et al., 2012b, Ammann et al., 2012c]. Rather than try to
discuss all aspects of MBT, we suggest starting with Utting and Legeard’s
2006 book, Practical Model-Based Testing [Utting and Legeard, 2006].

Good sources for issues about controllability and observability are
Freedman [Freedman, 1991] and Binder [Binder, 2000].

3

Test Automation

Test automation is a prerequisite for unit testing and criteria-based testing.

One of the most widespread changes in software testing during the last
decade has been the increased use of test automation. We introduced test
automation in Chapter 2 as implementing tests into executable test scripts.
This chapter expands on that concept, starting with a complete definition.

Definition 3.9 Test automation : The use of software to control the
execution of tests, the comparison of actual outcomes to predicted
outcomes, the setting up of test preconditions, and other test control
and test reporting functions.

Software testing can be expensive and labor intensive, so an important
goal of software testing is to automate as much as possible. Test
automation not only reduces the cost of testing, it also reduces human error
and makes regression testing easier by allowing a test to be run repeatedly
with the push of a button.

Software engineers sometimes distinguish revenue tasks, which
contribute directly to the solution of a problem, from excise tasks, which
do not. For example, compiling a Java class is a classic excise task
because, although necessary for the class to be executable, compilation
contributes nothing to the behavior of that class. In contrast, determining
which methods are appropriate to define a data abstraction in a Java class
is a revenue task. Excise tasks are candidates for automation; revenue tasks
usually are not. Software testing probably has more excise tasks than any
other aspect of software development. Maintaining test scripts, rerunning
tests, and comparing expected results with actual results are all common
excise tasks that routinely use large amounts of test engineers’ time.

Automating excise tasks serves the test engineer in many ways. First,
eliminating excise tasks eliminates drudgery, thereby making the test
engineer’s job more satisfying. Second, automation frees up time to focus
on the fun and challenging parts of testing, such as test design, a revenue
task. Third, automation allows the same test to be run thousands of times
without extra effort in environments where tests are run daily or even
hourly. Fourth, automation can help eliminate errors of omission, such as
failing to update all the relevant files with the new set of expected results.
Fifth, automation eliminates some of the variance in test quality caused by
differences in individual’s abilities.

The rest of this chapter starts by exploring some of the things that make
test automation hard (largely testability). It then breaks an executable test
case down into components, and introduces one widely used test
automation tool.

3.1 SOFTWARE TESTABILITY

Generally, software testability estimates how likely testing will reveal a
fault if one exists. We are all familiar with software development projects
where, despite extensive testing, faults continue to be found. Testability
gets to the core of how easy or hard it is for faults to escape detection—
even from well-designed tests.

Definition 3.10 Testability: The degree to which a system or
component facilitates the establishment of test criteria and the
performance of tests to determine whether those criteria have been
met.

Testability is largely determined by two common practical problems;
how to provide the test values to the software and how to observe results
of test execution.

Definition 3.11 Software Observability: How easy it is to observe the
behavior of a program in terms of its outputs, effects on the
environment, and other hardware and software components.

Definition 3.12 Software Controllability: How easy it is to provide a
program with the needed inputs, in terms of values, operations, and

behaviors.

These ideas are easily illustrated in the context of embedded software.
Embedded software often does not produce output for human
consumption, but affects the behavior of hardware. Thus, observability is
quite low. Software for which all inputs are values entered from a
keyboard is easy to control. But an embedded program that gets its inputs
from hardware sensors is more difficult to control and some inputs may be
difficult, dangerous, or impossible to supply (for example, how the
automatic pilot behaves when a train jumps off-track). Many observability
and controllability problems can be addressed with simulation, that is, by
extra software built to “bypass” the hardware or software components that
interfere with testing. Other types of software that often have low
observability and controllability include component-based software,
distributed software, and web applications.

Testability is crucial to test automation because test scripts need to
control the execution of the component under test and to observe the
results of the test. This discussion of test automation is a very short
introduction. Many more details are available in the references given in the
Bibliographic Notes. Several entire books are devoted to test automation.

3.2 COMPONENTS OF A TEST CASE

A test case is a multipart artifact with a definite structure. The following
definitions are not standardized and the literature varies widely. The
definitions are our own but are consistent with common usage. A test
engineer must recognize that tests include more than just input values, but
have many parts. The piece of a test case that is mentioned the most often
contains what we call the test case values:

Definition 3.13 Test Case Values: The input values necessary to
complete an execution of the software under test.

Note that the definition of test case values is quite broad. In a traditional
batch environment, it is quite clear what a test case is. In a web
application, a test case might generate part of a simple web page, or it
might need to complete several commercial transactions. In a real-time
system such as an avionics application, a test case might be so simple as to

be a single method invocation or as complex as an entire flight.
Test case values are inputs to the program that test designers use to

directly satisfy the test requirements. They determine the quality of the
testing. However, test case values are not enough. In addition to test case
values, other inputs are often needed to run a test. These inputs may
depend on the source of the tests, and may be commands, user inputs, or a
software method with values for its parameters. To evaluate the results of a
test, we must know what output a correct version of the program would
produce for that test.

Depending on the software, the level of testing, and the source of the
tests, the tester may need to supply other inputs to the software to affect
controllability or observability. For example, if we are testing software for
a mobile telephone, the test case values may be long distance phone
numbers. We may also need to turn the phone on to put it in the
appropriate state and then we may need to press “talk” and “end” buttons
to view the results of the test case values and terminate the test. These
ideas are formalized as follows.

Definition 3.14 Prefix Values: Inputs necessary to put the software
into the appropriate state to receive the test case values.

Definition 3.15 Postfix Values: Inputs that need to be sent to the
software after the test case values are sent.

Postfix values can be subdivided into two types.

Definition 3.16 Verification Values: Values necessary to see the
results of the test case values.

Definition 3.17 Exit Values: Values or commands needed to terminate
the program or otherwise return it to a stable state.

Once the execution terminates, a test case must determine whether the
result of the test is valid, or is as expected. This is sometimes called the
“test oracle” problem. A test oracle decides whether a test passed or failed.
Thus, the results that the software should produce, if it behaves correctly,
are included in the test case.

Definition 3.18 Expected Results: The result that should be produced

by the test case if the software behaves as expected.

A test case is the combination of all these components (test case values,
prefix values, postfix values, and expected results). When it is clear from
context, however, we will follow tradition and use the term “test case” in
place of “test case values.”

Definition 3.19 Test Case: A test case is composed of the test case
values, prefix values, postfix values, and expected results necessary
for a complete execution and evaluation of the software under test.
We provide an explicit definition for a test set to emphasize that

coverage is a property of a set of test cases, rather than a property of a
single test case. You may sometimes see the term test suite, which usually
means the same thing.

Definition 3.20 Test Set: A test set is a set of test cases.

The components in a test case are concrete realizations of the RIPR
model from Chapter 2. A test can be thought of as being designed to look
for a fault in a particular location in the program. The prefix values are
included to achieve reachability (R), the test case values to achieve
infection (I), the postfix values to achieve propagation (P), and the
expected results to reveal the failures (R). The expected results usually
cannot include values for the entire output state of the program, so a well-
designed test case should check the portion of the output state that is
relevant to the input values and the purpose of the test.

As a concrete example, consider the function estimateShipping()
that estimates shipping charges for preferred customers in an automated
shopping cart application. Suppose we are writing tests to check whether
the estimated shipping charges match the actual shipping charges. Prefix
values, designed to reach (R) the estimateShipping() function in an
appropriate state, might involve creating a shopping cart, adding various
items to it, and obtaining a preferred customer object with an appropriate
address. Test case values, designed to achieve infection (I), might be the
type of shipping desired: overnight vs. regular. Postfix values, designed to
achieve propagation (P) and make an infection result in an observable
failure, might involve completing the order, so that actual shipping charges
are computed. Finally, the revealing part (R) of the final order is probably
implemented by extracting the actual shipping charge, although there are

many other parts of the final order that could also be incorrect.
Note that this test has an underlying complexity: we almost certainly do

not want running the test to result in any merchandise leaving the
warehouse or any customer receiving unordered goods. Solutions to this
problem are presented in Chapter 12.

Finally, wise test engineers automate as many test activities as possible.
A crucial way to automate testing is to prepare the test inputs as executable
tests for the software. This may be done as Unix shell scripts, input files,
or through the use of a tool that can control the software or software
component being tested. Ideally, the execution should be complete in the
sense of running the software with the test case values, getting the results,
comparing the results with the expected results, and preparing a clear
report for the test engineer.

Definition 3.21 Executable Test Script: A test case that is prepared in
a form to be executed automatically on the test software and produce
a report.

The only time a test engineer would not want to automate is if the cost
of automation outweighs the benefits. For example, this may happen if we
are sure the test will only be used once or if the automation requires
knowledge or skills that the test engineer does not have.

3.3 A TEST AUTOMATION FRAMEWORK

This book seldom refers to specific technologies or tools. Most of the
knowledge we are trying to convey is not tied to a specific tool, and
mentioning tools in textbooks invariably dates the book. The most notable
exception is that all of our example programs are in Java; we had to pick
some language and Java is convenient for several reasons. This section
contains another exception. Although we try to present the concepts of test
automation in a general way, we clarify the concepts with specific test
automation examples. Although many test automation frameworks are
available, we use JUnit because it is simple, widely used, includes features
that represent all the ideas we want to present, and last but not least, is
free. Many developers are moving to more sophisticated test automation
technologies, but many are based on JUnit. In fact, the term “xUnit” is
often used informally to mean a test framework based on, or similar to,

JUnit. Presenting JUnit early also gives instructors the opportunity to have
students use JUnit in homework exercises1.

We start by defining the term test framework in a general way.

Definition 3.22 Test Framework: A set of assumptions, concepts, and
tools that support test automation.

A test framework provides a standard design for test scripts, and should
include support for the test driver. A test driver runs a test set by executing
the software repeatedly on each test. If the software component being
tested is not standalone (that is, a method, class, or other component), then
the test driver must supply the “main” method to run the software. The test
driver should also compare the results of execution with the expected
results (from the test case) and report the results to the tester.

The simplest form of driver is a main() method for a class. Effective
programmers often include a main() for every class, containing
statements that carry out simple testing of the class. For a typical class, the
main() test driver will create some instances of the class, manipulate
their values by calling mutator methods, and retrieve values for
verification by calling observer methods. The driver can implement
sophisticated techniques, such as those discussed in Part II of this book.
This practice has evolved into the JUnit test framework, which provides a
flexible collection of classes and API to develop test drivers. JUnit has, in
turn, evolved into “*-Unit,” where similar functionality has been created
for other languages and technologies.

Most test automation frameworks support:

 Assertions to evaluate expected results
 The ability to share common test data among tests
 Test sets to easily organize and run tests
 The ability to run tests from either a command line or a GUI

Most test automation frameworks are designed for unit and integration
testing, although some specifically support system testing, and some are
built to support testing over the web (HttpUnit, for example).

3.3.1 The JUnit Test Framework

JUnit scripts can be run as stand alone Java programs (from the command
line) or within an integrated development environment (IDE) such as
Eclipse. JUnit can be used to test an entire class, part of an object such as a
method or some interacting methods, or interaction between several
objects. That is, it is primarily used for unit and integration testing, not
system testing.

JUnit embeds each test into one test method, and test methods are
collected into test classes. Test classes include two parts:

1. A collection of test methods.
2. Methods to set up the program state before running each test (prefix

values) and update the state after each test (postfix values).

Test classes are written using the methods in the junit.framework.assert
class. Each test method checks a condition (assertion) and reports to the
test runner whether the test failed or succeeded. Assertions are how
expected results and the test oracle are encoded into JUnit tests. The test
runner reports the result to the user. If in command line mode, the message
is printed on screen. If in an IDE, the message is displayed in a window on
the display. All assert methods return void. A few common methods are:

 assertTrue (boolean): This is the simplest assertion, and, in principle,
any assertion about program variables can ultimately be implemented
using this assertion.

 assertTrue (String, boolean): This assertion provides more information
to the tester. If the assertion is true, the string is ignored. If the
assertion is not true, the string is sent to the test engineer. It should
provide a concise summary of the failure.

 fail (String): This assertion puzzles many new test engineers, but it is
extremely useful in situations where if a certain section of code is
reached, that means the test has failed. As before, the string provides a
summary to the test engineer. The fail method is often used to test
exceptional behavior, although we also discuss another, often better,
way in the Min class example.

The discussion in this section illustrates so-called “state-based” testing,
where values produced by the unit under test are compared to known
correct (“reference”) values. An important complement to state-based
testing is “interaction-based testing,” where success is defined by how

objects communicate with each other. We discuss interaction-based testing
in depth when we discuss test doubles in Chapter 12.

JUnit uses the concept of a test fixture, which is the state of the test, as
defined by the current values of key variables in the software under test.
Test fixtures are especially useful when objects and variables are used by
more than one test. The test fixture can be used to control the prefix values
(initializations) and postfix values (reset values). This allows different tests
to use the same objects without sharing state between tests. In other words,
each test runs independently of other tests. Objects that will be used in test
fixtures should be declared as instance variables in the JUnit class. They
are initialized in a “@Before” method and reset or deallocated in an
“@After” method.

Figure 3.1 shows a very small class, Calc, and a JUnit test class,
CalcTest. The method under test simply adds two integers. The JUnit
test class has a single test with test values 2 and 3 and expected value 5.
JUnit typically implements each test with a single void method without
any parameters– testAdd() in this example. We will discuss other ways
to implement tests later in the section. The annotation “@Test” defines a
JUnit test and a common convention is to name test methods by prefixing
the string “test” before the method name2.

Figure 3.1. Calc class example and JUnit test.

Figure 3.2 shows a more complex example that includes Java generics
and tests for exceptions. Note that the JavaDoc documents exceptional
returns as well as normal behavior. Naturally, these exceptions also need

to be tested, and the accompanying test class in figures 3.3 and 3.4,
MinTest, does exactly that. If JavaDoc comments are written well,
testers can use them to write high-quality tests.

Figure 3.2. Minimum element class.

Figure 3.3. First three JUnit tests for Min class.

Figure 3.4. Remaining JUnit test methods for Min class.

Class MinTest is split across two pages because of its length. The test
fixture methods and the first three test methods are shown in Figure 3.3.
The “ @Before” method encodes the prefix part of the test. It puts the test
object into a proper initial state by creating a new List object. The “
@After” method encodes the postfix part of the test. It resets the state of
the test object by setting the object reference to null. Strictly speaking, the
@After method is redundant since the @Before method resets the
reference anyway, but good engineering practice is to be conservative:
“measure twice, cut once.”

Figure 3.3 also shows three separate tests where the expected result is
NullPointerException. The JavaDoc specification indicated that

NullPointerException should be thrown if either the list is null
or if any element in the list is null, thus we need an explicit test for each
situation.

The first test illustrates the JUnit fail statement. For this test to pass,
we expect to throw, and then catch, a NullPointerException. If no
exception is thrown, or if a different exception is thrown3, the fail
statement is reached, and the test correctly reports failure. Again, no
assert statement is needed.

The second test illustrates an alternate approach to testing exceptional
behavior. Specifically, the @Test annotation can be augmented with the
class of the specific exception expected. This second approach is usually
more straightforward to program and understand. Also, by identifying the
expected exception by class it avoids some common mistakes that arise
due to the inheritance structure of the Java exception classes. Hence, we
recommend implementing test cases for exceptional returns with this
second approach. Note that no assert or fail statements are needed.

The reason for the third NullPointerException test is more
subtle. Even good programmers might overlook the possibility of a list that
contains only a single null element and nothing else. Indeed, it is this test
that forces the Min method to include an explicit
NullPointerException throw after the variable result is
initialized. To fully understand why this is needed, we suggest
commenting out this line of code and rerunning the test set. To test this
situation, we include an additional test to cover a single null element.

Figure 3.4 shows four additional tests for the Min class. The first two
tests are for exceptions. Note that despite the use of generics, it is possible
to call Min with a list of elements that are not mutually comparable—or
even with elements that do not implement the Comparable interface at
all. The reasons for this are subtle and complex4, but the message for the
test engineer is very simple: if you think it might be possible, you should
test it! Notice that this test requires “raw” types, about which the Java
compiler duly warns us. Following good Java practice, we use the “
@SuppressWarnings” annotation to suppress this warning.

The final two tests in the MinTest class address “normal” behavior.
The balance between exceptional returns and normal returns shown in this
example (five to two) is hardly unusual. Exceptional behavior is
notoriously harder to program correctly than “happy path” behavior,

Unfortunately, many inexperienced testers (and programmers) will focus
primarily on testing expected behavior, and test few, if any, exceptional
conditions. When evaluating tests, one of the first things to check is how
thoroughly exceptional behavior is considered.

3.3.2 Data-Driven Tests

Sometimes, the same test method needs to be run multiple times, with the
only difference being the input values and the expected output. For
example, the add() method in the Calc class should be tested with
several values and expected sums. Repeatedly cutting and pasting the same
test method and subsequently editing the inputs and expected outputs
results in completely unmaintainable test code (and lots of chances for
mistakes). A better solution is to write the test once and then supply the
data values in a table. This approach is commonly called data-driven
testing. The JUnit Parameterized mechanism implements data-driven
testing. We avoid the term “parameterized” as much as possible in this
discussion because it is overloaded in the context of unit testing with
different, and conflicting, definitions.

Figure 3.5 shows DataDrivenCalcTest, a Java class that defines
data-driven JUnit tests for the Calc class. The import statements at the
beginning of the file bring in the JUnit classes needed.

Figure 3.5. Data-driven test class for Calc.

JUnit uses the Java class mechanism to implement data-driven tests.
Specifically, the table of inputs and expected outputs come from a user-
defined method annotated as @Parameters. This method returns a data-
driven table in the form of a collection of Object arrays. JUnit expects
the number of objects in each array to correspond to the number of formal
arguments in the constructor for the JUnit test class. In this example, the
number of objects is three: two input values (addends) and the expected
result (the addends’ sum). This matches the number of arguments in the
constructor DataDrivenCalcTest().

JUnit creates a new instance of the test class for each array in the
collection returned by the @Parameters method. Methods in the test
class use the instance variables initialized in the constructor call to test
behavior in the same way as normal test methods. In the example, the

@Parameters method calcValues() returns a collection with two
arrays of inputs and expected outputs, and hence JUnit calls the
constructor DataDrivenCalcTest() twice. The arguments in the first
constructor call come from the first array returned by calcValues(),
and the arguments in the second constructor call come from the second
array returned by calcValues()5. For each of the two resulting
DataDrivenCalcTest objects, JUnit executes the test method
additionTest().

3.3.3 Adding Parameters to Unit Tests

None of the test methods discussed so far have had explicit parameters.
Allowing the use of parameters in test methods is extremely powerful—
both theoretically and practically. The JUnit Theory mechanism allows
test engineers to define test methods with parameters.

Sidebar
JUnit Theories: Universal Quantification for Testing

Consider the universally quantified assertion:

This assertion can be interpreted to mean that, for all values in a
particular domain X, if the precondition P is true, then the
postcondition Q is also true.
The normal approach to such an assertion is using a mathematical
proof to show that the assertion is, indeed, a theorem. Testing is usually
considered ill-suited to showing such an assertion—primarily because
the domain of interest, represented by X in this example, is often very
large, and hence X cannot be enumerated exhaustively.
Unit tests with parameters explore a middle ground between
mathematical proof and ordinary testing. They promise to use the
practical power of testing, at least partially, to demonstrate the validity
of universally quantified assertions. From a testing perspective, this is
radical!
A test engineer writing a test method with parameters proceeds

mathematically. She hypothesizes that for all possible combinations of
parameters that satisfy the preconditions, the postcondition is also true
for whatever action the test implements. Those familiar with design-by-
contract might recognize this important pattern: Precondition, Action,
Postcondition.
Of course, there is no way to try all possible values, or else our tests
will never finish running. But the test engineer should not be concerned
with where values come from, or how many there are, when specifying
the theory itself. Those concerns, which are addressed differently in
different approaches to test methods with parameters, can wait.
Instead, she should focus on writing a valid test method—and leave it
up to the test engine to find a counterexample if possible.

Figure 3.6 shows an example JUnit theory about sets of strings. The
theory is implemented in a method annotated with @Theory. Notice that
this method has two parameters, a set of strings and a string. The “Action”
part of theory, implemented in ordinary Java, removes a string from a set
and then adds the string back in. The postcondition of the theory,
implemented by the assertTrue statement, asserts that the resulting set
is the same as the starting set. Of course, this theory is only true if the
starting set already contains the string being removed. In other words, the
theory has a precondition. This precondition, implemented in the
assumeTrue statement, states that the starting set contains the necessary
string. The theory also has a precondition that starting set not be null;
otherwise, the theory will fail in an uninteresting manner via
NullPointerException.

Figure 3.6. JUnit Theory about sets.

So far, this example leaves out an important question: what values
should be substituted for the parameters in the test? Put another way, the
parameters in the JUnit Theory method provides a “box” to hold test
inputs. It is upto the test engineer and the test driver framework to decide
what values to put into the box. Figure 3.7 shows the JUnit approach to
supply parameters to the set example.

Figure 3.7. JUnit Theory data values.

In JUnit, possible values for parameters are explicitly listed in
@DataPoints objects, which are arrays of Java data types. JUnit
matches data values to parameters by type: if the data value has the same
type as the parameter, then JUnit plugs it in 6. The number of tests is the
cross-product of all the possible values for each parameter in the test. For
example, the test in Figure 3.6 has two parameters, one of type String
and the other of type Set. Figure 3.7 has three values of type String
and three values of type Set, thus, this example has 3 * 3 = 9 possible
combinations of values, four of which satisfy the precondition. All four
combinations that satisfy the precondition also satisfy the postcondition—
exactly what we expect from a valid theory. For the five combinations that
do not satisfy the precondition, JUnit does not evaluate the postcondition.
If a precondition is not satisfied, then the postcondition does not apply.

Data-driven testing can suffer from a combinatorial explosion in the
number of tests. Remember that the number of potential tests is given by
the cross-product of the possible values for each of the parameters in the
unit test. For small sets of data values, the number of tests is not usually a
problem. However, for large sets of data values, or for test methods with
many parameters, the number of actual tests may balloon quite quickly.
Testers must be aware of this and adjust accordingly if the test framework
generates more tests than can be practically (or helpfully) run.

3.3.4 JUnit from the Command Line

The above examples are enough to run JUnit inside an IDE. To run from a
command line, however, a main method is needed. Figure 3.8 shows the
additional class needed to run the tests for the Min class. If a test fails,
JUnit gives the location of the failure and any exceptions that were thrown.
If JUnit is run from the command line, the format of the feedback is
simply the normal stack trace that the Java runtime system supplies for any
uncaught exception. IDEs tend to format the feedback more clearly.

Figure 3.8. AllTests for the Min class example.

3.4 BEYOND TEST AUTOMATION

Test practitioners widely agree that test automation is an essential way to
make testing more efficient and effective. Test automation frameworks,
however, are not “silver bullets.” They do not solve the core technical
problem of software testing: What test values to use? This is the subject
of test design. After test driven development in Chapter 4, Chapter 5

discusses criteria-based test design in general, then the next four chapters
give specific test criteria for designing tests.

EXERCISES
Chapter 3.

1. Why do testers automate tests? What are the limitations of
automation?

2. Give a one-to-two paragraph explanation for how the inheritance
hierarchy can affect controllability and observability.

3. Develop JUnit tests for the BoundedQueue class. A compilable
version is available on the book website in the file
BoundedQueue.java. Make sure your tests check every method,
but we will not evaluate the quality of your test designs and do not
expect you to satisfy any test criteria. Turn in a printout of your
JUnit tests and either a printout or a screen shot showing the results
of each test.

4. Delete the explicit throw of NullPointerException in the
Min program (Figure 3.2). Verify that the JUnit test for a list with a
single null element now fails.

5. The following JUnit test method for the sort() method has a non-
syntactic flaw. Find the flaw and describe it in terms of the RIPR
model. Be as precise, specific, and concise as you can. For full
credit, you must use the terminology introduced in the book.
In the test method, names is an instance of an object that stores
strings and has methods add(), sort(), and getFirst(),
which do exactly what you would expect from their names. You can
assume that the object names has been properly instantiated and the
add() and sort() methods have already been tested and work
correctly.

6. Consider the following example class. PrimeNumbers has three
methods. The first, computePrimes(), takes one integer input
and computes that many prime numbers. iterator() returns an
Iterator that will iterate through the primes, and toString()
returns a string representation.

computePrimes() has a fault that causes it not to include prime
numbers whose last digit is 9 (for example, it omits 19, 29, 59, 79,
89, 109, . ..). If possible, describe five tests. You can describe the
tests as sequences of calls to the above methods, or briefly describe
them in words. Note that the last two tests require the test oracle to
be described.
(a) A test that does not reach the fault
(b) A test that reaches the fault, but does not infect
(c) A test that infects the state, but does not propagate
(d) A test that propagates, but does not reveal
(e) A test that reveals the fault
If a test cannot be created, explain why.

7. Reconsider the PrimeNumbers class from the previous exercise.
Normally, this problem is solved with the Sieve of Eratosthenes
[Wikipedia, 2015]. The change in algorithm changes the
consequences of the fault. Specifically, false positives are now
possible in addition to false negatives. Recode the algorithm to use
the Sieve approach, but leave the fault. What is the first false
positive, and how many “primes” must a test case generate before
encountering it? What does this exercise show about the RIPR
model?

8. Develop a set of data-driven JUnit tests for the Min program. These
tests should be for normal, not exceptional, returns. Make your
@Parameters method produce both String and Integer values.

9. When overriding the equals() method, programmers are also
required to override the hashCode() method; otherwise clients
cannot store instances of these objects in common Collection
structures such as HashSet. For example, the Point class from
Chapter 1 is defective in this regard.
(a) Demonstrate the problem with Point using a HashSet.
(b) Write down the mathematical relationship required between

equals() and hashCode().

(c) Write a simple JUnit test to show that Point objects do not
enjoy this property.

(d) Repair the Point class to fix the fault.
(e) Rewrite your JUnit test as an appropriate JUnit theory.

Evaluate it with suitable DataPoints.
10. Replace each occurrence of a set with a list in the JUnit theory

removeThenAddDoesNotChangeSet. Is the resulting theory
valid or invalid? How many of the tests that pass the precondition
also pass the postcondition? Explain.

3.5 BIBLIOGRAPHIC NOTES

Our definition of test automation was adapted from Dustin et al. [Dustin et
al., 1999], which goes into great detail on the practical and problematic
aspects of test automation. The descriptions of excise and revenue tasks
were taken from Cooper [Cooper, 1995].

Several different definitions of testability have been published.
According to the 1990 IEEE standard glossary [IEEE, 2008], testability is
the “degree to which a component facilitates the establishment of test
criteria and the performance of tests to determine whether those criteria
have been met.” Voas and Miller [Voas and Miller, 1995] defined software
testability by focusing on the “probability that a piece of software will fail
on its next execution during testing if the software includes a fault.”
Binder [Binder, 1994, Binder, 2000] defined testability in term of
controllability and observability. Controllability is the probability that
users are able to control a component’s inputs (and internal state).
Observability is the ability that users have to observe a component’s
outputs. If users cannot control the inputs, they cannot be sure what caused
the output. If users cannot observe the output of a component under test,
they cannot be sure if the execution was correct. Freedman [Freedman,
1991] also described testability based on the notions of observability and
controllability. In his terms, observability captures the degree to which a
component can be observed to generate the correct output for a given
input, and controllability refers to the ease of producing all values of its
specified output domain.

Our definition of testability is adapted from the IEEE standards [IEEE,
2008]. Our definitions for observability and controllability are adapted

from Freedman [Freedman, 1991].
The observation that information hiding reduces controllability, thereby

making testing harder, is due to Voas [Voas, 1992].
The multiple parts of the test case are based on research in test case

specifications by Balcer and Stocks [Balcer et al., 1989, Stocks and
Carrington, 1993].

JUnit is simply a test driver. Readers skeptical of JUnit’s simplicity
might wish to review the half-page implementation of basic JUnit provided
by Bloch, page 171 [Bloch, 2008]. The power of JUnit is in its uniformity:
it encourages all Java programmers write tests the same way. Buest and
Suileman [Beust and Suleiman, 2008] describe TestNG, a successor to
JUnit that includes features useful for testing large scale projects. TestNG
uses the term data-driven testing consistently with our usage, but TestNG
includes a richer support framework. Tillmann and Schulte [Tillmann and
Schulte, 2005] developed the approach of adding parameters to unit tests.
The Pex test generation framework [Tillmann and de Halleux, 2008]
automatically identifies possible values to substitute in for these
parameters.

1 At George Mason, we introduce JUnit in our second semester programming class
and the first graduate class in the software engineering MS program. Of course,
we also use JUnit in our testing classes.

2 JUnit 3 required the convention of starting test methods with the string test.
The annotations used in JUnit 4 give the compiler a chance to catch mistakes that
would otherwise be silently ignored.

3 To be precise, since the Java exception mechanism uses the type hierarchy, the
catch block in this example intercepts any subclass of
NullPointerException.

4 Java generics are implemented by erasure so as to be backwards compatible with
older versions of Java. Put another way, Javagenerics are only analyzed by the
compiler; there is no trace of them left in the Java bytecode.

Java generics allow the programmer to write code with better type safety. In
practical terms, this means that many potential sources of
ClassCastException are turned into compile-time errors. This is a good
thing! It is always better to identify a problem at compile time than to wait for a
failing test case, or, worse, a field failure.

Unfortunately, Java generics can guarantee type safety only if all Java code in
a system uses generics instead of so-called “raw”types. Generally, the test

engineer will not be in a position to ensure that raw types have been eliminated.
Bottomline: type-safety violations that result in ClassCastException are possible
even in code that properly uses generics. Hence, it is often necessary to write
tests for type-safety violations in addition to using the Java generics mechanism.

5 Since JUnit uses Java reflection to implement these calls, the compiler cannot
check that the number and type of objects in the array returned by the
@Parameters method match the number and type of objects expected by the
test class constructor.

6 To be precise, JUnit uses the Java instanceof test to determine whether a
given object can be associated with a particular parameter. JUnit is implemented
with the Java reflection mechanism, which is a runtime facility. Hence, JUnit
cannot take advantage of Java generics for type matches, and instead relies
exclusively on “raw” types.

4

Putting Testing First

What’s past is prologue.

The role of testing in software development has undergone radical changes
in recent years. Testing has evolved from afterthought to a central activity
in certain development methods—particularly agile methods. This chapter
explains the evolving role of testing in software development and
highlights the key theoretical and practical enablers for that evolution. The
message of this chapter is as follows: If high-quality testing is not centrally
and deeply embedded in your development process, your project is at high
risk for failure. Your project might fail in the technical sense, in that you
simply lose control of what the code actually does. Or it might fail in the
business sense, in that your competitors roll out better functionality faster.
It does not really matter which way you fail; sadly, the consequences are
the same.

4.1 TAMING THE COST-OF-CHANGE CURVE

Traditional software engineering, as described in standard texts on
software engineering, came into being as a field precisely because the
development of large software projects was proving to be increasingly
difficult—even impossible—using ad hoc development methods.
Traditional software engineering focuses primarily on extensive modeling
and upfront analysis. The goal is to reveal potential problems and changes
as early as possible. The economic rationale is that effort spent on
revealing failures early delivers an enormous return on investment. Every
software engineering text shows the traditional “cost-of-change” curve,
where the key variable is the lag between when a change should ideally be

made and when the need for that change is recognized. Figure 1.1 in
Chapter 1 illustrates this concept, by showing that the cost of finding and
fixing faults balloons as we move from unit testing to integration testing to
system testing to deployment.

A more general description is shown in Figure 4.1. The way to read this
figure is to identify the time at which a decision (or the mistake) is
originally made and the time at which that decision is revised (or mistake
is repaired). The time interval between these events is shown on the
horizontal axis. Cost, shown on the vertical axis, is a function of the length
of time between the original and the revision. The “delta” cost starts at a
small value for revisions made shortly after the original and climbs ever
more steeply as the interval between the two events grows longer. The
primary reason for the ever-increasing cost is that additional work is
invested that depends on the original decision, and this work must also be
revised if the original decision is revised. A secondary problem is that as
the software grows it gets harder to find the root cause of failures.

Figure 4.1. Cost-of-change curve.

In the early days of software engineering, the field made two
assumptions to allow traditional software engineering to effectively tame
the cost-of-change curve:

1. Modeling and analysis techniques can effectively identify potential
problems and changes early in the lifecycle.

2. The savings implied by the cost-of-change curve justify the cost of

the modeling and analysis techniques, when considered with respect
to the total cost of ownership over the life of the project.

Sidebar
The Software Engineering Crisis

We speculate that this mindset originated when the “software
engineering crisis” was first identified in 1968. At the time, most
software was written for military organizations. They procured
software to embed in weapons and other military systems, needed the
software to work “correctly out of the box,” and hoped for a long
lifetime with little or no maintenance. The mindset was that any change
required bringing the hardware system back into the factory, a very
expensive operation with military systems that are deployed worldwide.
Thus these two assumptions made perfect sense within that context. In
modern times, however, the military is a much smaller part of the
software industry, and software is often updated remotely through
networks or, in the case of web applications, by deploying new software
onto the local server that users access remotely.

Implied by these assumptions is a belief that the requirements are
always complete and current. In fact, software engineers needed the
requirements to remain complete and current, or else the up-front cost of
developing good requirements is not cost effective. Yet, what is one of the
most common complaints of software engineers, especially contractors?
“The customers keep changing their minds! They don’t know what they
want!” This shows a basic misunderstanding of human nature. People are
very good at getting approximate solutions, but very bad at getting precise
solutions. This is why professionals like scientists and medical doctors
spend years training themselves to be very precise, and why passing is
easier than shooting in basketball. The above assumptions are only valid if
humans are perfectionists, whereas we are really approximators.

4.1.1 Is the Curve Really Tamed?

This section contrasts agile software development methods with traditional
software engineering. At the broadest level, agile methods are about

achieving key end results: working software, responsiveness to change,
effective development teams, and happy customers. While this broad
context is important, it is outside the scope of this text. We focus here on
agile approaches where testing plays an especially prominent role, such as
Extreme Programming (XP) and Test-Driven Development (TDD).

The basic agile counter-argument to traditional software engineering is
that, for many modern projects, neither of the two assumptions identified
above is valid. The first assumption is undermined by the fact that
software engineers have proven to be lousy prognosticators. Not only are
needed changes not anticipated (a false negative), but unneeded changes
are incorrectly anticipated (a false positive), resulting in wasted work. In
particular, it is extremely difficult to predict business value in advance,
and so modern software evolves in inherently unpredictable ways. The
second assumption is undermined by the fact that non-executable artifacts
tend to diverge from the running system when change happens. So, for
example, even if a UML model does a great job of describing the initial
version of a system, it often does a lousy job of describing the system six
months later. The XP approach to this conundrum separates the value of a
model in aiding system understanding, which is indeed a good thing, from
the practice of using models as documentation, which is viewed as asking
for trouble. Put another way, XP recognizes the value of a UML diagram
in communicating information about a particular system design. XP also
takes the position that archiving the UML diagram is problematic, and
asserts that it is often better simply to discard the model once its original
purpose (design) has been served.

An agile principle that goes directly to the heart of the both assumptions
is “You ain’t gonna need it!”, or YAGNI. The YAGNI principle states that
traditional planning is fraught precisely because predicting system
evolution is fundamentally hard, and hence expected savings from the
cost-of-change curve do not materialize. Instead, agile methods such as
TDD defer many design and analysis decisions and focus instead on
creating a running system that does “something” as early as possible. At
first glance, this may sound like a return to the dark days before traditional
software engineering. But no! In fact, there is a crucial difference.

Question: So, what’s different?

Answer: The test harness.

We use the term test harness to mean not just the automated tests, but
the process by which the execution of the tests is managed so that
developers obtain critical feedback as quickly as possible.

The next section explores the implications of the test harness.

4.2 THE TEST HARNESS AS GUARDIAN

Agile methods in general, and test-driven development in particular, take a
novel, and somewhat more restricted, view of correctness. Previous
chapters discussed the notion of correctness at length. Chapter 1 pointed
out that correctness is not possible and perhaps not even meaningful as a
concept with respect to software. As said in Chapter 2, it’s not even clear
that the term “correctness” means anything when applied to a piece of
engineering as complicated as a large computer program. Chapter 3
introduced automated tests, and clarified that an automated test must
include the expected, or “correct” behavior on that test. Note that knowing
correct behavior on a particular test is more restricted and much simpler
than knowing correctness for the software in general. This allows a
fundamental shift in the mindset for agile methods.

All agile methods have an underlying assumption that instead of
defining all behaviors with requirements or specifications, we demonstrate
some behaviors with specific tests. The software is considered correct if it
passes a particular set of tests. These tests must be automated and must
include the expected result. That is, test automation is a prerequisite for
test-driven development. To summarize: a basic assumption in all agile
methods is that software “correctness” is measured existentially through
test cases instead of universally through definitions and analysis. If all the
test cases pass, the system is considered correct. If they do not, “the build
is broken.”

While this approach to correctness might strike mathematicians as
impoverished, software is built by engineers, and guess what? Engineers
are not mathematicians! This view of correctness has enormous practical
engineering benefits in that it is both concrete and checkable. In effect, this
view redefines “correctness” to be more limited, and thus possible to
assess. Even as the software, including the test cases, evolve, the
correctness of the system at any single point in time is subject to
immediate verification simply by running the test set. Further, if someone

objects that the system should really be behaving differently, there is a
constructive way to articulate this objection: write (or modify) a test case!

In agile methods, test cases are the de facto specification for the system.
From the developer’s perspective, this makes testing the central activity in
development. This is the reason that agile methods such as TDD order
writing tests first, implementing functionality second, and following good
design principles third. It is important to emphasize that good design still
matters in TDD. It simply occupies a different, and later, niche in the
development cycle.

A consequence of the test-harness-as-guardian philosophy is a belief
shared by many agile developers: non-executable documents are not just of
questionable utility, rather, they are potentially misleading. While
everyone agrees that a non-executable document that correctly describes a
software artifact is helpful, it is also true that a non-executable document
that incorrectly describes a software artifact is a liability. Agile methods
attempt to make executable artifacts to satisfy needs that, in traditional
software engineering, were satisfied by non-executable artifacts. For
example, comments in code might be encoded into method names. The
compiler discards comments, but insists on syntactic validity of the names.

The fact that agile recognizes the central role of evolution in software
development means that the definition of success differs from traditional
development. Traditional development defines success as “On time and on
budget,” whereas agile methods aim first for having something executable
available from the very beginning of development and second producing a
different, and presumably better, product than the one originally
envisioned.

Hence, to make agile work, test cases need to be of high quality and test
processes need to be efficient. Use of test automation is necessary, but not
sufficient.

4.2.1 Continuous Integration

One of the key advances produced by the agile movement is the
continuous integration service. The idea is that a developer starts with a
“clean” development environment, visits a repository for a project,
downloads the source and test set, builds the system, and verifies the test
set. After making (and verifying!) a change to the system and/or the test

set, the developer pushes the changes back to the repository, where the
continuous integration server rebuilds the system, and then reruns and
reverifies the test set. Mistakes made by a single developer are quickly
caught, but, even more importantly, the entire team of developers
immediately becomes aware of divergent design decisions.

The continuous integration service is an important part of the test
harness. In it, developers define the rules to “automate the build,”
including verification steps such as executing test sets, checking code
coverage, and monitoring static analysis results. Dashboards and
notification scripts inform key team members of the project status on a
real-time, or close to real-time, basis.

How fast is the continuous integration server? Ideally, it is
instantaneous, but, given finite computing power, this is not possible. In
practice, the goal is to bring the need for rework to the attention of
developers while the source of the problem is still in their short-term
memories. The corresponds to minutes, or, at most, hours. From a testing
perspective, this means that it is necessary to engineer the test set to run to
completion inside this window. Not only do our tests need to be good—
they also need to be fast!

4.2.2 System Tests in Agile Methods

System tests present a challenge to agile methods for two reasons. First,
the implementation may have little or no functionality when system tests
are developed. Since this book advocates developing tests as early as
possible, this situation is not different from traditional methodologies.
Second, and more significantly, requirements are simply not documented
as they are in traditional software engineering. Traditionally, system
testers often develop tests from requirements (or sometimes specifications
or architectural designs) that are intended to completely describe the
behavior of the software.

Complicating matters, the amount of effort required to implement the
functionality captured by the system test might be quite large. How do you
run a test against a system that not only isn’t yet built, but cannot even be
built in a short time-frame? Of course, this problem also confronts system
testers in traditional software engineering methods. The difference is that
agile methods place a premium on having a test harness continuously

verify the system.
In traditional software development, system requirements are often

questionable in terms of how complete and current they are. In agile
methods, they are undocumented! So what do system testers do? Agile
system testers often design tests from user stories. A user story is a
sentence or possibly several sentences in the language of the end user that
captures what a user does or needs to do with the software as part of his or
her job function. They are similar to UML use cases in that they describe
the software’s intended behavior in high-level language, but they differ in
significant ways. They are usually smaller in scale and include very few
details. In fact, a common practice is to write them on note cards to
emphasize that they should be small scale. They are also not intended to be
archived, but are used as a basis for developing tests, which are archived.

Figure 4.2 illustrates how user stories are used in agile methods,
specifically with test-driven development. First a user story is written,
preferably with input from actual or intended users. That user story is then
turned into one or more acceptance tests that, by definition, fail on the
current version of the software since the functionality to implement these
tests does not yet exist. The agile use of the term “acceptance test” is
compatible with the definition in Chapter 2. Acceptance tests are at the
same level of abstraction as traditional system tests, and structured
identically, however the intent is different. Acceptance tests come from
users and are intended to represent users’ needs. The agile literature
focuses on acceptance tests and does not focus heavily on traditional
system tests. A failing acceptance test is then used to generate a sequence
of TDD tests. The TDD tests are written sequentially; each subsequent test
forces the software developer to implement more of the required
functionality. When enough functionality is implemented so that the
acceptance test passes, agile developers can turn to a new user story.

Figure 4.2. The role of user stories in developing system (acceptance) tests.

Consider a very simple user story, “Support technician sees customer’s
history on demand.” The story does not include implementation details,
and is not specific enough to run as a test case. This example user story
above might have a happy path test where a technician fields a call from a
specific, existing user. The test passes if that specific user’s history is
displayed on demand. A different test might involve a new user; this test
passes if the technician is informed that the user does not have a history.
These tests provide specific, concrete guidance to developers as to exactly
what functionality needs to be implemented.

The agile community has developed several processes and tools to
manage automating system tests and integrating the implementation as it is
developed. This chapter does not describe all these processes and tools,
and Figure 4.2 is only representative. The bibliographic notes section in
this chapter provides a pointer to these topics.

This chapter emphasizes that tests, system or otherwise, define software
behavior in agile methods. As a consequence, high-quality tests are of
central importance to whether agile projects succeed.

4.2.3 Adding Tests to Legacy Systems

For many real systems, it’s an unfortunate truth that testing was neglected
and all that the current developers have to work with is the source code.
This is an extremely dangerous state of affairs, and often leads to a
corporate decision to not modify certain systems out of fear of the
consequences of changes. But such apparently conservative decisions are
not necessarily safe either. The root cause of the loss of the maiden flight
of the Ariane 5 rocket (as discussed in Chapter 1) was a decision to re-use
—without modification—the inertial guidance system from the Ariane 4
rocket, despite the fact that the developers knew that some of the code
from the Ariane 4 system was not needed for the Ariane 5. The loss of the
rocket was traced back to a problem in the unneeded code.

Hence a common situation facing developers when working with
existing systems is how to apply something like TDD to a system that has
no tests at all. It is impractical to insist that new work stop completely
while an entire test set is constructed; employees who insist on this route
are likely to be looking for a new employer. Instead, there needs to be a

way to incrementally introduce test cases, so that over time a system safely
moves towards both new functionality and new test cases that verify that
functionality.

We briefly touch on two common needs: refactoring existing code and
changing the functionality of legacy code. The best way to understand this
process fully is to do it, and we ask exactly that in the exercises at the end
of the chapter.

Refactoring is a way to modify (hopefully improving) the structure of
existing code without changing its behavior. But it is not possible to
refactor safely without also checking that the behavior has not changed.
The agile approach to refactoring legacy code is to provide test cases for
just the section of code that is being refactored. Once these tests are
running successfully, the developer can turn attention to the refactoring,
confident in the knowledge that the test cases will help catch mistakes
made in that process. At the end of the refactoring, all of the test cases
must still pass.

In the case of changing functionality, either to introduce new behavior
or to repair a fault, the process is slightly different. Again, the developer
produces test cases for the section of code where she intends to make
changes. Some of these tests fail, of course, since either the new behavior
is not yet implemented or the fault is not yet repaired. Once the tests are
ready, the desired changes can be made. At the end of the process, all of
the tests should pass, including those that failed earlier.

4.2.4 Weaknesses in Agile Methods for Testing

Agile methods have much to offer, however with some cost. One cost is
that a lot of things are different, which is disruptive, especially to
established teams and companies. We already discussed the fact that
requirements are not present, or at least, in a very different form. Other
things are lost as well, for example traceability matrices. The information
that used to be in traceability matrices moves to the acceptance tests and
TDD tests.

The agile community has invested a great deal of effort in making tests
fast by using technologies such as test doubles. It has also developed
methods such as continuous integration servers to provide effective
feedback to developers. When a method such as TDD is used, code that

implements new functionality should only be written in response to a
failing test, so every additional functionality added to the software is
motivated by at least one test case.

While this is a good start, it is not sufficient. When TDD is used, the
tests are primarily intended to define the behavior of the software as
opposed to evaluate whether the behavior is correct, which is the
traditional role of testing. The literature does not say much about designing
tests to evaluate software. For example, typical test-driven tests score
weakly on even basic code coverage measures such as statement coverage.
A major factor in this weakness is that agile tests tend to focus on happy
paths, that is, behavior that should happen under normal use. These tests
are less likely to traverse confused-user paths, where users make mistakes
and do unusual things, creative-user paths, where users come up with new
ways to use the software, or malicious-user paths, where users try to break
through security barriers or otherwise abuse the software.

Improving the quality of the evaluation of software by applying
coverage criteria to design tests is the main focus of this text. The next
chapter introduces the concept of coverage criteria, and the chapters in Part
II teach specific coverage criteria that can help testers design very high-
quality tests.

EXERCISES
Chapter 4.

1. Chapter 3 contained the program Calc.java. It is available on the
program listings page on the book website.
Calc currently implements one function: it adds two integers. Use
test-driven design to add additional functionality to subtract two
integers, multiply two integers, and divide two integers. First create a
failing test for one of the new functionalities, modify the class until
the test passes, then perform any refactoring needed. Repeat until all
of the required functionality has been added to your new version of
Calc, and all tests pass.
Remember that in TDD, the tests determine the requirements. This
means you must encode decisions such as whether the division
method returns an integer or a floating point number in automated
tests before modifying the software.

Submit printouts of all tests, your final version of Calc, and a
screenshot showing that all tests pass. Most importantly, include a
narrative describing each TDD test created, the changes needed to
make it pass, and any refactoring that was necessary.

2. Set up a continuous integration server. Include version control for
both source code and tests, and populate both with a simple example.
Experiment with “breaking the build,” by either introducing a fault
into the source code or adding a failing test case. Restore the build.

3. Most continuous integration systems offer far more than automated
test execution. Extend the prior exercise so that the continuous
integration server uses additional verification tools such as a code
coverage or static analysis tool.

4. Find a refactoring in some large, existing system. Build tests that
capture the behavior relevant to that part of the system. Refactor, and
then check that the tests still pass.

5. Repair a fault in an existing system. That is, find the code that needs
to change and capture the current behavior with tests. At least one of
these tests must fail, thus demonstrating that you found the fault.
Repair the fault and check that all of your tests now pass.

4.3 BIBLIOGRAPHIC NOTES

One of the first serious discussions of problems with software was at a
NATO conference in 1968, where the term “software engineering crisis”
was coined [Naur and Randell, 1968]. The idea that humans are good
approximators but poor perfectionists is a cognitive and usability concept
that is explained in Krug’s book [Krug, 2000].

The overall goals of the agile movement are captured in the Agile
Manifesto [Beck et al., 2001]. The specific material presented here about
the problems with traditional approaches to software engineering is drawn
from Fowler, Ambler, and Koskela. Fowler [Fowler, 2004, Fowler, 2005]
contrasts planning approaches from traditional software engineering with
evolutionary approaches, and discusses the role of design techniques in XP
programming. Ambler [Ambler and Associates, 2004] explores the cost-
of-change curve in traditional and agile approaches. The Koskela
[Koskela, 2008] textbook gives an overview of approaches to TDD, with a
nice discussion of the twin problems of anticipating unneeded change and

needing unanticipated change. Fowler is the first author in the classic text
on refactoring [Fowler et al., 1999].

The Ariane 5 failure report [Lions, 1996] has been extensively discussed
both online and offline. Jazequel and Meyer [Jazequel and Meyer, 1997]
present one of the most cited reviews of the report.

The literature on providing timely feedback to development teams about
the status of their project is moving beyond notifying developers of
existing problems to anticipating such problems; see for example Brun’s
work [Brun et al., 2011].

5

Criteria-Based Test Design

Abstraction should be used to handle complexity, not to ignore it.

Previous chapters introduced coverage criteria and gave some simple
examples. Now we are ready to define this important concept formally.
This chapter presents the ideas behind criteria in an abstract way,
applicable to all structures. The four chapters in Part II instantiate these
ideas with specific criteria or specific structures and show how they are
used in practice.

5.1 COVERAGE CRITERIA DEFINED

It is common to hear testers talk about “complete testing,” “exhaustive
testing,” and “full coverage.” These terms are poorly defined because of a
fundamental theoretical limitation of software. Specifically, the number of
potential inputs for most programs is so large as to be effectively infinite.
Consider a Java compiler—the number of potential inputs to the compiler
is not just all Java programs, or even all almost-correct Java programs, but
all strings. The only limitation is the size of the file that can be read by the
parser. Therefore, the number of inputs is effectively infinite and cannot be
explicitly enumerated.

This is where formal coverage criteria come in. Since we cannot test
with all inputs, coverage criteria are used to decide which test inputs to
use. The rationale behind coverage criteria is that they divide up the input
space to maximize the number of faults found per test case. From a
practical perspective, coverage criteria also provide useful rules for when
to stop testing.

This book defines coverage criteria in terms of test requirements as

introduced in Chapter 2. The basic idea is that we want our tests to have
certain properties, each of which is provided (or not) by at least one test
case.

Definition 5.23 Test Requirement: A test requirement is a specific
element of a software artifact that a test case must satisfy or cover.

This definition is fairly abstract, and more specific versions for
individual structures and criteria will be given in later chapters. Test
requirements usually come in sets, and we use the abbreviation TR to
denote a set of test requirements.

Test requirements can be described with respect to a variety of software
artifacts, including the source code, design components, specification
modeling elements, or even descriptions of the input space. Later in this
book, test requirements will be generated from all of these.

We start with a non-software example. Suppose we are assigned the
enviable task of testing bags of jelly beans. We need to sample from the
bags. Suppose these jelly beans have the following six flavors and come in
four colors: Lemon (colored yellow), Pistachio (green), Cantaloupe
(orange), Pear (white), Tangerine (also orange), and Apricot (also yellow).
A simple approach to testing might be to test one jelly bean of each flavor.
Then we have six test requirements, one for each flavor. We satisfy the test
requirement “Lemon” by selecting and, of course, tasting a Lemon jelly
bean from a bag of jelly beans. The reader might wish to ponder how to
decide, prior to the tasting step, if a yellow jelly bean is Lemon or Apricot.
This is a classic controllability problem from Chapter 3.

As a more software-oriented example, if the goal is to cover all
decisions in the program (branch coverage), then each decision leads to
two test requirements, one for the decision to evaluate to false, and one for
the decision toevaluate to true. If every method must be called at least
once (call coverage), each method leads to one test requirement.

A coverage criterion is simply a recipe for generating test requirements
in a systematic way:

Definition 5.24 Coverage Criterion: A coverage criterion is a rule or
collection of rules that impose test requirements on a test set.

That is, the criterion describes the test requirements in a complete and
unambiguous way. The “flavor criterion” yields a simple strategy for

selecting jelly beans. In this case, the set of test requirements, TR, can be
formally written out as:

Test engineers need to know how good a collection of tests is, so we
measure test sets against a criterion in terms of coverage.

Definition 5.25 Coverage: Given a set of test requirements TR for a
coverage criterion C, a test set T satisfies C if and only if for every
test requirement tr in TR, at least one test t in T exists such that t
satisfies tr.

To continue the example, consider a test set T with 12 beans: {three
Lemon, one Pistachio, two Cantaloupe, one Pear, one Tangerine, four
Apricot} This test set satisfies the “flavor criterion.” Notice that it is
acceptable to satisfy a test requirement with more than one test. If we do
so, however, the test set has unneeded redundancy. Since each test has a
cost, we often prefer to avoid such redundancy. A test set with no
redundancy is called minimal.

Definition 5.26 Minimal Test Set: Given a set of test requirements TR
and a test set T that satisfies all test requirements, T is minimal if
removing any single test from T will cause T to no longer satisfy all
test requirements.

This is different from a minimum test set.

Definition 5.27 Minimum Test Set: Given a set of test requirements
TR and a test set T that satisfies all test requirements, T is minimum if
there is no smaller set of tests that also satisfies all test requirements.

Checking to see if a test set is minimal is fairly easy, and deleting tests
to make the set minimal is straightforward. We can delete two Lemon, one
Cantaloupe, and three Apricot jelly beans to make the above set minimal.
However, finding a minimum test set is much harder. In fact, it is a
generally undecidable problem.

Coverage is important for two reasons. First, it is sometimes expensive
to satisfy a coverage criterion, so we want to compromise by trying to
achieve a certain coverage level.

Definition 5.28 Coverage Level: Given a set of test requirements TR
and a test set T, the coverage level is the ratio of the number of test
requirements satisfied by T to the size of TR.

Second, and more importantly, some requirements cannot be satisfied.
Suppose Tangerine jelly beans are rare (like purple M&Ms); some bags
may not contain any, or it may simply be too difficult to find a Tangerine
bean. In this case, the flavor criterion cannot be 100% satisfied, and the
maximum coverage level possible is 5/6 or 83%. It often makes sense to
drop unsatisfiable test requirements from the set TR, or to replace them
with less stringent test requirements.

Test requirements that cannot be satisfied are called infeasible.
Formally, no test case values exist that meet the test requirements.
Examples for specific software criteria will be shown throughout the book,
but some may already be familiar. Dead code results in infeasible test
requirements because the statements cannot be reached. The detection of
infeasible test requirements is formally undecidable for most coverage
criteria, and even though researchers try to find partial solutions, they have
had only limited success. Thus, 100% coverage is impossible in practice.

Coverage criteria are traditionally used in one of two methods. One is to
directly generate test case values to satisfy the criterion. This method is
often assumed by the research community and is the most direct way to
use criteria. It is also very hard in some cases, particularly if we do not
have enough automated tools to support test case value generation. The
other method is to generate test case values externally (by hand or using a
pseudo-random tool, for example) and then measure the tests against the
criterion in terms of their coverage. This method is often favored by
industry practitioners, because generating tests to directly satisfy the
criterion is too hard. Unfortunately, this use is sometimes misleading. If
our tests do not reach 100% coverage, what does that mean? We really
have no data on how much, say, 99% coverage is worse than 100%
coverage, or 90%, or even 75%. Because of this use of criteria to evaluate
existing test sets, coverage criteria are sometimes called metrics.

This distinction actually has a strong theoretical basis. A generator is a
procedure that automatically generates values to satisfy a criterion, and a
recognizer is a procedure that decides whether a set of test case values
satisfies a criterion. Theoretically, both problems are provably undecidable
in the general case for most criteria. In practice, however, it is possible to

recognize whether test cases satisfy a criterion far more often than it is
possible to generate tests that satisfy the criterion. The primary problem
with recognition is infeasible test requirements; if no infeasible test
requirements are present then the problem becomes decidable.

In practical terms of commercial automated test tools, a generator
corresponds to a tool that automatically creates test case values. A
recognizer is a coverage analysis tool. Coverage analysis tools are quite
plentiful, both as commercial products and freeware.

It is important to appreciate that the set TR depends on the specific
artifact under test. In the jelly bean example, the test requirement color =
purple does not make sense because we assumed that the factory does not
make purple jelly beans. In the software context, consider statement
coverage. The test requirement “Execute statement 42” makes sense only
if the program under test has a statement 42. A good way to think of this
issue is that the test engineer starts with a software artifact and then
chooses a particular coverage criterion. Combining the artifact with the
criterion yields the specific set TR that is relevant to the test engineer’s
task.

Coverage criteria are often related to one another, and compared in
terms of subsumption. Recall that the “flavor criterion” requires that every
flavor be tried once. We could also define a “color criterion,” which
requires that we try one jelly bean of each color {yellow, green, orange,
white}. If we satisfy the flavor criterion, then we have also implicitly
satisfied the color criterion. This is the essence of subsumption; that
satisfying one criterion will guarantee that another one is satisfied.

Definition 5.29 Criteria Subsumption: A coverage criterion C1
subsumes C2 if and only if every test set that satisfies criterion C1 also
satisfies C2.

Note that this has to be true for every test set, not just some sets.
Subsumption has a strong similarity with set subset relationships, but it is
not exactly the same. Generally, a criterion C1 can subsume another C2 in
one of two ways. The simpler way is if the test requirements for C1 always
form a superset of the requirements for C2. For example, another jelly bean
criterion may be to try all flavors whose name begins with the letter ‘P’.
This would result in the test requirements {Pistachio, Pear}, which is a
subset of the requirements for the flavor criterion:{Lemon, Pistachio,

Cantaloupe, Pear, Tangerine, Apricot}. Thus, the flavor criterion
subsumes the “starts-with-P” criterion.

The relationship between the flavor and the color criteria illustrate the
other way that subsumption can be shown. Since every flavor has a
specific color, and every color is represented by at least one flavor, if we
satisfy the flavor criterion we will also satisfy the color criterion.
Formally, a many-to-one mapping exists between the requirements for the
flavor criterion and the requirements for the color criterion. Thus, the
flavor criterion subsumesthe color criterion. (If a one-to-one mapping
exists between requirements from two criteria, then they would subsume
each other.)

For a more realistic software-oriented example, consider branch and
statement coverage. (These should already be familiar, at least intuitively,
and will be defined formally in Chapter 7.) If a test set has covered every
branch in a program (satisfied branch coverage), then the test set is
guaranteed to have covered every statement as well. Thus, the branch
coverage criterion subsumes the statement coverage criterion. We will
return to subsumption with more rigor and more examples in later
chapters.

5.2 INFEASIBILITY AND SUBSUMPTION

A subtle relationship exists between infeasibility and subsumption.
Specifically, sometimes a criterion C1 will subsume another criterion C2 if
and only if all test requirements are feasible. If some test requirements in
C1 are infeasible, however, C1 may not subsume C2.

Infeasible test requirements are common and occur quite naturally.
Suppose we partition the jelly beans into Fruits and Nuts1. Now, consider
the Interaction Criterion, where each flavor of bean is sampled in
conjunction with some other flavor in the same block. Such a criterion has
a useful counterpart in software when feature interactions need to be
tested. So, for example, we might try Lemon with Pear or Tangerine, but
we would not try Lemon with itself or with Pistachio. We might think that
the Interaction Criterion subsumes the Flavor criterion, since every flavor
is tried in conjunction with some other flavor. Unfortunately, in our
example, Pistachio is the only member of the Nuts block, and hence the
test requirement to try it with some other flavor in the Nuts block is

infeasible.
One possible strategy to reestablish subsumption is to replace each

infeasible test requirement for the Interaction Criterion with the
corresponding one from the Flavor criterion. In this example, we would
simply taste Pistachio jelly beans by themselves. In general, it is desirable
to define coverage criteria so that they are robust with respect to
subsumption in the face of infeasible test requirements. This is not
commonly done in the older testing literature, but this book modifies many
criteria definitions to do so.

That said, this problem is mainly theoretical and should not overly
concern practical testers. Theoretically, sometimes a coverage criterion C1
will subsume another C2 if we assume that C1 has no infeasible test
requirements. However, if C1 creates an infeasible test requirement for a
program, a test set that satisfies C1 while skipping the infeasible test
requirements might also “skip” some test requirements from C2 that could
be satisfied. In practice, only a few test requirements for C1 are infeasible
for any program, and if some are, it is often true that corresponding test
requirements in C2 will also be infeasible. If not, the few test cases that are
lost will probably make at most a small difference in the test results.

5.3 ADVANTAGES OF USING COVERAGE CRITERIA

Using coverage criteria to design tests has several significant advantages.
Traditional software testing is expensive and labor-intensive. Formal
coverage criteria are used to decide which test inputs to use, making it
more likely that the testers will find problems.

Because they carve the input space into logical areas, coverage criteria
can yield fewer tests than human-based approaches and yet be more
effective at finding faults. This same divide-and-conquer approach means
the test set is comprehensive but has a minimal overlap in terms of fault
revealing capabilities. Criteria are also explicitly derived from specific
software artifacts, thus we get built-in traceability. This means the “why”
for each test is automatically answered and the traceability provides
support for regression testing. Another huge advantage is that criteria
naturally provide “stopping rules” for testing. We know in advance how
many tests will be needed, management can more accurately calculate the

cost of testing, and testers can provide accurate estimates for when they
will complete testing. Finally, it is natural to automate the use of test
criteria. Much of the task is assembling information and using that
information to design and construct tests, jobs that computers excel at.

That is, test criteria makes testing more efficient and effective. As
discussed in the Bibliographic Notes of this chapter, researchers have
found that satisfying coverage helps testers find faults, and that satisfying
stronger coverage criteria will help testers find more faults. Ultimately, the
use of test criteria provides greater assurance that the software is of high
quality and reliability.

Given the above discussion, an interesting question is “what makes a
coverage criterion good?” No definitive answers exist to this question,
which may be why so many coverage criteria have been developed.
However, three important issues can affect the use of coverage criteria.

1. The difficulty of computing test requirements
2. The difficulty of generating tests
3. How well the tests reveal faults

Subsumption is at best a very rough way to compare criteria. Our
intuition may tell us that if one criterion subsumes another, then it should
reveal more faults. However, no theoretical guarantee exists and the
experimental studies have had mixed results. Nevertheless, the research
community has reasonably wide agreement on relationships among some
criteria. The difficulty of computing test requirements will depend on the
artifact being used as well as the criterion. The fact that the difficulty of
generating tests can be directly related to how well the tests reveal faults
should not be surprising. A software tester must strive for balance and
choose criteria that have the right cost / benefit tradeoffs for the software
under test.

All of the ideas in the five chapters in Part I are used in the software
industry, although some are used much more widely than others. The
adoption of these ideas has resulted in some useful experience. To fully
apply the MDTD process we often must reorganize test and QA teams to
make effective use of individual abilities. It requires a lot of knowledge
and skills to use test criteria to design testers, however the MDTD process
allows one expert on the criteria to provide designs that can be then turned
into automated testers by many testers who are not criteria experts. We
have also found that applying these ideas requires some retraining for the

test and QA teams. They need to learn a new process and they need to
learn additional testing concepts.

Industry can reduce the cost of this transition by influencing research
and education. For example, it is possible to encourage researchers to
embed and isolate the theoretical ideas into tools and processes. An
example can be taken from programming—a programmer does not need to
understand how parsing works to use a compiler or an IDE. Why should a
tester need to understand the theory behind the criteria to use a software
testing tool? A very effective way to influence educational strategies is to
join industrial advisory boards, which are common among computer
science and software engineering programs.

5.4 NEXT UP

Part II contains four chapters, one for each of the four structures discussed
in Chapter 2. Test criteria are defined oneach of the four structures in turn.
The ordering is based on the RIPR model in Chapter 2. Chapter 6 uses the
input domain, which is defined in terms of sets. The criteria are used to
explore the input domain and do not explicitly satisfy any of the RIPR
conditions. Chapter 7 uses graphs, and the criteria require tests to “get to”
specific nodes, edges, or paths in the graph, thus satisfying reachability.
Chapter 8 uses logic expressions to go one step further in the RIPR model.
The criteria require tests to explore various truth assignments to the logic
expressions, thus requiring that the tests not only reach the logic
expressions, but also infect the state of the program. Finally, Chapter 9
uses grammars to go even deeper. Grammar-based tests not only must
reach locations and infect the program state, but also propagate the
infection to external behavior. Thus, in some sense, the next four chapters
teach successively deeper ways to test software. The last ‘R, ’
revealability, is of course associated with the automated version of a test
and so is independent of the criterion used.

EXERCISES
Chapter 5.

1. Suppose that coverage criterion C1 subsumes coverage criterion C2.

Further suppose that test set T1 satisfies C1 on program P, and test set
T2 satisfies C2, also on P.
(a) Does T1 necessarily satisfy C2? Explain.
(b) Does T2 necessarily satisfy C1? Explain.
(c) If P contains a fault, and T2 reveals the fault, T1 does not

necessarily also reveal the fault. Explain.2
2. How else could we compare test criteria besides subsumption?

5.5 BIBLIOGRAPHIC NOTES

A key question about coverage criteria is whether satisfaction of a given
criterion implies detection of actual faults. Addressing this question
requires careful empirical work; in the context of mutation testing, Namin
and Kakarla [Namin and Kakarla, 2011] showed that such experiments are
easily biased by a wide range of threats to validity. Nonetheless, an
experiment by Daran and Thévenod-Fosse [Daran and Thévenod-Fosse,
1996] and a larger one by Andrews et al. [Andrews et al., 2006] suggested
a strong positive correlation between the mutation score of a test set and
the degree to which that test set detected actual faults. Just et al. [Just et
al., 2014] confirmed these suggestions by first showing a strong relation
between coverage satisfaction and fault detection, and then going even
further by showing that moving from node (statement) coverage to edge
(branch) coverage increased fault detection power, and moving from edge
to mutation coverage increased fault detection power even more. Taken
together, these studies provide the community with confidence that
coverage is a valid proxy for fault detection. Further, the study
demonstrates that not only do effective tests have to reach code, they also
have to force something interesting to happen downstream. This amounts
to an empirical confirmation of the importance of the RIPR model
described in Chapter 2.

One of the first discussions of infeasibility from other than a purely
theoretical view was by Frankl and Weyuker [Frankl and Weyuker, 1988].
The problem was shown to be undecidable by Goldberg et al. [Goldberg et
al., 1994] and by DeMillo and Offutt [DeMillo and Offutt, 1991]. Some
partial solutions have been presented [Gallagher et al., 2007, Goldberg et
al., 1994, Jasper et al., 1994, Offutt and Pan, 1997].

Budd and Angluin [Budd and Angluin, 1982] analyzed the theoretical
distinctions between generators and recognizers from a testing viewpoint.
They showed that both problems are formally undecidable, and discussed
tradeoffs in approximating the two.

Subsumption has been widely used as a way to analytically compare
testing techniques. We follow Weiss [Weiss, 1989] and Frankl and
Weyuker [Frankl and Weyuker, 1988] for our definition of subsumption,
although Frankl and Weyuker used the term includes. The term
subsumption was originally defined as follows by Clarke et al.: A criterion
C1 subsumes a criterion C2 if and only if every set of execution paths P
that satisfies C1 also satisfies C2 [Clarke et al., 1985]. The term
subsumption is currently the more widely used and the two definitions are
equivalent; this book follows Weiss’s [Weiss, 1989] suggestion to use the
term subsumes to refer to Frankl and Weyuker’s definition.

1 The reader might wonder whether we need an Other category to ensure that we
have a partition. In our example, we are ok, but in general, one would need such
a category to handle jelly beans such as Potato, Spinach, or Earwax.

2 Correctly answering this question goes a long way towards understanding the
weakness of the subsumption relation.

PART II

Coverage Criteria

6

Input Space Partitioning

Engineers take ideas invented by quick thinkers and build products for slow
thinkers.

In a very fundamental way, all testing is about choosing elements from the
input space of the software being tested. Input space partitioning takes the
view that we can directly divide the input space according to logical
partitionings of the inputs. The four chapters in Part II are based on the
four structures defined in Chapter 5 and are ordered to reflect the RIPR
model of Chapter 2. Input space partitioning teaches test design in a way
that is independent of the RIPR model–we only use the input space of the
software under test. The next chapter is on graphs, and the criteria ensure
reachability. Using logic expressions to generate tests (Chapter 8) ensures
infection, and mutation analysis (Chapter 9) ensures propagation.

The input domain is defined in terms of the possible values that the
input parameters can have. The input parameters can be method
parameters and non-local variables (in unit testing), objects representing
current state (in class or integration testing), or user-level inputs to a
program (in system testing), depending on what kind of software artifact is
being analyzed. The input domain is then partitioned into regions that are
assumed to contain equally useful values from a testing perspective, and
values are selected from each region.

This way of testing has several advantages. It is fairly easy to get started
because it can be applied with no automation and very little training. The
tester does not need to understand the implementation; everything is based
on a description of the inputs. It is also simple to “tune” the technique to
get more or fewer tests.

Consider an abstract partition q over some domain D. The partition q
defines a set of equivalence classes, which we simply call blocks, Bq

1.

Together the blocks are complete, that is they do not miss any elements of
D:

and the blocks are pairwise disjoint, that is no element of D is in more than
one block :

This is illustrated in Figure 6.1. The input domain D is partitioned into
three blocks, b1, b2, and b3. The partition defines the values contained in
each block and is usually designed using knowledge of what the software
is supposed to do.

Figure 6.1. Partitioning of input domain D into three blocks.

The underlying assumption of partition coverage is that any test in a
block is as good as any other for testing. Several partitions are sometimes
considered together, which, if not done carefully, leads to a combinatorial
explosion of test cases.

A common way to apply input space partitioning is to start by
considering the domain of each parameter separately, partitioning each
domain’s possible values into blocks, and then combining the blocks for
each parameter. Sometimes the parameters are considered completely
independently, and sometimes they are considered in conjunction with
each other, usually by taking the semantics of the program into account.
This process is called input domain modeling and is discussed in the next
section.

Each partition is usually based on some characteristic C of the program,
the program’s inputs, or the program’s environment. Some possible
characteristic examples are:

 Input X is null

 Order of file F (sorted, inverse sorted, arbitrary)
 Min separation distance of two aircraft
 Input device (DVD, CD, VCR, computer, …)

Each characteristic C allows the tester to define a partition. Formally, a
partition must satisfy the two properties identified earlier:

1. The partition must cover the entire domain (completeness)
2. The blocks must not overlap (disjoint)

As an example, consider the characteristic “order of file F” mentioned
above. This could be used to create the following (defective) partitioning:

 Order of file F
- b1 = Sorted in ascending order
- b2 = Sorted in descending order
- b3 = Arbitrary order

However, this is not a valid partitioning. Specifically, a file of length 0 or
1 belongs in all three blocks. That is, the blocks are not disjoint. The
easiest strategy to address this problem is to make sure that each
characteristic addresses only one property. The problem above is that the
notions of being sorted into ascending order and being sorted into
descending order are lumped into the same characteristic. Splitting into
two characteristics, namely sorted ascending and sorted descending, solves
the problem. The result is the following (valid) partitioning of two
characteristics.

 File F sorted ascending
- b1 = True
- b2 = False

 File F sorted descending
- b1 = True
- b2 = False

With these blocks, files of length 0 or 1 are in the True block for both
characteristics.

The completeness and disjointness properties are formalized for

pragmatic reasons, and not just to be mathematically fashionable. Two
very different tasks are at the heart of testing with an input domain model:
First, modeling the input domain, that is, choosing characteristics and
partitions, and second, combining partitions into tests, that is, choosing a
coverage criterion. It is extremely important to keep these tasks separate.
An input domain model that prematurely encodes combination decisions is
unnecessarily complex, and the resulting tests will almost certainly not
reflect the combinations demanded by the coverage criterion. Fortunately,
verifying the mathematical properties of completeness and disjointness
help the test engineer separate these two tasks. That is, mixing these two
tasks is the most common reason for partitions that are incomplete or have
overlap. Conversely, characteristics with complete and pairwise-disjoint
partitions generally are free of (inappropriate) combination decisions. In
short, the mathematical checks guide the test engineer into making the
right decisions. The rest of this chapter assumes that the partitions are both
complete and disjoint.

6.1 INPUT DOMAIN MODELING

The first step in input domain modeling is to identify testable functions.
Below is a signature for a method, triang(), that classifies triangles
based on the lengths of the three sides. Source code for the class
TriangleType (which contains the triang() method) is available on
the book website, although we will not need it for this running example.
The signature is enough.

Method triang() clearly has only one testable function with three
parameters, which is common in unit testing. Finding the testable functions
is more complex for Java class APIs. Each public method is typically a
testable function that should be tested individually. However, the
characteristics are often the same for several methods, so it helps to
develop a common set of characteristics for the entire class and then

develop specific tests for each method. Finally, large systems are certainly
amenable to the input space partition approach, and such systems often
supply complex functionality. Modeling artifacts such as UML use cases
can be used to identify testable functions. Each use case is associated with
a specific intended functionality of the system, so it is very likely that the
use case designers have useful characteristics in mind that are relevant to
developing test cases. For example, a “withdrawal” use case for an ATM
identifies “withdrawing cash” as a testable function. Further, it suggests
useful characteristics such as “Is Card Valid?” and “Relation of
Withdrawal Policy to Withdrawal Request.”

The second step is to identify all of the parameters that can affect the
behavior of a given testable function. This step isn’t particularly creative,
but it is important to carry it out completely. In the simple case of testing a
stateless method, the parameters are simply the formal parameters to the
method. If the method has state, which is common in many object-oriented
classes, then the state must be included as a parameter. For example, the
add (E e) method for a binary tree class such as Java’s TreeSet
behaves differently depending on whether or not e is already in the tree.
Hence, the current state of the tree needs to be explicitly identified as a
parameter to the add() method. In a slightly more complex example, a
method find (String str) that finds the location of str in a file
depends, obviously, on the file being searched. Hence, the test engineer
explicitly identifies the file as a parameter to the find() method.
Together, all of the parameters form the input domain of the function
under test.

The third step, and the key creative engineering step, is modeling the
input domain articulated in the prior step. An input domain model (IDM)
represents the input space of the system under test in an abstract way. A
test engineer describes the structure of the input domain in terms of input
characteristics. The test engineer creates a partition for each
characteristic. The partition is a set of blocks, each of which contains a set
of values. From the perspective of that particular characteristic, all values
in each block are considered equivalent.

A test input is a tuple of values, one for each parameter. By definition,
the test input uses exactly one block from each characteristic. Thus, if we
have even a modest number of characteristics, the number of possible
combinations may be infeasible. In particular, adding another
characteristic with n blocks increases the number of combinations by a

factor of n. Hence, controlling the total number of combinations is a key
feature of any practical approach to input domain testing. In our view, this
is the job of the coverage criteria, which we address in Section 6.2.

Different testers will come up with different models, depending on
creativity and experience. These differences create a potential for variance
in the quality of the resulting tests. The structured method to support input
domain modeling presented in this chapter can decrease this variance and
increase the overall quality of the IDM.

Once the IDM is built and values are identified, some combinations of
the values may be invalid. The IDM must include information to help the
tester identify and avoid or remove invalid sub-combinations. The model
needs a way to represent these restrictions. Constraints are discussed
further in Section 6.3.

The next section provides two different approaches to input domain
modeling. The interface-based approach develops characteristics directly
from input parameters to the program under test. The functionality-based
approach develops characteristics from a functional or behavioral view of
the program under test. The tester must choose which approach to use.
Once the IDM is developed, several coverage criteria are available to
decide which combinations of values to use to test the software. These are
discussed in Section 6.2.

6.1.1 Interface-Based Input Domain Modeling

The interface-based approach considers each parameter separately. This
approach is almost mechanical to follow, but the resulting tests are usually
quite good.

An obvious strength of using the interface-based approach is that it is
easy to identify characteristics. The fact that each characteristic limits
itself to a single parameter also makes it easy to translate the abstract tests
into executable test cases.

A weakness of this approach is that not all the information available to
the test engineer will be reflected in the interface domain model. This
means that the IDM may be incomplete and hence additional
characteristics are needed.

Another weakness is that some parts of the functionality may depend on
combinations of specific values of several interface parameters. In the

interface-based approach each parameter is analyzed in isolation with the
effect that important sub-combinations may be missed.

Again, consider the triang() method. Its three integer parameters
represent the lengths of three sides of a triangle. In an interface-based
IDM, Side1 will have a number of characteristics, as will Side2 and
Side3. Since the three variables are all of the same type, the interface-
based characteristics for each will likely be identical. For example, since
Side1 is an integer, and zero is often a special value for integers,
Relation of Side1 to zero is a reasonable interface-based
characteristic.

6.1.2 Functionality-Based Input Domain Modeling

The idea of the functionality-based approach is to identify characteristics
that correspond to the intended behavior, or functionality, of the system
under test rather than using the actual interface. This allows the tester to
incorporate some semantics or domain knowledge into the IDM.

Some members of the community believe that a functionality-based
approach yields better test cases than the interface-based approach because
the input domain models include more semantic information. Transferring
more semantic information from the specification to the IDM makes it
more likely to generate expected results for the test cases, an important
goal.

Another important strength of the functionality-based approach is that
the requirements are available before the software is implemented. This
means that input domain modeling and test case generation can start early
in development.

In the functionality-based approach, identifying characteristics and
values may be far from trivial. If the system is large and complex, or the
specifications are informal and incomplete, it can be very hard to design
reasonable characteristics. The next subsection gives practical suggestions
for designingcharacteristics.

The functionality-based approach also makes it harder to generate tests.
The characteristics of the IDM often do not map to single parameters of
the software interface. Translating the values into executable test cases is
harder because constraints of a single IDM characteristic may affect
multiple parameters in the interface.

Returning to the triang() method, a functionality-based approach
will recognize that instead of simply three integers, the input to the method
is a triangle. This leads to the characteristic of a triangle, which can be
partitioned into different types of triangles (as discussed below).

6.1.3 Designing Characteristics

Designing characteristics in an interface-based approach is simple. There
is a mechanical translation from the parameters to characteristics.
Developing a functionality-based IDM is more challenging.

Preconditions are excellent sources for functionality-based
characteristics. They may be explicit or encoded in the software as
exceptional behaviors. Preconditions explicitly separate defined (or
normal) behavior from undefined (or exceptional) behavior. For example,
if a method choose() is supposed to select a value, it needs a
precondition that a value must be available to select. A characteristic may
be whether the value is available or not.

Postconditions are also good sources for characteristics. For the
triang() method, the different kinds of triangles are based on the
postcondition of the method.

The test engineer should also look for other relationships between
variables. These may be explicit or implicit. For example, a curious test
engineer given a method m() with two object parameters x and y might
wonder what happens if x and y point to the same object (aliasing), or to
logically equal objects. This is a form of stress testing.

Another possible idea is to check for missing factors, that is, factors that
may impact the execution but do not have an associated IDM parameter.

Characteristics with few blocks are more likely to satisfy the
disjointness and completeness properties. For this reason, it is often better
to have many characteristics with few blocks than the inverse.

Generally, it is preferable for the test engineer to use specifications or
other documentation instead of program code to develop characteristics.
The idea is that the tester should apply input space partitioning by using
domain knowledge about the problem, not the implementation. However,
in practice, the code may be all that is available. Overall, the more
semantic information the test engineer can incorporate into characteristics,
the better the resulting test set is likely to be.

The two approaches generally result in different IDM characteristics.
The following method illustrates this difference:

If the interface-based approach is used, the IDM will have
characteristics for list and characteristics for element. For example,
here are two interface-based characteristics for list, including blocks
and values, which are discussed in detail in the next section:

Characteristic b1 b2

list is null True False
list is empty True False

The functionality-based approach results in more complex IDM
characteristics. As mentioned earlier, the functionality-based approach
requires more thinking on the part of the test engineer, but can result in
better tests. Two possibilities for the example are listed below, again
including blocks and values.

Characteristic b1 b2 b3

Number of occurrences of element in
list 0 1 More

than 1
element occurs first in list True False
element occurs last in list True False

6.1.4 Choosing Blocks and Values

After choosing characteristics, the test engineer partitions the domains of
the characteristics into sets of values called blocks. A key issue in any
partition approach is how partitions should be identified and how
representative values should be selected from each block. This is another
creative design step that allows the tester to tune the test process. More
blocks will result in more tests, requiring more resources but possibly
finding more faults. Fewer blocks will result in fewer tests, saving

resources but possibly reducing test effectiveness. Several general
strategies for partitioning characteristics into blocks are given below. For
any given characteristic one or two strategies are likely to be applicable.

 Valid vs. invalid values: Every partition must allow all values,
whether valid or invalid. (This is simply a restatement of the
completeness property.)

 Sub-partition: A range of valid values can often be partitioned into
sub-partitions, such that each sub-partition exercises a somewhat
different part of the functionality.

 Boundaries: Values at or close to boundaries often cause problems.
This is a form of stress testing.

 Normal use (happy path) : If the operational profile focuses heavily on
“normal use,” the failure rate depends on values that are not boundary
conditions.

 Enumerated types: A partition where blocks are a discrete,
enumerated set often makes sense. The triangle example uses this
approach.

 Balance: From a cost perspective, it may be cheap or even free to add
more blocks to characteristics that have fewer blocks. In Section 6.2,
we will see that the number of tests sometimes depends on the
characteristic with the maximum number of blocks.

 Missing blocks: Check that the union of all blocks of a characteristic
completely covers the input space of that characteristic.

 Overlapping blocks: Check that no value belongs to more than one
block.

Special values can often be used. For a Java reference variable (that is, a
pointer), null is typically a special case that needs to be treated
differently from non null values. If the reference is to a container
structure such as a Set or List, then whether the container is empty or
not is often a useful characteristic.

Again consider the triang() method. It has three integer parameters
that represent the lengths of three sides of a triangle. One common
partitioning for an integer variable considers the relation of the variable’s
value to some special value in the testable function’s domain, such as zero.

Table 6.1 shows a partitioning for the interface-based IDM for the
triang() method. It has three characteristics, q1, q2, and q3. The first

row in the table should be read as “Block q1.b1 is that Side 1 is greater than
zero,” “Block q1.b2 is that Side 1 is equal to zero,” and “Block q1.b3 is that
Side 1 is less than zero.”

Table 6.1. First partitioning of triang()’s inputs (interface-based).

Partition b1 b2 b3
q1 = “Relation of Side 1 to 0” greater than 0 equal to 0 less than 0
q2 = “Relation of Side 2 to 0” greater than 0 equal to 0 less than 0
q3 = “Relation of Side 3 to 0” greater than 0 equal to 0 less than 0

Consider the characteristic q1 for Side 1. If one value is chosen from
each block, the result is three tests. For example, we might choose Side 1
to have the value 7 in test 1, 0 in test 2, and -3 in test 3. Of course, we also
need values for Side 2 and Side 3 of the triangle to complete the test case
values. Notice that some of the blocks represent valid triangles and some
represent invalid triangles. For example, no valid triangle can have a side
of negative length.

It is easy to refine this categorization to get more fine-grained testing if
the budget allows. For example, more blocks can be created by separating
inputs with value 1. This decision leads to a partitioning with four blocks,
as shown in Table 6.2.

Table 6.2. Second partitioning of triang()’s inputs (interface-based).

Notice that if the value for Side 1 were floating point rather than integer,
the second categorization would not yield valid partitions. None of the
blocks would include values between 0 and 1 (non-inclusive), so the
blocks would not cover the domain (not be complete). However, the
domain D contains integers so the partitions are valid.

While partitioning, it is often useful for the tester to identify candidate
values for each block to be used in testing. The reason to identify values
now is that choosing specific values can help the test engineer think more

concretely about the predicates that describe each block. While these
values may not prove sufficient when refining test requirements to test
cases, they do form a good starting point. Table 6.3 shows values that can
satisfy the second partitioning.

Table 6.3. Possible values for blocks in the second partitioning in Table 6.2.

The above partitioning is interface-based and only uses syntactic
information about the program (it has three integer inputs). A
functionality-based approach can use the semantic information of the
traditional geometric classification of triangles, as shown in Table 6.4.

Table 6.4. Geometric partitioning of triang()’s inputs (functionality-based).

Of course, the tester has to know what makes a triangle scalene,
equilateral, isosceles, and invalid to choose possible values (this may be
middle school geometry, but many of us have probably forgotten). An
equilateral triangle is one in which all sides are the same length. An
isosceles triangle is one in which at least two sides are the same length. A
scalene triangle is any other valid triangle. This brings up a subtle problem
—Table 6.4 does not form a valid partitioning. An equilateral triangle is
also isosceles, thus we must first correct the partitions, as shown in Table
6.5.

Table 6.5. Correct geometric partitioning of triang()’s inputs (functionality-
based).

Now values for Table 6.5 can be chosen as shown in Table 6.6. The
triplets represent the three sides of the triangle.

Table 6.6. Possible values for blocks in geometric partitioning in Table 6.5.

A different approach to the equilateral/isosceles problem above is to
break the characteristic GeometricPartitioning into four separate
characteristics, namely Scalene, Isosceles, Equilateral, and
Valid. The partition for each of these characteristics is boolean, and the
fact that choosing Equilateral = true also means choosing
Isosceles = true is then simply a constraint. We recommend such
an approach for this example: It invariably satisfies the disjointness and
completeness properties.

6.1.5 Checking the Input Domain Model

It is important to check the input domain model. In terms of
characteristics, the test engineer should ask whether any information about
how the function behaves is not incorporated in some characteristic. This
is necessarily an informal process.

The tester should also explicitly check each characteristic for the
completeness and disjointness properties. The purpose of this check is to
make sure that, for each characteristic, not only do the blocks cover the
complete input space, but selecting a particular block implies excluding all
other blocks in that characteristic.

If multiple IDMs are used, completeness should be relative to the
portion of the input domain that is modeled in each IDM. When the tester
is satisfied with the characteristics and their blocks, it is time to choose
which combinations of values to test with and identify constraints among
the blocks.

EXERCISES

Section 6.1.

1. Return to the example at the beginning of the chapter of the two
characteristics “File F sorted ascending” and “File F sorted
descending.” Each characteristic has two blocks. Give test case values
for all four combinations of these two characteristics.

2. A tester defined three characteristics based on the input parameter
car: Where Made, Energy Source, and Size. The following
partitionings for these characteristics have at least two mistakes.
Correct them.

Where Made
North America Europe Asia

Energy Source
gas electric hybrid

Size
2-door 4-door hatch back

3. Answer the following questions for the method search() below:

Base your answer on the following characteristic partitioning:

(a) “Location of element in list” fails the disjointness property. Give
an example that illustrates this.

(b) “Location of element in list” fails the completeness property.
Give an example that illustrates this.

(c) Supply one or more new partitions that capture the intent of
“Location of element in list” but do not suffer from
completeness or disjointness problems.

4. Derive input space partitioning test inputs for the GenericStack
class assuming the following method signatures:

 public GenericStack ();
 public void push (Object X);
 public Object pop ();
 public boolean isEmpty ();

Assume the usual semantics for the GenericStack. Try to keep
your partitioning simple and choose a small number of partitions and
blocks.
(a) List all of the input variables, including the state variables.
(b) Define characteristics of the input variables. Make sure you

cover all input variables.
(c) Define characteristics of inputs.
(d) Partition the characteristics into blocks.
(e) Define values for each block.

5. Consider the problem of searching for a pattern string in a subject
string. One possible implementation with a specification is on the
book website; PatternIndex.java. This version has an
incomplete specification–and a good interface-based input domain
model should single out the problematic input! Assignment: find the
problematic input, complete the specification, and revise the
implementation to match the revised specification.

6.2 COMBINATION STRATEGIES CRITERIA

The discussion in Section 6.1 skips an important question: “How should
we consider multiple partitions at the same time?” This is the same as
asking “What combination of blocks should we choose values from?” For
example, we might wish to require a test case that satisfies block 1 from q2
and block 3 from q3. The most obvious choice is to choose all
combinations. However, using all combinations will be impractical when
more than two or three partitions are defined.

CRITERION 6.1 All Combinations Coverage (ACoC): All combinations
of blocks from all characteristics must be used.

For example, if we have three partitions with blocks [A, B], [1, 2, 3],
and [x, y], then ACoC will need the following twelve tests:

(A, 1, x) (B, 1, x)
(A, 1, y) (B, 1, y)
(A, 2, x) (B, 2, x)
(A, 2, y) (B, 2, y)
(A, 3, x) (B, 3, x)
(A, 3, y) (B, 3, y)

A test set that satisfies ACoC will have a unique test for each
combination of blocks for each partition. The number of tests is the
product of the number of blocks for each partition: ∏ i=1

Q(Bi).
If we use a four block partition similar to q2 for each of the three sides

of the triangle, ACoC requires 4 * 4 * 4 = 64 tests.
This is almost certainly more testing than is necessary, and will usually

be economically impractical as well. Thus, we must use some sort of
coverage criterion to choose which combinations of blocks to pick values
from.

The first, fundamental, assumption is that different choices of values
from the same block are equivalent from a testing perspective. That is, we
need to use only one value from each block. Several combination
strategies exist, which result in a collection of useful criteria. These
combination strategies are illustrated with the triang() example, using
the second categorization given in Table 6.2 and the values fromTable 6.3.

The first combination strategy criterion is fairly straightforward and
simply requires that we try each choice at least once.

CRITERION 6.2 Each Choice Coverage (ECC): One value from each
block for each characteristic must be used in at least one test case.

Given the above example of three partitions with blocks [A, B], [1, 2,
3], and [x, y], ECC can be satisfied in many ways, including the three tests
(A, 1, x), (B, 2, y), and (A, 3, x).

Assume the program under test has Q characteristics q1, q2, . .., qQ, and
each characteristic qi has Bi blocks. Then a test set that satisfies ECC will
have at least Maxi=1

QBi values. The maximum number of blocks for the
partitions for triang() is four, thus ECC requires at least four tests.

This criterion can be satisfied on triang() by choosing the tests {(2,
2, 2), (1, 1, 1), (0, 0, 0), (-1, -1, -1)} fromTable 6.3. It does not take much
thought to conclude that these are not very effective tests for this program.
ECC leaves a lot of flexibility to the tester in terms of how to combine the
test values, so it can be called a relatively “weak” criterion.

The weakness of ECC can be expressed as not requiring values to be
combined with other values. A natural next step is to require explicit
combinations of values, called pair-wise.

CRITERION 6.3 Pair-Wise Coverage (PWC): A value from each block for
each characteristic must be combined with a value from every block for
each other characteristic.

Given the above example of three partitions with blocks [A, B], [1, 2,
3], and [x, y], then PWC will need tests to cover the following 16
combinations:

(A, 1) (B, 1) (1, x)
(A, 2) (B, 2) (1, y)
(A, 3) (B, 3) (2, x)
(A, x) (B, x) (2, y)
(A, y) (B, y) (3, x)

(3, y)

PWC allows the same test case to cover more than one unique pair of
values. So the above combinations can be combined in several ways,
including:

(A, 1, x) (B, 1, y)
(A, 2, x) (B, 2, y)
(A, 3, x) (B, 3, y)
(A, -, y) (B, -, x)

The tests with ‘-’ mean that any block can be used.
A test set that satisfies PWC will pair each value with each other value,

or have at least(Maxi=1
QBi) * (Maxi=1, j=1

QBj) values. Each characteristic in
triang() (Table 6.3) has four blocks; so at least 16 tests are required.

Several algorithms to satisfy PWC have been published and appropriate
references are provided in the bibliography section of the chapter.

A natural extension to Pair-Wise Coverage is to require groups of t
values instead of pairs.

CRITERION 6.4 T-Wise Coverage (TWC): A value from each block for
each group of t characteristics must be combined.

If the value for t is chosen to be the number of partitions, Q, then T-
Wise Coverage is equivalent to all combinations. If we assume that all
blocks are the same size, a test set that satisfies TWC will have at
least(Maxi=1

qBi)t values. T-Wise Coverage is expensive in terms of the
number of test cases, and experience suggests going beyond pair-wise (that
is, t = 2) does not help much.

Both Pair-Wise Coverage and T-Wise Coverage combine values
“blindly,” without regard for which values are being combined. The next
criterion strengthens ECC in a different way by bringing in a small but
crucial piece of domain knowledge of the program; asking what is the
most “important” block for each partition. This block is called the base
choice.

CRITERION 6.5 Base Choice Coverage (BCC): A base choice block is
chosen for each characteristic, and a base test is formed by using the
base choice for each characteristic. Subsequent tests are chosen by
holding all but one base choice constant and using each non-base choice
in each other characteristic.

Given the above example of three partitions with blocks [A, B], [1, 2,
3], and [x, y], suppose base choice blocks are ‘A’, ‘1’ and ‘x’. Then the
base choice test is (A, 1, x), and the following additional tests would be
needed:

(B, 1, x)
(A, 2, x)

(A, 3, x)
(A, 1, y)

A test set that satisfies BCC will have one base test, plus one test for
each remaining (non-base) block for each partition. This is a total of 1 + ∑
i=1

Q(Bi - 1). Each parameter for triang() has four blocks, thus BCC
requires 1 + 3 + 3 + 3 tests.

The base choice can be the simplest, the smallest, the first in some
ordering, or the most likely from an end-user point of view. Combining
more than one invalid value is usually not useful because the software
often recognizes one value and negative effects of the others are masked.
Which blocks are chosen for the base choices becomes a crucial step in
test design that can greatly impact the resulting test. For example, if the
base choice contains valid inputs and most or all of the non-base choices
are invalid, then BCC is an easy way to achieve stress testing. It is
important that the tester document the strategy that was used so that further
(regression) testers can re-evaluate those decisions.

Following the strategy of choosing the most likely block for triang
(), we chose “greater than 1” from Table 6.2 as the base choice block.
Using the values from Table 6.3 gives the base test as (2, 2, 2). The
remaining tests are created by varying each one of these in turn: {(2, 2, 1),
(2, 2, 0), (2, 2, -1), (2, 1, 2), (2, 0, 2), (2, -1, 2), (1, 2, 2), (0, 2, 2), (-1, 2,
2)}.

Sometimes the tester may have trouble choosing a single base choice
and may decide that multiple base choices are needed. This is formulated
as follows:

CRITERION 6.6 Multiple Base Choice Coverage (MBCC): At least one,
and possibly more, base choice blocks are chosen for each characteristic,
and base tests are formed by using each base choice for each
characteristic at least once. Subsequent tests are chosen by holding all
but one base choice constant for each base test and using each non-base
choice in each other characteristic.

Assuming mi base choices for each characteristic and a total of M base
tests, MBCC requires M + ∑ i=1

Q(M * (Bi - mi)) tests.
For example, we may choose to include two base choices for side 1 in

triang (), “greater than 1” and “equal to 1.” This would result in the
two base tests (2, 2, 2) and (1, 2, 2). The formula above is thus evaluated
with M = 2, m1 = 2, and mi = 1 ∀ i, 1 < i ≤ 3. That is, 2 + (2*(4-2)) + (2*
(4-1)) + (2*(4-1)) = 18. The remaining tests are created by varying each
one of these in turn. The MBCC criterion sometimes results in duplicate
tests. For example, (0, 2, 2) and (-1, 2, 2) both appear twice for triang
(). Duplicate test cases should, of course, be eliminated (which also
makes the formula for the number of tests an upper bound).

Figure 6.2 shows the subsumption relationships among the input space
partitioning combination strategy criteria.

Figure 6.2. Subsumption relations among input space partitioning criteria.

EXERCISES
Section 6.2.

1. Write down all 64 tests to satisfy the All Combinations (ACoC)
criterion for the second categorization of triang()’s inputs in
Table 6.2. Use the values in Table 6.3.

2. Write down all 16 tests to satisfy the Pair-Wise (PWC) criterion for
the second categorization of triang()’s inputs in Table 6.2. Use
the values in Table 6.3.

3. Write down all 16 tests to satisfy Multiple Base Choice coverage
(MBCC) for the second categorization of triang()’s inputs in

Table 6.2. Use the values in Table 6.3.
4. Answer the following questions for the method intersection()

below:

(a) Does the partition “Validity of s1” satisfy the completeness
property? If not, give a value for s1 that does not fit in any
block.

(b) Does the partition “Validity of s1” satisfy the disjointness
property? If not, give a value for s1 that fits in more than one
block.

(c) Does the partition “Relation between s1 and s2” satisfy the
completeness property? If not, give a pair of values for s1 and
s2 that does not fit in any block.

(d) Does the partition “Relation between s1 and s2” satisfy the
disjointness property? If not, give a pair of values for s1 and s2
that fits in more than one block.

(e) If the “Base Choice” criterion were applied to the two partitions
(exactly as written), how many test requirements would result?

(f) Revise the characteristics to eliminate any problems you found.
5. Use the following characteristics and blocks for the questions below.

(a) Give tests to satisfy the Each Choice criterion.
(b) Give tests to satisfy the Base Choice criterion. Assume base

choices are Value 1 = > 0, Value 2 = > 0, and Operation = +.
(c) How many tests are needed to satisfy the All Combinations

criterion? (Do not list all the tests.)
(d) Give tests to satisfy the Pair-Wise Coverage criterion.

6. Derive input space partitioning test inputs for the BoundedQueue
class with the following method signatures:

 public BoundedQueue (int capacity); // The
maximum number of elements

 public void enQueue (Object X);
 public Object deQueue ();
 public boolean isEmpty ();
 public boolean isFull ();

Assume the usual semantics for a queue with a fixed, maximal
capacity. Try to keep your partitioning simple—choose a small
number of partitions and blocks.
(a) List all of the input variables, including the state variables.
(b) Define characteristics of the input variables. Make sure you

cover all input variables.
(c) Partition the characteristics into blocks. Designate one block in

each partition as the “Base” block.
(d) Define values for each block.
(e) Define a test set that satisfies Base Choice Coverage (BCC).

Write your tests with the values from the previous step. Be sure
to include the test oracles.

7. Design an input domain model for the logic coverage web application
on the book’s website. That is, model the logic coverage web
application using the input domain modeling technique.
(a) List all of the input variables, including the state variables.
(b) Define characteristics of the input variables. Make sure you

cover all input variables.
(c) Partition the characteristics into blocks.
(d) Designate one block in each partition as the “Base” block.
(e) Define values for each block.
(f) Define a test set that satisfies Base Choice Coverage (BCC).

Write your tests with the values from the previous step. Be sure

to include the test oracles.
(g) Automate your tests using the web test automation framework

HttpUnit. Demonstrate success by submitting the HttpUnit tests
and a screen dump or output showing the result of execution.
(Note to instructors: HttpUnit is based on JUnit and is quite
similar. The tests must include a URL and the framework issues
the appropriate HTTP request. We usually use this question as a
non-required bonus, allowing students to choose whether to
learn HttpUnit on their own.)

6.3 HANDLING CONSTRAINTS AMONG
CHARACTERISTICS

A subtle point about input space partitioning is that some combinations of
blocks are infeasible. This must be documented in the IDM. Table 6.7
shows an example based on the previously described boolean
findElement(list, element) method. An IDM with two
characteristics, A, which has four blocks, and B, which has three blocks,
has been designed. Two of the block combinations do not make sense and
are thus invalid. In this example, these are represented as a list of invalid
pairs of characteristic blocks. Other representations can also be used, for
example, a set of inequalities.

Table 6.7. Examples of invalid block combinations.

Generally, constraints are relations between blocks from different
characteristics. IDMs have two broad kinds of constraints. The first says
that a block from one characteristic cannot be combined with a block from
another characteristic. The “less than zero” and “scalene” problem for

triang() is an example of this kind of constraint. The second is the
inverse; a block from one characteristic must be combined with a specific
block from another characteristic. Although this sounds simple enough,
identifying and satisfying the constraints when choosing values can be
difficult.

How constraints are handled when selecting values depends on the
coverage criterion chosen, and the decision is usually made when values
are chosen. For the ACoC, PWC, and TWC criteria, the only reasonable
option is to drop the infeasible pairs from consideration. For example, if
PWC requires a particular pair that is not feasible, no amount of tinkering
on the test engineer’s part can make that test requirement feasible.
However, the situation is quite different for BCC and MBCC. If a
particular variation (for example, “less than zero” for “Relation of Side 1
to zero”) conflicts with the base case (for example, “scalene” for
“Geometric Classification”), then we can change the choice for the base
case to make the test requirement feasible. In this case, “Geometric
Classification” can be changed to “invalid.”

We have one more point about constraints among partitions. If the IDM
has too many constraints, it probably has a structural problem and should
be redesigned.

6.4 EXTENDED EXAMPLE: DERIVING AN IDM FROM
JAVADOC

This subsection works a complete example of constructing an IDM and
designing tests for a widely used Java library interface. A common goal of
JavaDoc is to have enough information for a tester to create tests. It turns
out that input domain modeling is an excellent way to analyze a JavaDoc
API to design test cases. This example takes a standard Java interface,
java.util.Iterator 2, and uses it to design an IDM. We then apply
a combination strategy criterion to the IDM, creating test requirements,
which are then implemented in JUnit.

APIs are usually clear about what is testable and what the parameters
are. If your API is not clear, your problems are probably deeper than
finding good test sets. This would be a good time to talk with the software
designer about the API and its documentation.

6.4.1 Tasks in Designing IDM-Based Tests

We create JUnit tests from JavaDoc APIs in three main tasks, each of
which is decomposed into several steps.

The first task is to identify characteristics from the API, which we
document in two tables, table A to identify the characteristics, and table B
to associate the methods with the characteristics to identify test
requirements. The second task designs test cases from the test
requirements. If base choices are defined (when BCC or MBCC is used),
those are documented in table B. The test requirements are expressed in a
third table, C. The third task converts the test cases into automatable test
scripts. These tasks are detailed as follows:

Task 1: Determine Characteristics

1. Identify the following and document them in Table A:
 functional units
 parameters
 return types and possible return values
 exceptional behavior

2. Using the method attributes identified in step 1, develop
characteristics that would cover return types and exceptional
behavior. Document the characteristics in Table A. Characteristics
identified in some methods might cause you to revisit methods
analyzed earlier, so this analysis is done iteratively. Other methods
might indicate traits that have already been covered by a previously
identified characteristic. This is documented in Table A by putting the
previous characteristic in a “Covered by” column. This can cause you
to come back and revisit methods analyzed earlier, so this analysis is
also iterative.

3. As the above steps are being executed, associate each method with
relevant characteristics in Table B.

4. Design a partitioning for each characteristic. This is documented in
Table B.

Task 2: Define test requirements

1. Choose a coverage criterion from section 6.2.
2. Choose base cases if using BCC or MBCC, and document these in

Table B.
3. Design complete test requirements. This is documented in Table C.
4. Identify any infeasible test requirements (constraints), and document

those in Table C.
5. If using BCC or MBCC, revise any infeasible tests to create feasible

tests, and document them in Table C.

Task 3: Refine test requirements into automated tests

1. Using the final test requirements, write a JUnit test for each feasible
test requirement. Each test requirement must map to one test.
Although it would be possible to satisfy several test requirements
with one test, we choose not to do that in this example to keep the
tests and the mappings simple to follow.

6.4.2 Designing IDM-Based Tests for Iterator

Now we illustrate these steps and fill out the three tables with the
Iterator JavaDoc. An Iterator can be defined on any collection, such as
arrays, lists, stacks, queues, etc. An Iterator is sometimes said to
contain “an iteration,” and sometimes said to contain “a collection.”
Iterators are defined for generic types, so the type of the underlying
collection is simply called E.

Task 1: Determine the characteristics of Iterator

1. The Iterator interface has three methods, none of which has an
explicit parameter:

 hasNext() – Returns true if the iteration has more elements.
 E next() – Returns the next element in the iteration. The

method has one possible exception,
NoSuchElementException.

 void remove() – Removes the most recent element returned
by the iterator from the underlying collection. The method can
throw two exceptions,
UnsupportedOperationException and
IllegalStateException.

The method names and signature elements (parameters, return types,
and return values) are shown in Table 6.8. The “Parameters” column
shows that the behavior of all three methods is determined by the
“iterator state,” which is surprisingly complex. While we are not
concerned with how this state is implemented, we are definitely
concerned with the information it contains. First, the state contains
the values yet to be returned by the iterator via subsequent next()
calls. Note that if there are no such values, hasNext() will return
false. Second, the state contains information about whether
remove() can be successfully called, and, if so, which object is to
be removed, and from what underlying collection. Hence, the
underlying collection is also part of the iterator state, a subtle point to
which we return later in the example.

Table 6.8. Table A for Iterator example: Input parameters and
characteristics.

2. Develop the characteristics to test Iterator.
 hasNext() returns a boolean value. This suggests that we

would like a characteristic (C1) that forces both possible values.
 next() returns an object of generic type, the type stored in the

underlying collection. The most basic syntactic question is
whether this value might be null, which is shown in Table 6.8 as
category C2. NoSuchElementException will be thrown
when the iterator has no more elements, which is already covered
by characteristic C1 for hasNext().

 remove() has no explicit return values, which poses an
observability problem, which we can solve through observer

methods on the underlying collection. remove() can also be
tested through possible exceptions. The Iterator specification
does not require remove() to be implemented, so
UnsupportedOperationException is returned if the
iterator does not support remove(). Thus characteristic C3 is
defined to check whether remove() is supported. The other
exception is IllegalStateException, so we add
characteristic C4 to ensure the constraint of remove(), which is
that the method “can be called only once per call to next().”

3. The methods and their characteristics are associated in the first four
columns of Table 6.9 (Table B).

4. To partition each characteristic into blocks we use boolean partitions,
as shown in the fifth column of Table 6.9.

Table 6.9. Table B for Iterator example: Partitions and base case.

Task 2: Define the test requirements for Iterator
Table B is based on the analysis from the final step in Task 1 and all of
Task 2.

1. We choose base choice coverage for this example.
2. We make the base case a “happy path” test, where everything should

work normally with no exceptions. This is documented in Table 6.9
by choosing the true block from each partition.

3. This information is converted into test requirements in Table 6.10.
For each method, its characteristics are listed, followed by the test
requirements that are needed. The only characteristic for
hasNext() is C1, so it has only two test requirements. The first is
the base case where the iterator has more values (shown in bold face),
and the second is the non-base case. next() has two characteristics,
so each test must choose a value from each of C1 and C2. Again, the

first test requirement is the base case where both C1 and C2 are true,
and then each is varied in turn to create three test requirements.
remove() has four characteristics, so five test requirements are
needed.

4. Next we identify infeasible test requirements. hasNext() has none,
but next() has one. If C1 is false, the iterator is out of elements, so
the iterator cannot return a non-null object reference, meaning C2
cannot be true. The same problem occurs in the second test for
remove().

5. Next we revise the infeasible test requirements to make them feasible
by applying the fix suggested in Section 6.3 of modifying a non-base
choice. For next(), we change the test requirement from FT to FF,
and for remove() we change FTTT to FFTT.

Table 6.10. Table C for Iterator example: Refined test requirements.

We could certainly do more testing. For example, does next() behave
properly after something has been removed? However, the tests designed
and presented in this section cover all of the explicit items in the JavaDoc.

Task 3: Refine Tests into Automated Tests
The result at this point is two test requirements for hasNext(), three test
requirements for next(), and five test requirements for remove().
Each test needs to be refined into a concrete test case, including a
verification of the output (an oracle).
Iterator is simply an interface, and Java interfaces are not directly

executable. Hence, to develop concrete tests, we need an implementation
of Iterator. In a realistic testing situation, it would be obvious which
implementation we were testing–namely the implementation we were
developing! For this exercise, we choose a standard Java implementation

of Iterator simply to show how the tests can be implemented.
The specific implementation chosen has a major impact on the

feasibility of implementing the tests. For example, null values are
possible in the ArrayList class but not in the TreeSet class. Thus,
our tests (mostly) target the ArrayList implementation of Iterator.

The complete set of JUnit tests takes about 150 lines of Java, so we do
not include them in the text. The complete JUnit,
IteratorTest.java, can be found on the book website. We provide a
few examples here to illustrate the process and controllability and
observability issues. The tests also reveal something interesting about how
Java Collection classes treat inconsistencies.

Test testHasNext_BaseCase() is our first test. Characteristic C1
is true. The test fixture for all of the JUnit tests has two variables: a List
of strings and an Iterator for strings. The @Before method
setUp() sets up the test fixture so that the list variable holds an
ArrayList with two strings, and the itr variable is initialized to iterate
over the list. The setUp() method defines the prefix values common to
most of the tests. The test itself simply calls itr.hasNext() (the test
case value). The test checks the result by asserting the return value from
hasNext() is true (verification value).

Our second example is slightly more complicated. This tests for when
C3 is false, that is, the iterator does not support the remove() method.

To make this happen, this test turns list into an unmodifiableList,
which, as its name implies, is a list that cannot be changed. The
remove() method must not be implemented when iterating over such a
structure, and so when remove() is called, an
UnsupportedOperationException should be raised. Finding a
suitable unmodifiable list is an example of solving a subtle controllability
problem. Note that this JUnit test does not have an assertion statement.
Instead, the “ expected” attribute in the @Test annotation is used to
indicate it should return an exception. The test passes if the exception is
returned, and fails otherwise. See Chapter 3 for a fuller discussion of this
point.

The third example is another test for remove(). The remove()
method has a complex constraint in terms of how it must be interleaved
with calls to next(). If remove() is called in a state that does not
satisfy this constraint, then the remove() method must return an
IllegalStateException. Put into the language of design-by-
contract theory, what was once a precondition (i.e., undefined behavior) on
how calling code must interleave remove() with next() has been
converted into a postcondition (i.e., defined behavior) through the
exception handling mechanism. Although this constraint is complex, we
only test it with one test here; additional tests are left for the exercises. The
test below calls remove() without calling next() at all.

Analysis and iteration: Another possible exception
Finally, the documentation for remove() contains a precondition on the
use of the iterator. Specifically, the specification says “The behavior of an
iterator is unspecified if the underlying collection is modified while the
iteration is in progress in any way other than by calling this method.” That
is, remove() is the only allowable way to change the underlying
collection while the iterator is in use, and, for example, if an element is
added to the collection while the iterator is in use, bad things might
happen. The phrasing “the behavior. .. is unspecified” implies a genuine
precondition: a correct iterator can implement any behavior, including
silently ignoring the call, corrupting the data structure, returning arbitrary
values, or even failing to terminate.

As testers, we could certainly stop with the above tests and claim to
have made a “reasonable effort” to test the iterator. We could also assert
that since the “behavior is unspecified,” any behavior is okay so there is no
need to test. However, if we have a true tester’s mindset, we should worry
about preconditions –they are a prime weapon in security hacker’s
toolkits3. In short, there is a reasonable argument to be made that we
should be concerned about what happens if the collection is modified and
the iterator is subsequently used.

Many standard implementations of Java iterators transform this
precondition into defined behavior with
ConcurrentModificationException. In particular, Java
Collection classes, of which List is a member, use this exception.
Thus we can add another characteristic, C5, called
ConcurrentModificationException. This characteristic is
obviously associated with remove(), but if we consider carefully, we
might also recognize that hasNext() and next() can also be affected
by a change to the underlying collection. Thus we chose to associate C5
with all three methods, as reflected in a revised version of Table 6.8 (Table
A), which is shown in Table 6.11.

Table 6.11. Table A for Iterator example: Input parameters and
characteristics (revised).

Considering ConcurrentModificationException only adds
one more row to Table 6.9, so we do not show a revised Table B.
However, a new characteristic that applies to every testable method affects
every test requirement, as well as adding new ones, so we revise Table
6.10 as Table 6.12. The base case for
ConcurrentModificationException is true; the iterator remains
in a consistent state while the iterator is in use. Note that, as mentioned
earlier, this analysis shows that the underlying collection is indeed part of
the “iterator state” identified in Table A.

Table 6.12. Table C for Iterator example: Refined test requirements
(revised).

Now we have three test requirements for hasNext(), the base case,
plus one where C1 is false, and another where C5 is false. Likewise, we
have an additional test for next() and for remove().

Our final example JUnit test for the Iterator interface is a test for

remove() where the iterator is in an inconsistent state, and hence
ConcurrentModificationException is expected. In
testRemove_C5(), we solve the controllability problem by adding an
element to the list. Note that this happens after the setUp(), which
initializes the iterator. This puts the iterator in an inconsistent state, and the
subsequent call to itr.remove() should throw
ConcurrentModificationException.

This JUnit test passes, as does a similar test where next() replaces
remove(). (See test testNext_C5 in the online tests.) But a test
where hasNext() replaces remove() does not pass. (See test
testHasNext_C5 in the online tests.)

We use the Iterator example not only because it illustrates many of
the interesting aspects of using input domain modeling to design tests from
JavaDoc, but also because it illustrates the power of these tests. In our
judgment, testHasNext_C5 demonstrates a flaw in Java Iterator
implementations. The internal state of a data structure is either consistent
or inconsistent. It makes no sense for a call to hasNext() to come back
“true,” and then for an immediate call to next() to throw
ConcurrentModificationException. See the exercises for a
variation where remove() fails to throw an expected
ConcurrentModificationException.

EXERCISES
Section 6.4.

1. The restriction on interleaving next() and remove() calls is quite
complex. The JUnit tests in IteratorTest.java only devote one

test for this situation, which may not be enough. Refine the input
domain model with one or more additional characteristics to probe
this behavior, and implement these tests in JUnit.

2. (Challenging!) It is possible to modify an ArrayList without
using the remove() method and yet have a subsequent call to
remove() fail to throw
ConcurrentModificationException. Develop a (failing)
JUnit test that exhibits this behavior.

6.5 BIBLIOGRAPHIC NOTES

The research literature has described several testing methods that are
generally based on the idea that the input space of the test object should be
divided into subsets, with the assumption that all inputs in the same subset
cause similar behavior. These are collectively called partition testing and
include equivalence partitioning [Myers, 1979], boundary value analysis
[Myers, 1979], category partition [Ostrand and Balcer, 1988], and domain
testing [Beizer, 1990]. An extensive survey with examples was published
by Grindal et al. [Grindal et al., 2005].

The derivation of partitions and values started with Balcer, Hasling and
Ostrand’s category partition method in 1988 [Balcer et al., 1989, Ostrand
and Balcer, 1988]. An alternate visualization is that of classification trees
introduced by Grochtman, Grimm and Wegener in 1993 [Grochtmann et
al., 1993, Grochtmann and Grimm, 1993]. Classification trees organize the
input space partitioning information into a tree structure. The first level
nodes are the parameters and environment variables (characteristics); they
may be recursively broken into sub-categories. Blocks appear as leaves in
the tree and combinations are chosen by selecting among the leaves.

Chen et al. empirically identified common mistakes that testers made
during input parameter modeling [Chen et al., 2004]. Many of the concepts
on input domain modeling in this chapter come from Grindal’s PhD work
[Grindal, 2007, Grindal and Offutt, 2007, Grindal et al., 2007]. Both
Cohen et al. [Cohen et al., 1997] and Yin et al. [Yin et al., 1997] suggest
functionality-oriented approaches to input parameter modeling.
Functionality-oriented input parameter modeling was also implicitly used
by Grindal et al. [Grindal et al., 2006]. Two other IDM-related methods
are Classification Trees [Grochtmann and Grimm, 1993] and a UML

activity diagram -based method [Chen et al., 2005]. Beizer [Beizer, 1990],
Malaiya [Malaiya, 1995], and Chen et al. [Chen et al., 2004] also address
the problem of characteristic selection.

Grindal published an analytical and empirical comparison of different
constraint handling mechanisms [Grindal et al., 2007].

Stocks and Carrington [Stocks and Carrington, 1996] provided a formal
notion of specification-based testing that encompasses most approaches to
input space partition testing. In particular, they addressed the problem of
refining test frames (which we simply and informally call test
requirements in this book) to test cases.

The each choice and base choice criteria were introduced by Ammann
and Offutt in 1994 [Ammann and Offutt, 1994]. The extension to multiple
base choice was alluded to in their 1994 paper (“Many systems have
multiple normal modes of operation, but we consider only one normal
mode for simplicity here.”), but was first defined in this book. Cohen et al.
[Cohen et al., 1997] indicated that valid and invalid parameter values
should be treated differently with respect to coverage. This allows the base
choice criterion to implement a type of stress testing. Valid values lie
within the bounds of normal operation of the test object, and invalid values
lie outside the normal operating range. Invalid values often result in an
error message and the execution terminates. To avoid one invalid value
masking another, Cohen et al. suggested that only one invalid value should
be included in each test case.

Burroughs et al. [Burroughs et al., 1994] and Cohen et al. [Cohen et al.,
1997, Cohen et al., 1996, Cohen et al., 1994] suggested the heuristic Pair-
Wise Coverage as part of the Automatic Efficient Test Generator (AETG).
AETG also includes a variation on the base choice combination criterion.
In AETG’s version, called default testing, the tester varies the values of
one characteristic at a time while the other characteristics contain some
default value. The term “default testing” was also used by Burr and Young
[Burr and Young, 1998], who described yet another variation of the base
choices. In their version, all characteristics except one contain the default
value, and the remaining characteristics contain a maximum or a minimum
value. This variant will not necessarily satisfy Each Choice Coverage.

The Constrained Array Test System (CATS) tool for generating test
cases was described by Sherwood [Sherwood, 1994] to satisfy pair-wise
coverage. For programs with two or more characteristics, the in-parameter-
order (IPO) combination strategy [Lei and Tai, 2001, Lei and Tai, 1998,

Tai and Lei, 2002] generates a test set that satisfies pair-wise coverage for
the first two parameters (characteristic in our terminology). The test set is
then extended to satisfy pair-wise coverage for the first three parameters,
and continues for each additional parameter until all parameters are
included.

Williams and Probert invented t-wise coverage [Williams and Probert,
2001]. A special case of t-wise coverage called variable strength was
proposed by Cohen, Gibbons, Mugridge, and Colburn [Cohen et al., 2003].
This strategy requires higher coverage among a subset of characteristics
and lower coverage across the others. Assume for example a test problem
with four parameters A, B, C, D. Variable strength may require 3-wise
coverage for parameters B, C, D and 2-wise coverage for parameter A.
Cohen, Gibbons, Mugridge, and Colburn [Cohen et al., 2003] suggested
using Simulated Annealing (SA) to generate test sets for t-wise coverage.
Shiba, Tsuchiya, and Kikuno [Shiba et al., 2004] proposed using a genetic
algorithm (GA) to satisfy pair-wise coverage. The same paper also
suggested using the ant colony algorithm (ACA).

Mandl suggested using orthogonal arrays to generate values for T-Wise
Coverage [Mandl, 1985]. This idea was further developed by Williams and
Probert [Williams and Probert, 1996]. Covering Arrays [Williams, 2000] is
an extension of orthogonal arrays. A property of orthogonal arrays is that
they are balanced, which means that each characteristic value occurs the
same number of times in the test set. If only t-wise (for instance, pair-wise)
coverageis desired, the balance property is unnecessary and will make the
algorithm less efficient. In a covering array that satisfies t-wise coverage,
each t-tuple occurs at least once but not necessarily the same number of
times. Another problem with orthogonal arrays is that for some problem
sizes we do not have enough orthogonal arrays to represent the entire
problem. This problem is also avoided by using covering arrays.

Several papers have provided experiential and experimental results of
using input space partitioning. Heller [Heller, 1995] used a realistic
example to show that testing all combinations of characteristic values is
infeasible in practice. Heller concluded that we need to identify a subset of
combinations of manageable size.

Kuhn and Reilly [Kuhn and Reilly, 2002] investigated 365 error reports
from two large real-life projects and discovered that pair-wise coverage
was nearly as effective at finding faults as testing all combinations. More
supporting data were given by Kuhn and Wallace [Kuhn et al., 2004].

Piwowarski, Ohba, and Caruso [Piwowarski et al., 1993] described how
to apply code coverage successfully as a stopping criterion during
functional testing. The authors formulated functional testing as the
problem of selecting test cases from all combinations of values of the input
parameters. Burr and Young [Burrand Young, 1998] show that continually
monitoring code coverage helps improve the input domain model. Initial
experiments showed that ad hoc testing resulted in about 50% decision
coverage, but by continually applying code coverage and refining the input
domain models, decision coverage was increased to 84%.

Plenty of examples of applying input space partitioning in practice have
been published. Cohen, Dalal, Kajla and Patton [Cohen et al., 1996]
demonstrated the use of AETG for screen testing, by testing the input
fields for consistency and validity across a number of screens. Dalal, Jain,
Karunanithi, Leaton, Lott, Patton and Horowitz [Dalal et al., 1999, Dalal et
al., 1998] report results from using the AETG tool. It was used to generate
test cases for Bellcore’s Intelligent Service Control Point, a rule-based
system used to assign work requests to technicians, and a GUI window in a
large application. Offutt and Alluri built a special purpose input space
partitioning tool for Freddie Mac [Offutt and Alluri, 2014], and found that
the technique not only increased the number of faults detected during
testing, but also significantly reduced the cost of testing.

Burr and Young [Burr and Young, 1998] also used the AETG tool to
test a Nortel application that convertsemail messages from one format to
another. Huller [Huller, 2000] used an IPO -related algorithm to test
ground systems for satellite communications.

Williams and Probert [Williams and Probert, 1996] demonstrated how
input space partitioning can be used to organize configuration testing.
Yilmaz, Cohen and Porter [Yilmaz et al., 2004] used covering arrays as a
starting point for fault localization in complex configuration spaces.

Huller [Huller, 2000] showed that pair-wise configuration testing can
save more than 60% in both cost and time compared to quasi-exhaustive
testing. Brownlie, Prowse, and Phadke [Brownlie et al., 1992] compared
the results of using Orthogonal Arrays (OA) on one version of a
PMX/StarMAIL release with the results from conventional testing on a
prior release. The authors estimated that 22% more faults would have been
found if OA had been used on the first version.

Several studies have compared the number of tests generated. The
number of tests varies when using non-deterministic algorithms. Several

papers compared input space partitioning strategies that satisfy 2-wise or
3-wise coverage: IPO and AETG [Lei and Tai, 2001], OA and AETG
[Grindal et al., 2006], Covering Arrays (CA) and IPO [Williams, 2000],
and AETG, IPO, SA, GA, and ACA [Shiba et al., 2004, Cohen et al.,
2003]. Most of them found very little difference.

Another way to compare algorithms is with respect to the execution
time. Lei and Tai [Lei and Tai, 1998] show that the time complexity of
IPO is superior to that of AETG. Williams [Williams, 2000] reported that
CA outperforms IPO by almost three orders of magnitude for the largest
test problems in his study.

Grindal et al. [Grindal et al., 2006] compared algorithms by the number
of faults found. They found that BCC performed as well as AETG and OA
despite fewer test cases.

Input space partitioning strategies can also be compared based on their
code coverage. Cohen etal. [Cohen et al., 1994] found that test sets
generated by AETG for 2-wise coverage reach over 90% block coverage.
Burr and Young [Burr and Young, 1998] got similar results for AETG,
getting 93% block coverage with 47 test cases, compared to 85% block
coverage for a restricted version of BCC using 72 test cases.

1 We choose to use the term “blocks” to refer to the pieces of a partitioning. The
term “partition” is often used for both conceptsin the research literature.

2 As of this writing, the Iterator interface is online at:
docs.oracle.com/javase/7/docs/api/java/util/Iterator.html

3 Whether strong preconditions are a good idea at all is a contentious issue well
beyond the scope of this text.

http://docs.oracle.com/javase/7/docs/api/java/util/Iterator.html

7

Graph Coverage

In engineering, as in baseball, you don’t have to be strong to hit a home run.
You just have to hit it dead center.

This chapter introduces some of the most widely known test coverage
criteria. This chapter uses graphs to define criteria and design tests. This
starts our progression into the RIPR model by ensuring that tests “reach”
certain locations in a graph model of the artifact being tested. The chapter
starts with basic theory as a way to make the practical and applied portions
of the chapter easier to follow. We first emphasize a generic view of a
graph without regard to the graph’s source. After this model is established,
the rest of the chapter turns to practical applications by demonstrating how
graphs can be obtained from various software artifacts and how the generic
versions of the criteria are adapted to those graphs.

7.1 OVERVIEW

Directed graphs form the foundation for many coverage criteria. They
come from many sources and types of software artifacts, including control
flow graphs from source, design structures, finite state machines,
statecharts, and use cases, among others. We use the term artifact in the
most general way, to be anything associated with the software, including
the requirements, design documents, implementation, tests, user manuals,
and many others. Graph criteria usually require the tester to “cover” the
graph in some way, usually by traversing specific portions of the graph.
This overview presents graphs in general terms, and overlaps standard
texts on discrete math, algorithms, and graph theory. Unlike those
theoretical treatments, we focus only on the ideas needed for testing and

introduce some new terminology that enable test design.
Given an artifact under test, the idea is to extract a graph from that

artifact. For example, the most common graph abstraction for source code
maps executable statements and branches to a control flow graph. It is
important to recognize that the graph is not the same as the artifact, and
usually omits certain details. It is also possible for the same artifact to have
several useful, but different, graph abstractions. The same abstraction that
produces the graph from the artifact also maps test cases for the artifact to
paths in the graph. Accordingly, a graph-based coverage criterion
evaluates a test set for an artifact in terms of how the paths corresponding
to the test cases “cover” the artifact’s graph abstraction.

We give our basic notion of a graph below and will add additional
structures later in the chapter when needed. A graph G formally is:

 a set N of nodes
 a set N0 of initial nodes, where N0 ⊆ N
 a set Nf of final nodes, where Nf ⊆ N
 a set E of edges, where E is a subset of N × N

For a graph to be useful for generating tests, it is necessary for N, N0,
and Nf to contain at least one node each. Sometimes, it helps to consider
only part of a graph. Note that more than one initial node can be present;
that is, N0 is a set. Having multiple initial nodes is necessary for some
software artifacts, for example, if a class has multiple entry points, but
sometimes we will restrict the graph to having one initial node. Edges are
considered to be from one node and to another and written as (ni, nj). The
edge’s initial node ni is sometimes called the predecessor and nj is called
the successor.

We always identify final nodes, and there must be at least one final
node. The reason is that every test must start in some initial node, and end
in some final node. The concept of a final node depends on the kind of
software artifact the graph represents. Some test criteria require tests to
end in a particular final node. Other test criteria are satisfied with any node
for a final node, in which case the set Nf is the same as the set N.

The term “node” has various synonyms. Graph theory texts sometimes
call a node a vertex, and testing texts typically identify a node with the
structure it represents, often a statement, a state, a method, or a basic

block. Similarly, graph theory texts sometimes call an edge an arc, and
testing texts typically identify an edge with the structure it represents,
often a branch or a transition. This section discusses graph criteria in a
generic way; thus we use general graph terms.

Graphs are often drawn with bubbles and arrows. Figure 7.1 shows three
example graphs. The nodes with incoming edges but no predecessor nodes
are the initial nodes. The nodes with heavy borders are final nodes.Figure
7.1(a) has a single initial node. Figure 7.1(b) has three initial nodes. Figure
7.1(c) has no initial nodes, and so is not useful for generating test cases.

Figure 7.1. Graph (a) has a single initial node, graph (b) multiple initial nodes, and
graph (c) (rejected) with no initial nodes.

A path is a sequence [n1, n2, . .., nM] of nodes, where each pair of
adjacent nodes, (ni, ni+1), 1 ≤ i < M, is in the set E of edges. The length of
a path is defined as the number of edges it contains. We sometimes
consider paths and subpaths of length zero. A subpath of a path p is a
subsequence of p (possibly p itself). Following the notation for edges, we
say a path is from the first node in the path and to the last node in the path.
It is also useful to be able to say that a path is from (or to) an edge e, which
simply means that e is the first (or last) edge in the path. A cycle is a path
that begins and ends at the same node. For example, the path [2, 5, 9, 6, 2]
in Figure 7.1(b) is acycle.

Figure 7.2 shows a graph along with several example paths, and several
examples that are not paths. For instance, the sequence [1, 8] is not a path
because the two nodes are not connected by an edge.

Figure 7.2. Example of paths.

Many test criteria require inputs that start at one node and end at
another. This is only possible if those nodes are connected by a path.
When we apply these criteria on specific graphs, we sometimes find that
we have asked for a path that for some reason cannot be executed. For
example, a path may demand that a loop be executed zero times in a
situation where the program always executes the loop at least once. This
kind of problem is based on thesemantics of the software artifact that the
graph represents. For now, we emphasize that we are looking only at
thesyntax of the graph.

We say that a node n (or an edge e) is syntactically reachable from node
ni if there exists a path from node ni to n (or edge e). A node n (or edge e)
is also semantically reachable if it is possible to execute at least one path
from ni to n with some input. Some graphs have nodes or edges that cannot
be syntactically reached from any of the initial nodes in N0. Since they are
unreachable, they make it impossible to fully satisfy a coverage criterion,
so we restrict attention to graphs where all nodes and edges are
syntactically reachable from an initial node1.

Consider the examples in Figure 7.2. From 1, it is possible to reach all
nodes except 3 and 7. From the entire set of initial nodes {1, 2, 3}, it is
possible to reach all nodes. If we start at 5, it is possible to reach all nodes
except 1, 3, 4, and 7. If we start at edge (7, 10), it is possible to reach only
7, 10 and edge (7, 10). In addition, some graphs (such as finite state
machines) have explicit edges from a node to itself, that is, (ni, ni).

Basic graph algorithms, usually given in standard data structures texts,
can be used to compute syntactic reachability.

A test path represents the execution of a set of test cases. The reason test

paths must start in N0 is that test cases always begin from an initial node. It
is important to note that a single test path may correspond to a very large
number of test cases on the software. It is also possible that a test path may
correspond to zero test cases if the test path is infeasible. We return to the
crucial but theoretical issue of infeasibility later, in Section 7.2.1.

Definition 7.30 Test path: A path p, possibly of length zero, that starts
at some node in N0 and ends at some node in Nf.

For some graphs, all test paths start at one node and end at a single
node. We call these single entry/single exit or SESE graphs. For SESE
graphs, the set N0 has exactly one node, called n0, and the set Nf also has
exactly one node, called nf, which may be the same as n0. We require that
nf be syntactically reachable from every node in N, and that no node in N
(except nf) be syntactically reachable from nf (unless n0 and nf are the same
node). In other words, no edges start at nf, except when n0 and nf happen to
be the same node.

Figure 7.3 is an example of a SESE graph. This particular structure is
sometimes called a “double-diamond” graph, and corresponds to the
control flow graph for a sequence of two if-then-else statements.
The initial node, 1, is designated with an incoming arrow (remember we
only have one initial node), and the final node, 7, is designated with a thick
circle. Exactly four test paths exist in the double-diamond graph: [1, 2, 4,
5, 7], [1, 2, 4, 6, 7], [1, 3, 4, 5, 7], and [1, 3, 4, 6, 7].

Figure 7.3. A Single-Entry Single-Exit graph.

We need some terminology to express the notion of nodes, edges, and
subpaths that appear in test paths, and choose familiar terminology from
traveling. A test path p is said to visit node n if n is in p. Test path p is said
to visit edge e if e is in p. The term visit applies well to single nodes and
edges, but sometimes we want to consider subpaths. For subpaths, we use
the term tour. Test path p is said to tour subpath q if q is a sub path of p.

The firstpath of Figure 7.3, [1, 2, 4, 5, 7], visits nodes 1 and 2, visits edges
(1, 2) and (4, 5), and tours the subpath [2, 4, 5] (the path also visits other
nodes and edges, and tours other subpaths). Since the subpath relationship
is reflexive, the tour relationship is also reflexive. That is, any given path p
always tours itself.

We define a mapping pathG for tests, so for a test case t, pathG(t) is the
test path in graph G that is executed by t. If it is obvious which graph we
are discussing, we omit the subscript G. We also define the set of paths
toured by a set of tests. For a test set T, path(T) is the set of test paths that
are executed by the tests in T:pathG(T) = {pathG(t) | t ∈ T}.

Except for non-deterministic structures, which we do not consider in
this book, each test case will tour exactly one test path in graph G. Figure
7.4 illustrates the difference with respect to test case/test path mapping for
deterministic vs. nondeterministic software.

Figure 7.4. Test case mappings to test paths.

Figure 7.5 illustrates a set of test cases and corresponding test paths on a
SESE graph with the final node nf = 3. Some edges are annotated with
predicates that describe the conditions under which that edge is traversed.
(This notion is formalized later in this chapter.) So, in the example, if a is
less than b, the only path is from 1 to 2 and then on to 4 and 3. This book
describes all of the graph coverage criteria in terms of relationships of test
paths to the graph in question, but it is important to realize that testing is
carried out with test cases, and that the test path is simply a model of the

test case in the abstraction captured by the graph. To reduce cost, we
usually want the fewest test paths that will satisfy our test requirements. A
minimal set of test paths has the property that if we take any test path out,
it will no longer satisfy our criterion.

Figure 7.5. A set of test cases and corresponding test paths.

EXERCISES
Section 7.1.

1. Give the sets N, N0, Nf, and E for the graph in Figure 7.2.
2. Give a path that is not a test path in Figure 7.2.
3. List all test paths in Figure 7.2.
4. In Figure 7.5

7.2 GRAPH COVERAGE CRITERIA

The structure in Section 7.1 is adequate to define coverage on graphs. As
is usual in the testing literature, we divide these criteria into two types. The
first are usually referred to as control flow coverage criteria, or more
generally, structural graph coverage criteria. The other criteria are based
on the flow of data through the software artifact represented by the graph,
and are called data flow coverage criteria. Following the discussion in

Chapter 1, we identify the appropriate test requirements and then define
each criterion in terms of the test requirements. In general, for any graph-
based coverage criterion, the idea is to identify the test requirements in
terms of various structures in the graph.

For graphs, coverage criteria define test requirements, TR, in terms of
properties of test paths in a graph G. A typical test requirement is met by
visiting a particular node or edge or by touring a particular path. The
definitions we have given so far for a visit are adequate, but the notion of a
tour requires more development. We return to the issue of touring later in
this chapter, and then refine it further in the context of data flow criteria.
The following definition is a refinement of the definition of coverage
given in Chapter 5:

Definition 7.31 Graph Coverage: Given a set TR of test requirements
for a graph criterion C, a test set T satisfies C on graph G if and only
if for every test requirement tr in TR, there is at least one test path p
in path(T) such that p meets tr.

This is a very general statement that must be refined for different kinds
of graphs.

7.2.1 Structural Coverage Criteria

We define graph coverage criteria by specifying a set of test requirements,
TR. We will start by defining criteria to visit every node and then every
edge in a graph. The first criterion is probably familiar and is based on the
old notion of executing every statement in a program. This concept has
variously been called “statement coverage,” “block coverage,” “state
coverage,” and “node coverage.” We use the general graph term Node
Coverage. This concept is probably familiar and simple, so we use it to
introduce some additional notation. The notation initially seems to
complicate the criterion, but ultimately has the effect of making
subsequent criteria cleaner and mathematically precise, avoiding confusion
with more complicated situations.

The requirements produced by a graph criterion are technically
predicates that can have either the value true (the requirement has been
met) or false (the requirement has not been met). For the double-diamond
graph in Figure 7.3, the test requirements for Node Coverage are: TR =

{visit 1, visit 2, visit 3, visit 4, visit 5, visit 6, visit 7}. That is, we must
satisfy a predicate for each node, where the predicate asks whether the
node has been visited or not. With this in mind, the formal definition of
Node Coverage is as follows2:

Definition 7.32 Node Coverage (Formal Definition): For each
reachable node n in G, TR contains the predicate “visit n.”

This notation, although mathematically precise, is too cumbersome for
practical use. Thus we choose to introduce a simpler version of the
definition that abstracts the issue of predicates in the test requirements.

CRITERION 7.7 Node Coverage (NC): TR contains each reachable node
in G.

With this definition, it is left as understood that the term “contains”
actually means “contains the predicate visitn.” This simplification allows
us to shorten the writing of the test requirements for Figure 7.3 to only
contain the nodes: TR = {1, 2, 3, 4, 5, 6, 7}. Test path p1 = [1, 2, 4, 5, 7]
meets the first, second, fourth, fifth, and seventh test requirements, and test
path p2 = [1, 3, 4, 6, 7] meets the first, third, fourth, sixth, and seventh.
Therefore, if a test set T contains {t1, t2}, where path(t1) = p1 and path(t2)
= p2, then T satisfies Node Coverage on G.

The usual definition of Node Coverage omits the intermediate step of
explicitly identifying the test requirements, and is often stated as given
below. Notice the economy of the form used above with respect to the
standard definition.

Definition 7.33 Node Coverage (NC) (Standard Definition): Test set
T satisfies node coverage on graph G if and only if for every
syntactically reachable node n in N, there is some path p in path(T)
such that p visits n.

The exercises at the end of the section have the reader reformulate the
definitions of some of the remaining coverage criteria in both the formal
way and the standard way. We choose the intermediate definition because
it is more compact, avoids the extra verbiage in a standard coverage
definition, and focuses just on the part of the definition of coverage that

changes from criterion to criterion.
Node Coverage is implemented in many commercial testing tools, most

often in the form of statement coverage. So is the next common criterion
of Edge Coverage, usually implemented as branch coverage:

CRITERION 7.8 Edge Coverage (EC): TR contains each reachable path of
length up to 1, inclusive, in G.

The reader might wonder why the test requirements for Edge Coverage
also explicitly include the test requirements for Node Coverage–that is,
why the phrase “up to” is included in the definition. All the graph coverage
criteria are developed like this. The motivation is subsumption for graphs
that do not contain more complex structures. For example, consider a
graph with a node that has no edges. Without the “up to” clause in the
definition, Edge Coverage would not cover that node. Intuitively, we
would like edge testing to be at least as demanding as node testing. This
style of definition is the best way to achieve this property. To make our TR
sets readable, we list only the maximal length paths.

Figure 7.6 illustrates the difference between Node and Edge Coverage.
In program statement terms, this is a graph of the common “if-else”
structure without the “else.”

Figure 7.6. A graph showing Node Coverage and Edge Coverage.

Other coverage criteria use only the graph definitions introduced so far.
For example, one requirement is that each path of length (up to) two be
toured by some test path. With this context, Node Coverage could be

redefined to contain each path of length zero. Clearly, this idea can be
extended to paths of any length, although possibly with diminishing
returns. We formally define one of these criteria; others are left as
exercises for the interested reader.

CRITERION 7.9 Edge-Pair Coverage (EPC): TR contains each reachable
path of length up to 2, inclusive, in G.

One useful testing criterion is to start the software in some state (that is,
a node in the finite state machine) and then follow transitions (that is,
edges) so that the last state is the same as the start state. This type of
testing is used to verify that the system is not changed by certain inputs.
Shortly we will formalize this notion as round trip coverage.

Before defining round trip coverage, we need a few more definitions. A
path from ni to nj is simple if no node appears more than once in the path,
with the exception that the first and last nodes may be identical. That is,
simple paths have no internal loops, although the entire path itself may
wind up being a loop. One useful aspect of simple paths is that any path
can be created by composing simple paths.

Even fairly small programs may have a very large number of simple
paths. Most of these simple paths are not worth addressing explicitly since
they are subpaths of other simple paths. For a coverage criterion for simple
paths we would like to avoid enumerating the entire set of simple paths. To
this end we list only maximal length simple paths. To clarify this notion,
we introduce a formal definition for a maximal length simple path, which
we call a prime path, and we adopt the name “prime” for the criterion:

Definition 7.34 Prime Path: A path from ni to nj is a prime path if it is
a simple path and it does not appear as a proper subpath of any other
simple path.

CRITERION 7.10 Prime Path Coverage (PPC): TR contains each prime
path in G.

While this definition of prime path coverage has the practical advantage
of keeping the number of test requirements down, it suffers from the
problem that a given infeasible prime path may well incorporate many
feasible simple paths. The solution is direct: replace the infeasible prime

path with relevant feasible subpaths. For simplicity, we leave this
replacement out of the definitions, but assume it when discussing prime
path coverage later.

Prime path coverage has two special cases that we include below for
historical reasons. From a practical perspective, it is usually better simply
to adopt prime path coverage. Both special cases involve treatment of
loops with “round trips.”

A round trip path is a prime path of nonzero length that starts and ends
at the same node. One type of round trip test coverage requires at least one
round trip path to be taken for each node, and another requires all possible
round trip paths.

CRITERION 7.11 Simple Round Trip Coverage (SRTC): TR contains at
least one round-trip path for each reachable node in G that begins and
ends a round-trip path.

CRITERION 7.12 Complete Round Trip Coverage (CRTC): TR contains
all round-trip paths for each reachable node in G.

Next we turn to path coverage, which is traditional in the testing
literature.

CRITERION 7.13 Complete Path Coverage (CPC): TR contains all paths
in G.

Sadly, Complete Path Coverage is useless if a graph has a cycle, since
this results in an infinite number of paths, and hence an infinite number of
test requirements. A variant of this criterion is, however, useful. Suppose
that instead of requiring all paths, we consider a specified set of paths. For
example, these paths might be given by a customer in the form of usage
scenarios.

CRITERION 7.14 Specified Path Coverage (SPC): TR contains a set S of
test paths, where S is supplied as a parameter.

Complete Path Coverage is not feasible for graphs with cycles, hence
the reason for developing the other alternatives listed above. Figure 7.7
contrasts Prime Path Coverage with Complete Path Coverage. Figure

7.7(a) shows the “diamond” graph, which contains no loops. Both
Complete Path Coverage and Prime Path Coverage can be satisfied on this
graph with the two paths shown. Figure 7.7(b), however, includes a loop
from 2 to 4 to 5 to 2, thus the graph has an infinite number of possible test
paths, and Complete Path Coverage is not possible. The requirements for
Prime Path Coverage, however, can be toured with two test paths, for
example, [1, 2, 3] and [1, 2, 4, 5, 2, 4, 5, 2, 3].

Figure 7.7. Two graphs showing prime path coverage.

7.2.2 Touring, Sidetrips, and Detours

An important but subtle point to note is that while simple paths do not
have internal loops, we do not require the test paths that tour a simple path
to have this property. That is, we distinguish between the path that
specifies a test requirement and the portion of the test path that meets the
requirement. The advantage of separating these two notions has to do with
the issue of infeasible test requirements. Before describing this advantage,
let us refine the notion of a tour.

Testing researchers have come up with many schemes to get around the
problem of loops introducing an infinite number of paths. These range
from the practical to the clever to the impractical to the hopeless. We

introduce a subtle but elegant distinction that clarifies the problem and
allows previous ideas to be folded together cleanly.

We previously defined “visits” and “tours,” and recall that using a path
p to tour a subpath [2, 3, 4] means that the subpath is a subpath of p. This
is a rather strict definition because each node and edge in the subpath must
be visited exactly in the order that they appear in the subpath. We would
like to relax this a bit to allow loops to be included in the tour. Consider
the graph in Figure 7.8, which features a loop from 3 to 4 to 3.

Figure 7.8. Graph with a loop.

If we are required to tour subpath q = [2, 3, 5], the strict definition of
tour prohibits us from meeting the requirement with any path that contains
4, such as p = [1, 2, 3, 4, 3, 5, 6], because we do not visit 2, 3, and 5 in
exactly the same order. We relax the tour definition in two ways. The first
allows the tour to include “sidetrips,” where we can leave the path
temporarily from a node and then return to the same node. The second
allows the tour to include more general “detours” where we can leave the
path from a node and then return to thenext node on the path (skipping an
edge). In the following definitions, q is a simple subpath that is required.

Definition 7.35 Tour: Test path p is said to tour subpath q if and only
if q is a subpath of p.

Definition 7.36 Tour With Sidetrips: Test path p is said to tour
subpath q with sidetrips if and only if every edge in q is also in p in
the same order.

Definition 7.37 Tour With Detours: Test path p is said to tour subpath
q with detours if and only if every node in q is also in p in the same
order.

The graphs in Figure 7.9 illustrate sidetrips and detours on the graph
from Figure 7.8. In Figure 7.9(a), the dashed lines show the sequence of

edges that are executed in a tour with a sidetrip. The numbers on the
dashed lines indicate the order in which the edges are executed. In Figure
7.9(b), the dashed lines show the sequence of edges that are executed in a
tour with a detour.

Figure 7.9. Tours, sidetrips, and detours in graph coverage.

While these differences are rather small, they have far-reaching
consequences. The difference between sidetrips and detours can be seen in
Figure 7.9. The subpath [3, 4, 3] is a sidetrip to [2, 3, 5] because it leaves
the subpath at node 3 and then returns to the subpath at node 3. Thus,
every edge in the subpath [2, 3, 5] is executed in the same order. The
subpath [3, 4, 5] is a detour to [2, 3, 5] because it leaves the subpath at
node 3 and then returns to a node in the subpath at a later point, bypassing
the edge (3, 5). That is, every node [2, 3, 5] is executed in the same order
but every edge is not. Detours have the potential to drastically change the
behavior of the intended test. That is, a test that takes the edge (4, 5) may
exhibit different behavior and test different aspects of the program than a
test that takes the edge (3, 5).

To use the notion of sidetrips and detours, one can “decorate” each
appropriate graph coverage criterion with a choice of touring. For
example, Prime Path Coverage could be defined strictly in terms of tours,
less strictly to allow sidetrips, or even less strictly to allow detours.

The position taken in this book is that sidetrips are a practical way to
deal with infeasible test requirements, as described below. Hence we
include them explicitly in our criteria. Detours seem less practical, and so

we do not include them further.

Dealing with Infeasible Test Requirements
If sidetrips are not allowed, a large number of infeasible requirements can
exist. Consider again the graph in Figure 7.9. In many programs it will be
impossible to take the path from 2 to 5 without going through node 4 at
least once because, for example, the loop body is written such that it
cannot be skipped. If this happens, we need to allow sidetrips. That is, it
may not be possible to tour the path [2, 3, 5] without a sidetrip.

The argument above suggests dropping the strict notion of touring and
simply allowing test requirements to be met with sidetrips. However, this
is not always a good idea! Specifically, if a test requirement can be met
without a sidetrip, then doing so may be superior to meeting the
requirement with a sidetrip. Consider the loop example again. If the loop
can be executed zero times, then the path [2, 3, 5] should be toured without
a sidetrip.

The argument above suggests a hybrid treatment with desirable practical
and theoretical properties. The idea is to meet test requirements first with
strict tours, and then allow sidetrips for unmet test requirements. Clearly,
the argument could easily be extended to detours, but, as mentioned above,
we elect not to do so.

Definition 7.38 Best Effort Touring : Let TRtour be the subset of test
requirements that can be toured and TRsidetrip be the subset of test
requirements that can be toured with sidetrips. Note that TRtour ⊆
TRsidetrip. A set T of test paths achieves best effort touring if for every
path p in TRtour, some path in T tours p directly and for every path p
in TRsidetrip, some path in T tours p either directly or with a sidetrip.

Best Effort Touring has the practical benefit that as many test
requirements are met as possible, yet each test requirement is met in the
strictest possible way. As we will see in Section 7.2.4 on subsumption,
Best Effort Touring has desirable theoretical properties with respect to
subsumption.

Finding Prime Test Paths
It turns out to be relatively simple to find all prime paths in a graph, and

test paths to tour the prime paths can be constructed automatically. The
book website contains a graph coverage web application tool that will
compute prime paths (and other criteria) on general graphs. We illustrate
the process with the example graph in Figure 7.10. It has seven nodes and
nine edges, including a loop and an edge from node 5 to itself (sometimes
called a “self-loop.”)

Figure 7.10. An example for prime test paths.

Prime paths can be found by starting with paths of length 0, then
extending to length 1, and so on. Such an algorithm collects all simple
paths, whether prime or not. The prime paths can then be filtered from this
set. The set of paths of length 0 is simply the set of nodes, and the set of
paths of length 1 is simply the set of edges. For simplicity, we list the node
numbers in this example.

Simple paths of length 0 (7):
1) [1]
2) [2]
3) [3]
4) [4]
5) [5]
6) [6]
7) [7] !

The exclamation point on the path [7] tells us that this path cannot be
extended. Specifically, the final node 7 has no outgoing edges, and so
paths that end with 7 are not extended further. The simple paths of length 1
are computed by adding the successor nodes for each edge that starts with
the last node in each simple path of length 0.

Simple paths of length 1 (9):

8) [1, 2]
9) [1, 5]
10) [2, 3]
11) [2, 6]
12) [3, 4]
13) [4, 2]
14) [5, 5] *
15) [5, 7] !
16) [6, 7] !

The asterisk on the path [5, 5] tells us that path can go no further
because the first node is the same as the last (it is already a cycle). For
paths of length 2, we identify each path of length 1 that is not a cycle or
ends in a node that has no outgoing edges. We then extend the path with
every node that can be reached from the last node in the path unless that
node is already in the path and not the first node. The first path of length 1,
[1, 2], is extended to [1, 2, 3] and [1, 2, 6]. The second, [1, 5], is extended
to [1, 5, 7] but not [1, 5, 5], because node 5 is already in the path (that is,
[1, 5, 5] is not simple and thus is not prime).

Simple paths of length 2 (8):
17) [1, 2, 3]
18) [1, 2, 6]
19) [1, 5, 7] !
20) [2, 3, 4]
21) [2, 6, 7] !
22) [3, 4, 2]
23) [4, 2, 3]
24) [4, 2, 6]

Paths of length 3 are computed in a similar way.

Simple paths of length 3 (7):
25) [1, 2, 3, 4] !
26) [1, 2, 6, 7] !
27) [2, 3, 4, 2] *
28) [3, 4, 2, 3] *
29) [3, 4, 2, 6]
30) [4, 2, 3, 4] *
31) [4, 2, 6, 7] !

Finally, only one path of length 4 exists. Three paths of length 3 cannot
be extended because they are cycles; two others end with node 7. Of the
remaining two, the path that ends in node 4 cannot be extended because [1,
2, 3, 4, 2] is not simple and thus is not prime.

Simple path of length 4 (1):
32) [3, 4, 2, 6, 7]!

The prime paths can be computed by eliminating any path that is a
(proper) subpath of some other simple path. Note that every simple path
without an exclamation mark or asterisk is eliminated as it can be extended
and is thus a proper subpath of some other simple path. The graph in
Figure 7.10 has eight prime paths:

14) [5, 5] *
19) [1, 5, 7] !
25) [1, 2, 3, 4] !
26) [1, 2, 6, 7] !
27) [2, 3, 4, 2] *
28) [3, 4, 2, 3] *
30) [4, 2, 3, 4] *
32) [3, 4, 2, 6, 7]!

This process is guaranteed to terminate because the length of the longest
possible prime path is the number of nodes. Although graphs often have
many simple paths (32 in this example, of which 8 are prime), they can
usually be toured with far fewer test paths. Many possible algorithms can
find test paths to tour the prime paths, two of which are implemented in
the graph coverage web application on the book website. We can do this
by hand with the graph in Figure 7.10. For example, it can be seen that the
four test paths [1, 2, 6, 7], [1, 2, 3, 4, 2, 3, 4, 2, 6, 7], [1, 5, 7], and [1, 5, 5,
7] are enough. This approach, however, is error-prone. The easiest thing to
do is to tour the loop [2, 3, 4] only once, which omits the prime paths [3, 4,
2, 3] and [4, 2, 3, 4].

With more complicated graphs, a mechanical approach is needed. By
hand, we recommend starting with the longest prime paths and extending
them to the beginning and end nodes in the graph. For our example, this
results in the test path [1, 2, 3, 4, 2, 6, 7]. The test path [1, 2, 3, 4, 2, 6, 7]
tours three prime paths: 25, 27, and 32.

The next test path is constructed by extending one of the longest
remaining prime paths; we will continue to work backward and choose 30.
The resulting test path is [1, 2, 3, 4, 2, 3, 4, 2, 6, 7], which tours two prime
paths, 28 and 30 (it also tours paths 25 and 27).

The next test path is constructed by using the prime path 26 [1, 2, 6, 7].
This test path tours only maximal prime path 26.

Continuing in this fashion yields two more test paths, [1, 5, 7] for prime
path 19, and [1, 5, 5, 7] for prime path 14. The complete set of test paths is
then:

1) [1, 2, 3, 4, 2, 6, 7]
2) [1, 2, 3, 4, 2, 3, 4, 2, 6, 7]
3) [1, 2, 6, 7]
4) [1, 5, 7]
5) [1, 5, 5, 7]

This can be used as is, or optimized if the tester desires a smaller test
set. It is clear that test path 2 tours the prime paths toured by test path 1, so
1 can be eliminated, leaving the four test paths identified informally earlier
in this section. Simple algorithms such as implemented in the graph
coverage web application on the book website can automate this process.

EXERCISES
Section 7.2.2.

1. Redefine Edge Coverage in the standard way (see the discussion for
Node Coverage).

2. Redefine Complete Path Coverage in the standard way (see the
discussion for Node Coverage).

3. Subsumption has a significant weakness. Suppose criterion Cstrong
subsumes criterion Cweak and that test set Tstrong satisfies Cstrong and
test set Tweak satisfies Cweak. It is not necessarily the case that Tweak is
a subset of Tstrong. It is also not necessarily the case that Tstrong reveals
a fault if Tweak reveals a fault. Explain these facts.

4. Answer questions a–d for the graph defined by the following sets:
 N = {1, 2, 3, 4}
 N0 = {1}

 Nf = {4}
 E = {(1, 2), (2, 3), (3, 2), (2, 4)}

(a) Draw the graph.
(b) If possible, list test paths that achieve Node Coverage, but not

Edge Coverage. If not possible, explain why not.
(c) If possible, list test paths that achieve Edge Coverage, but not

Edge-Pair Coverage. If not possible, explain why not.
(d) List test paths that achieve Edge-Pair Coverage.

5. Answer questions a–g for the graph defined by the following sets:

 N = {1, 2, 3, 4, 5, 6, 7}
 N0 = {1}
 Nf = {7}
 E = {(1, 2), (1, 7), (2, 3), (2, 4), (3, 2), (4, 5), (4, 6), (5, 6), (6, 1)}

Also consider the following (candidate) test paths:
 p1 = [1, 2, 4, 5, 6, 1, 7]
 p2 = [1, 2, 3, 2, 4, 6, 1, 7]
 p3 = [1, 2, 3, 2, 4, 5, 6, 1, 7]

(a) Draw the graph.
(b) List the test requirements for Edge-Pair Coverage. (Hint: You

should get 12 requirements of length 2.)
(c) Does the given set of test paths satisfy Edge-Pair Coverage? If

not, state what is missing.
(d) Consider the simple path [3, 2, 4, 5, 6] and test path [1, 2, 3, 2,

4, 6, 1, 2, 4, 5, 6, 1, 7]. Does the test path tour the simple path
directly? With a sidetrip? If so, write down the sidetrip.

(e) List the test requirements for Node Coverage, Edge Coverage,
and Prime Path Coverage on the graph.

(f) List test paths from the given set that achieve Node Coverage
but not Edge Coverage on the graph.

(g) List test paths from the given set that achieve Edge Coverage
but not Prime Path Coverage on the graph.

6. Answer questions a–c for the graph in Figure 7.2.
(a) List the test requirements for Node Coverage, Edge Coverage,

and Prime Path Coverage on the graph.
(b) List test paths that achieve Node Coverage but not Edge

Coverage on the graph.
(c) List test paths that achieve Edge Coverage but not Prime Path

Coverage on the graph.
7. Answer questions a–d for the graph defined by the following sets:

 N = {1, 2, 3}
 N0 = {1}
 Nf = {3}
 E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)}

Also consider the following (candidate) paths:
 p1 = [1, 2, 3, 1]
 p2 = [1, 3, 1, 2, 3]
 p3 = [1, 2, 3, 1, 2, 1, 3]
 p4 = [2, 3, 1, 3]
 p5 = [1, 2, 3, 2, 3]

(a) Which of the listed paths are test paths? For any path that is not
a test path, explain why not.

(b) List the eight test requirements for Edge-Pair Coverage (only
the length two subpaths).

(c) Does the set of test paths from part (a) above satisfy Edge-Pair
Coverage? If not, state what is missing.

(d) Consider the prime path [3, 1, 3] and path p2. Does p2 tour the
prime path directly? With a sidetrip?

8. Design and implement a program that will compute all prime paths in
a graph, then derive test paths to tour the prime paths. Although the
user interface can be arbitrarily complicated, the simplest version will
be to accept a graph as input by reading a list of nodes, initial nodes,
final nodes, and edges.

7.2.3 Data Flow Criteria

Sidebar
Data Flow Criteria

We debated whether to include data flow in the second edition. On the
negative side, prime path coverage subsumes all the data flow criteria,
and since PPC is simpler to understand and compute, some argue that
the data flow criteria are now obsolete. Additionally, we are not aware
of any companies who uses data flow criteria in practice. On the

positive side, many educators believe that if a student learns testing, the
student should know something about data flow coverage. It is also
possible that a tester may want to use all-uses coverage without the
additional expense of prime path coverage. Also, it is used in later
sections of the book in situations where prime path coverage is not
used. Additionally, it may be important for data flow programming
languages. Finally, it is often the first software analysis technique, and
is considered basic for more advanced analysis techniques such as
symbolic execution and slicing.
After considering all factors, we decided to include data flow with this
explicit note to instructors: It is possible to omit data flow entirely from
a course on testing. The concepts in this subsection are used in sections
7.3.2

The next few testing criteria are based on the assumption that to test a
program adequately, we should focus on the flows of data values.
Specifically, we should try to ensure that the values created at one point in
the program are created and used correctly. This is done by focusing on
definitions and uses of values. A definition (def) is a location where a
value for a variable is stored into memory (assignment, input, etc.). A use
is a location where a variable’s value is accessed. Data flow testing criteria
use the fact that values are carried from defs to uses. We call these du-
pairs (they are also known as definition-use, def-use, and du associations
in the testing literature). The idea of data flow criteria is to exercise du-
pairs in various ways.

First we must integrate data flow into the existing graph model. Let V be
a set of variables that are associated with the program artifact being
modeled in the graph. Each node n and edge e is considered to define a
subset of V; this set is called def(n) or def(e). (Although graphs from
programs cannot have defs on edges, other software artifacts such as finite
state machines allow defs as side effects on edges.) Each node n and edge
e is also considered to use a subset of V; this set is called use(n) or use(e).

Figure 7.11 gives an example of a graph annotated with defs and uses.
All variables involved in a decision are assumed to be used on the
associated edges, so a and b are in the use set of all three edges (1, 2), (1,
3), and (1, 4).

Figure 7.11. A graph showing variables, def sets and use sets.

An important concept when discussing data flow criteria is that a def of
a variable may or may not reach a particular use. The most obvious reason
that a def of a variable v at location li (a location could be a node or an
edge) will not reach a use at location lj is because no path goes from li to lj.
A more subtle reason is that the variable’s value may be changed by
another def before it reaches the use. Thus, a path from li to lj is def-clear
with respect to variable v if for every node nk and every edge ek on the
path, k ≠ i and k ≠ j, v is not in def(nk) or in def(ek). That is, no location
between li and lj changes the value. If a def-clear path goes from li to lj
with respect to v, we say that the def of v at li reaches the use at lj.

For simplicity, we will refer to the start and end of a du-path as nodes,
even if the definition or the use occurs on an edge. We discuss relaxing
this convention later. Formally, a du-path with respect to a variable v is a
simple path that is def-clear with respect to v from a node ni for which v is
in def(ni) to a node nj for which v is in use(nj). We want the paths to be
simple to ensure a reasonably small number of paths. Note that a du-path is
always associated with a specific variable v, a du-path always has to be
simple, and there may be intervening uses on the path.

Figure 7.12 gives an example of a graph annotated with defs and uses.
Rather than displaying the actual sets, we show the full program
statements that are associated with the nodes and edges. This is common
and often more informative to a human, but the actual sets are simpler for
automated tools to process. Note that the parameters (subject and pattern)
are considered to be explicitly defined by the first node in the graph. That
is, the def set of node 1 is def(1) = {subject, pattern}. Also note that
decisions in the program (for example, if subject[iSub] == pattern[0])
result in uses of the associated variables for both edges in the decision.

That is, use(4, 10) ≡ use(4, 5) ≡ {subject, iSub, pattern}. The parameter
subject is used at node 2 (with a reference to its length attribute) and at
edges (4, 5), (4, 10), (7, 8), and (7, 9), thus du-paths exist from node 1 to
node 2 and from node 1 to each of those four edges.

Figure 7.12. A graph showing an example of du-paths.

Figure 7.13 shows the same graph, but this time with the def and use
sets explicitly marked on the graph3. Note that node 9 both defines and
uses the variable iPat. This is because of the statement iPat + +, which is
equivalent to iPat = iPat + 1. In this case, the use occurs before the def, so
for example, a def-clear path goes from node 5 to node 9 with respect to
iPat.

Figure 7.13. Graph showing explicit def and use sets.

The test criteria for data flow will be defined as sets of du-paths. This
makes the criteria quite simple, but first we need to categorize the du-paths
into several groups.

The first grouping of du-paths is according to definitions. Specifically,
consider all of the du-paths with respect to a given variable defined in a
given node. Let the def-path set du(ni, v) be the set of du-paths with
respect to variable v that start at node ni. Once we have clarified the notion
of touring for data flow coverage, we will define the All-defs criterion by
simply asking that at least one du-path from each def-path set be toured.
Because of the large number of nodes in a typical graph, and the
potentially large number of variables defined at each node, the number of
def-path sets can be quite large. Even so, the coverage criterion based on
the def-path groupings tends to be quite weak.

Perhaps surprisingly, it is not helpful to group du-paths by uses, and so

we will not provide a definition of “use-path” sets that parallels the
definition of def-path sets given above.

The second, and more important, grouping of du-paths is according to
pairs of definitions and uses. We call this the def-pair set. After all, the
heart of data flow testing is allowing definitions to flow to uses.
Specifically, consider all of the du-paths with respect to a given variable
that are defined in one node and used in another (possibly identical) node.
Formally, let the def-pair set du(ni, nj, v) be the set of du-paths with
respect to variable v that start at node ni and end at node nj. Informally, a
def-pair set collects together all the (simple) ways to get from a given
definition to a given use. Once we have clarified the notion of touring for
data flow coverage, we will define the All-Uses criterion by simply asking
that at least one du-path from each def-pair set be toured. Since each
definition can typically reach multiple uses, there are usually many more
def-path sets than def-pair sets.

In fact, the def-path set for a def at node ni is the union of all the def-
pair sets for that def. More formally:du(ni, v) = ∪nj du(ni, nj, v).

To illustrate the notions of def-path sets and def-pair sets, consider du-
paths with respect to the variable iSub, which has one of its definitions in
node 10 in Figure 7.13. There are du-paths with respect to iSub from node
10 to nodes 5 and 10, and to edges (3, 4), (3, 11), (4, 5), (4, 10), (7, 8), and
(7, 9).

The def-path set for the use of iSub at node 10 is:
du(10, iSub) = {[10, 3, 4], [10, 3, 4, 5], [10, 3, 4, 5, 6, 7, 8], [10, 3, 4, 5,

6, 7, 9], [10, 3, 4, 5, 6, 10], [10, 3, 4, 5, 6, 7, 8, 10], [10, 3, 4, 10], [10, 3,
11]}

This def-path set can be broken up into the following def-pair sets:
du(10, 4, iSub) = {[10, 3, 4]}
du(10, 5, iSub) = {[10, 3, 4, 5]}
du(10, 8, iSub) = {[10, 3, 4, 5, 6, 7, 8]}
du(10, 9, iSub) = {[10, 3, 4, 5, 6, 7, 9]}
du(10, 10, iSub) = {[10, 3, 4, 5, 6, 10], [10, 3, 4, 5, 6, 7, 8, 10], [10, 3, 4,

10]}
du(10, 11, iSub) = {[10, 3, 11]}
Next, we extend the definition of tour to apply to du-paths. A test path p

is said to du tour subpath d with respect to v if p tours d and the portion of
p to which d corresponds is def-clear with respect to v. It is possible to

allow or disallow def-clear sidetrips with respect to v when touring a du-
path. Because def-clear sidetrips make it possible to tour more du-paths,
we define the data flow coverage criteria given below to allow sidetrips
where necessary.

Now we can define the primary data flow coverage criteria. The three
most common are best understood informally. The first requires that each
def reaches at least one use, the second requires that each def reaches all
possible uses, and the third requires that each def reaches all possible uses
through all possible du-paths. As mentioned in the development of def-
path sets and def-pair sets, the formal definitions of the criteria are simply
appropriate selections from the appropriate set. For each coverage criterion
below, we assume Best Effort Touring (see Section 7.2.2), where sidetrips
are required to be def-clear with respect to the variable in question.

CRITERION 7.15 All-Defs Coverage (ADC): For each def-path set S =
du(n, v), TR contains at least one path d in S.

Remember that the def-path set du(n, v) represents all def-clear simple
paths from n to all uses of v. So All-Defs requires us to tour at least one
path to at least one use.

CRITERION 7.16 All-Uses Coverage (AUC): For each def-pair set S =
du(ni, nj, v), TR contains at least one path d in S.

Remember that the def-pair set du(ni, nj, v) represents all the def-clear
simple paths from a def of v at ni to a use of v at nj. So All-Uses requires
us to tour at least one path for every def-use pair4.

CRITERION 7.17 All-du-Paths Coverage (ADUPC): For each def-pair
set S = du(ni, nj, v), TR contains every path d in S.

The definition could also simply be written as “include every du-path.”
We chose the given formulation because it highlights that the key
difference between All-Uses and All-du-Paths is a change in quantifier.
Specifically, the “at least one du-path” directive in All-Uses is changed to
“every path” in All-du-Paths. Thought of in terms of def-use pairs, All-
Uses requires some def-clear simple path to each use, whereas All-du-

Paths requires all def-clear simple paths to each use.
To simplify the development above, we assumed that definitions and

uses occurred on nodes. Naturally, definitions and uses can occur on edges
as well. It turns out that the development above also works for uses on
edges, so data flow on program flow graphs can be easily defined (uses on
program flow graph edges are sometimes called “p-uses”). However, the
development above does not work if the graph has definitions on edges.
The problem is that a du-path from an edge to an edge is no longer
necessarily simple, since instead of simply having a common first and last
node, such a du-path now might have a common first and last edge. It is
possible to modify the definitions to explicitly mention definitions and
uses on edges as well as nodes, but the definitions tend to get messier. The
bibliographic notes contain pointers for this type of development.

Figure 7.14 illustrates the differences among the three data flow
coverage criteria with the double-diamond graph. The graph has one def,
so only one path is needed to satisfy all-defs. The def has two uses, so two
paths are needed to satisfy all-uses. Since two paths go from the def to
each use, four paths are needed to satisfy all-du-paths. Note that the
definitions of the data flow criteria leave open the choice of touring. The
literature uses various choices—in some cases demanding direct touring,
and, in other cases, allowing def-clear sidetrips. Our recommendation is
Best Effort Touring, a choice that, in contrast to the treatments in the
literature, yields the desired subsumption relationships even in the case of
infeasible test requirements. From a practical perspective, Best Effort
Touring also makes sense—each test requirement is satisfied as rigorously
as possible.

Figure 7.14. Example of the differences among the three data flow coverage
criteria.

EXERCISES
Section 7.2.3.

1. Below are four graphs, each of which is defined by the sets of nodes,
initial nodes, final nodes, edges, and defs and uses. Each graph also
contains some test paths. Answer the following questions about each
graph.

(a) Draw the graph.
(b) List all of the du-paths with respect to x. (Note: Include all du-

paths, even those that are subpaths of some other du-path).
(c) Determine which du-paths each test path tours. Write them in a

table with test paths in the first column and the du-paths they
cover in the second column. For this part of the exercise, you
should consider both direct touring and sidetrips.

(d) List a minimal test set that satisfies all defs coverage with
respect to x. (Direct tours only.) If possible, use the given test
paths. If not, provide additional test paths to satisfy the criterion.

(e) List a minimal test set that satisfies all uses coverage with
respect to x. (Direct tours only.) If possible, use the given test
paths. If not, provide additional test paths to satisfy the criterion.

(f) List a minimal test set that satisfies all du-paths coverage with

respect to x. (Direct tours only.) If possible, use the given test
paths. If not, provide additional test paths to satisfy the criterion.

7.2.4 Subsumption Relationships Among Graph Coverage
Criteria

Recall from Chapter 1 that coverage criteria are often related to one
another by subsumption. The first relation to note is that Edge Coverage
subsumes Node Coverage. In most cases, this is because if we traverse
every edge in a graph, we will visit every node. However, if a graph has a
node with no incoming or outgoing edges, traversing every edge will not
reach that node. Thus, Edge Coverage is defined to include every path of
length up to 1, that is, of length 0 (all nodes) and length 1 (all edges). The
subsumption does not hold in the reverse direction. Recall that Figure 7.6
gave an example test set that satisfied Node Coverage but not Edge
Coverage. Hence, Node Coverage does not subsume Edge Coverage.

It may seem surprising that Prime Path Coverage does not subsume
Edge-Pair Coverage. In most situations, it does. The exception is when a
node n has a self-loop, the subpath from its predecessor m creates the
edge-pair [m, n, n], the subpath to its successor o creates the edge-pair [n,
n, o], and the self-loop itself creates the edge-pair [n, n, n]. None of these,
of course, are prime paths. Thus, if we assume no self-loops, Prime Path
Coverage subsumes Edge-Pair Coverage.

We have several other subsumption relations among the criteria. Where
applicable, the structural coverage relations assume Best-Effort Touring.
Because Best-Effort Touring is assumed, the subsumption results hold
even if some test requirements are infeasible.

The subsumption results for data flow criteria are based on three
assumptions: (1) every use is preceded by a def, (2) every def reaches at
least one use, and (3) for every node with multiple outgoing edges, at least
one variable is used on each out edge, and the same variables are used on
each out edge. If we satisfy All-Uses Coverage, then we will have
implicitly ensured that every def was used. Thus All-Defs is also satisfied
and All-Uses subsumes All-Defs. Likewise, if we satisfy All-du-Paths
Coverage, then we will have implicitly ensured that every def reached
every possible use. Thus All-Uses is also satisfied and All-du-Paths
subsumes All-Uses. Additionally, each edge is based on the satisfaction of

some predicate, so each edge has at least one use. Therefore All-Uses will
guarantee that each edge is executed at least once, so All-Uses subsumes
Edge Coverage.

Finally, each du-path is also a simple path, so Prime Path Coverage
subsumes All-du-Paths Coverage 5. This is a significant observation, since
computing prime paths is considerably simpler than analyzing data flow
relationships. Figure 7.15 shows the subsumption relationships among the
structural and data flow coverage criteria.

Figure 7.15. Subsumption relations among graph coverage criteria.

7.3 GRAPH COVERAGE FOR SOURCE CODE

Most of the graph coverage criteria were developed for source code, and
these definitions match the definitions in Section 7.2 very closely. As in
Section 7.2, we first consider structural coverage criteria and then data
flow criteria.

7.3.1 Structural Graph Coverage for Source Code

The most widely used graph coverage criteria are defined on source code.

Although precise details vary from one programming language to another,
the basic pattern is the same for most common languages. To apply one of
the graph criteria, the first step is to define the graph, and for source code,
the most common graph is a control flow graph (CFG). Control flow
graphs associate an edge with each possible branch in the program, and a
node with sequences of statements. Formally, a basic block is a maximum
sequence of program statements such that if any one statement of the block
is executed, all statements in the block are executed. A basic block has
only one entry point and one exit point. Our first example language
structure is an if statement with an else clause, shown as Java code
followed by the corresponding CFG in Figure 7.16. The if-else
structure results in two basic blocks.

Figure 7.16. CFG fragment for the if-else structure.

Note that the two statements in the then part of the if statement both
appear in the same node. Node 1, which represents the conditional test x <
y has two out-edges, and is called a decision node. Node 4, which has
more than one in-edge, is called a junction node.

Next we turn to the degenerate case of an if statement without an
else clause, shown in Figure 7.17. This is the same graph previously
seen in Figure 7.6, but this time based on actual program statements. The
control flow graph for this structure has only three nodes. The reader
should note that a test with x < y traverses all of the nodes in this control
flow graph, but not all of the edges.

Figure 7.17. CFG fragment for the if structure without an else.

The graph changes if the loop body contains a return statement.
Figure 7.18 shows this example. Nodes 2 and 3 are final nodes, and there
is no edge from node 2 to node 3.

Figure 7.18. CFG fragment for the if structure with a return.

Representing loops is a little tricky because we have to include nodes
that are not directly derived from program statements. The simplest kind of
loop is a while loop with an initializing statement, as shown in Figure 7.19.
(Assume that y has a value at this point in the program.)

Figure 7.19. CFG fragment for the while loop structure.

The graph for the while structure has a decision node, which is needed

for the conditional test, and a single node for the body of the while loop.
Node 2 is sometimes called a “dummy node,” because it does not represent
any statements, but gives the iteration edge (3, 2) somewhere to go. Node
2 can also be thought of as representing a decision. A common mistake for
beginners is to try to have the edge go to 1; this is not correct because that
would mean the initialization step is done each iteration of the loop. Note
that the method call f(x, y) is not expanded in this particular graph; we
return to this issue later.

Now, consider a for loop. The example in Figure 7.20 behaves
equivalently to the prior while loop. The graph becomes a little more
complicated, essentially because the for structure is at a very high level
of abstraction.

Figure 7.20. CFG fragment for the for loop structure.

Although the initialization, test, and increment of the loop control
variable x are all on the same line in the program, they need to be
associated with different nodes in the graph. The control flow graph for the
for loop is slightly different from that of the while loop. Specifically, we
show the increment of x in a different node than the method call y =
f(x, y). Technically speaking, this violates the definition of a basic
block and the two nodes should be combined, but it is often easier to
develop templates for the various possible program structures and then
plug the control flow graph for the relevant code into the correct spot in
the template. Commercial tools typically do this to make the graph
generation simpler. In fact, commercial tools often do not follow the strict
definition of the basic block and sometimes add seemingly random nodes.
This can have trivial effects on the bookkeeping (for example, we might

cover 67 of 73 instead of 68 of 75), but is not really important for testing.
The do-while loop is similar, but simpler. The loop body is always

executed at least once, so the statements are associated with node 2 in
Figure 7.21.

Figure 7.21. CFG fragment for the do-while structure.

Figure 7.22 shows how we handle break and continue statements
in while loops. If the break statement at node 4 is reached, control
immediately transfers out of the loop to node 8. If the continue
statement at node 6 is reached, control transfers to the next iteration of the
loop at node 2, without going through the statement after the if test (node
7).

Figure 7.22. CFG fragment for the while loop with a break structure.

The next language structure is the case statement, or switch in Java.
The case structure can be graphed either as a single node with multi-way
branching or as a series of if-then-else structures. We choose to
illustrate the case structure with multi-way branching, as in Figure 7.23.

Figure 7.23. CFG fragment for the case structure.

If the programmer omits a break statement, this must be reflected in
the graph. For example, if the break in the ‘N’ case is omitted, the graph
would contain an edge from node 2 to node 3, reflecting the “fall-through”
semantics in Java, and not from node 2 to 5.

Our final language structure is exception handling, which in Java uses
the try-catch statement. Figure 7.24 shows an input statement with
three exceptions, one called by the run time system (IOException) and
the other two called by the program (Exception). The edge from node
1 to 2 reflects the IOException that can be raised if the readLine()
statement fails. The subpaths [3, 4, 6] and [5, 7, 6] represent the
programmer-raised exceptions. If the string is too long or too short, then
the throw statement is run, and control transfers to the catch block.

Figure 7.24. CFG fragment for the try-catch structure.

The coverage criteria from the previous section can now be applied to
graphs from source code. The application is direct with only the names
being changed. Node Coverage is often called Statement Coverage or
Basic Block Coverage and Edge Coverage is often called Branch
Coverage.

7.3.2 Data Flow Graph Coverage for Source Code

This section applies the data flow criteria to the code examples given in
the prior section. Before we can do this, we need to define what constitutes
a def and what constitutes a use. A def is a location in the program where a
value for a variable is stored into memory (assignment, input, etc.). A use
is a location where a variable’s value is accessed.

A def may occur for variable x in the following situations:

1. x appears on the left side of an assignment statement
2. x is an actual parameter in a call site and its value is changed within

the method
3. x is a formal parameter of a method (an implicit def when the method

begins execution)
4. x is an input to the program

Some features of programming languages greatly complicate this
seemingly simple definition. For example, is a def of an array variable a
def of the entire array, or of just the element being referenced? What about
objects; should the def consider the entire object, or only a particular
instance variable inside the object? If two variables reference the same
location, that is, the variables are aliases, how is the analysis done? What
is the relationship between coverage of the original source code, coverage
of the optimized source code, and coverage of the machine code? We omit
these complicating issues in our presentation and refer advanced readers to
the bibliographic notes.

If a variable has multiple definitions in a single basic block, the last
definition is the only one that is relevant to data flow analysis.

A use may occur for variable x in the following situations:

1. x appears on the right side of an assignment statement
2. x appears in a conditional test (note that such a test is always

associated with at least two edges)
3. x is an actual parameter to a method
4. x is an output of the program
5. x is an output of a method in a return statement or returned through

a parameter

Not all uses are relevant for data flow analysis. Consider the following
statements that reference local variables (ignoring concurrency):

The use of y in the second statement is called a local use; it is
impossible for a def in another basic block to reach it. The reason is that
the definition of y in y = z always overwrites any definition of y from
any other basic block. That is, no def-clear path goes from any other def to
that use. In contrast, the use of z is called global, because the definition of
z used in this basic block must originate in some other basic block. Data
flow analysis only considers global uses.

The PatternIndex example in Figure 7.25 is used to illustrate data
flow analysis for a simple string pattern matching method called
patternIndex(). The CFG for patternIndex() was previously
shown in Figure 7.12, with the actual Java statements annotated on the
nodes and edges.

Figure 7.25. Method patternIndex() for data flow example.

The CFG for patternIndex() with def and use sets explicitly
marked was shown in Figure 7.13. While numerous tools can create CFGs
for programs, it helps students to create CFGs by hand. When doing so, a
good habit is to draw the CFG first with the statements, then redraw it with
the def and use sets.

Table 7.1 lists the defs and uses at each node in the CFG for
patternIndex(). This simply repeats the information in Figure 7.13,
but in a convenient form. Table 7.2 contains the same information for
edges. We suggest that beginning students check their understanding of
these definitions by verifying that the contents of these two tables are
correct.

Table 7.1. Defs and uses at each node in the CFG for patternIndex().

node def use

 1 {subject, pattern}
 2 {NOTFOUND, isPat, iSub, rtnIndex, {subject, pattern}
 subjectLen, patternLen}
 3
 4
 5 {rtnIndex, isPat, iPat} {iSub}
 6
 7
 8 {rtnIndex, isPat} {NOTFOUND}
 9 {iPat} {iPat}
10 {iSub} {iSub}
11 {rtnIndex}

Table 7.2. Defs and uses at each edge in the CFG for patternIndex().

edge use
(1, 2)
(2, 3)
(3, 4) {iSub, patternLen, subjectLen, isPat}
(3, 11) {iSub, patternLen, subjectLen, isPat}
(4, 5) {subject, iSub, pattern}
(4, 10) {subject, iSub, pattern}
(5, 6)
(6, 7) {iPat, patternLen}
(6, 10) {iPat, patternLen}
(7, 8) {subject, iSub, iPat, pattern}
(7, 9) {subject, iSub, iPat, pattern}
(8, 10)
(9, 6)
(10, 3)

Finally, we list the du-paths for each variable in patternIndex()
followed by all the du-paths for each du-pair in Table 7.3. The first column
gives the variable name, and the second gives the def node number and
variable (that is, the left side of the formula that lists all the du-paths with
respect to the variable, as defined in Section 7.2.3). The third column lists
all the du-paths that start with that def. If a du-pair has more than one path
to the same use, they are listed on multiple rows with subpaths that end

with the same node number. The fourth column, “prefix?”, is a notational
convenience that is explained below. This information is extremely tedious
to derive by hand, and testers tend to make many errors. This analysis is
best done automatically.

Table 7.3. du-path sets for each variable in patternIndex().

Several def/use pairs have more than one du-path in
patternIndex(). For example, the variable iSub is defined in node 2
and used in node 10. Three du-paths go from node 2 to 10, [2, 3, 4,
10](iSub), [2, 3, 4, 5, 6, 10](iSub), and [2, 3, 4,
5, 6, 7, 8, 10](iSub).

One optimization uses the fact that a du-path must be toured by any test
that tours an extension of that du-path. These du-paths are marked with the
annotation “Yes” in the prefix? column of the table. For example, [2,
3, 4](iSub) is necessarily toured by any test that tours the du-path
[2, 3, 4, 5, 6, 7, 8](iSub), because [2, 3, 4] is a
prefix of [2, 3, 4, 5, 6, 7, 8]. Thus, the path is not considered
in the subsequent table that relates du-paths to test paths that tour them.
One has to be a bit careful with this optimization, since the extended du-
path may be infeasible even if the prefix is not.

Table 7.4 shows that a relatively small set of 11 test cases satisfies all
du-paths coverage on this example. (One du-path is infeasible.) The reader
may wish to evaluate this test set with the non-data flow graph coverage
criteria. These tests are available on the book website in
DataDrivenPatternIndexTest.java.

Table 7.4. Test paths to satisfy all du-paths coverage on patternIndex().

test case
(subject, pattern, output) test path(t)

(a, bc, -1) [1, 2, 3, 11]
(ab, a, 0) [1, 2, 3, 4, 5, 6, 10, 3, 11]
(ab, ab, 0) [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]
(ab, ac, -1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11]
(ab, b, 1) [1, 2, 3, 4, 10, 3, 4, 5, 6, 10, 3, 11]
(ab, c, -1) [1, 2, 3, 4, 10, 3, 4, 10, 3, 11]
(abc, abc, 0) [1, 2, 3, 4, 5, 6, 7, 9, 6, 7, 9, 6, 10, 3, 11]
(abc, abd, -1) [1, 2, 3, 4, 5, 6, 7, 9, 6, 7, 8, 10, 3, 11]
(abc, ac, -1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 4, 10, 3, 11]
(abc, ba, -1) [1, 2, 3, 4, 10, 3, 4, 5, 6, 7, 8, 10, 3, 11]
(abc, bc, 1) [1, 2, 3, 4, 10, 3, 4, 5, 6, 7, 9, 6, 10, 3, 11]

The last table, Table 7.5, shows, for each test case, the test path taken
and the du-path that is toured.

Table 7.5. Test paths and du-paths covered in patternIndex().

test case
(subject, pattern,
output)

test path (t) du-path toured

(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [2, 3, 4, 5, 6, 7, 8]
(NOTFOUND)

(a, bc, –1) [1, 2, 3, 11] [2, 3, 11] (rtnIndex)

(ab, a, 0) [1, 2, 3, 4, 5, 6, 10, 3, 11] [5, 6, 10, 3, 11]
(rtnIndex)

(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [8, 10, 3, 11] (rtnIndex)

(ab, ab, 0) [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3,
11] [2, 3, 4, 5, 6, 7, 9] (iSub)

(ab, a, 0) [1, 2, 3, 4, 5, 6, 10, 3, 11] [2, 3, 4, 5, 6, 10] (iSub)

(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [2, 3, 4, 5, 6, 7, 8, 10]
(iSub)

(ab, c, –1) [1, 2, 3, 4, 10, 3, 4, 10, 3, 11] [2, 3, 4, 10] (iSub)
(a, bc, –1) [1, 2, 3, 11] [2, 3, 11] (iSub)

(abc, bc, 1) [1, 2, 3, 4, 10, 3, 4, 5, 6, 7, 9,
6, 10, 3, 11]

[10, 3, 4, 5, 6, 7, 9]
(iSub)

(ab, b, 1) [1, 2, 3, 4, 10, 3, 4, 5, 6, 10, 3,
11] [10, 3, 4, 5, 6, 10] (iSub)

(abc, ba, –1) [1, 2, 3, 4, 10, 3, 4, 5, 6, 7, 8,
10, 3, 11]

[10, 3, 4, 5, 6, 7, 8, 10]
(iSub)

(ab, c, –1) [1, 2, 3, 4, 10, 3, 4, 10, 3, 11] [10, 3, 4, 10] (iSub)
(ab, a, 0) [1, 2, 3, 4, 5, 6, 10, 3, 11] [10, 3, 11] (iSub)
(ab, a, 0) [1, 2, 3, 4, 5, 6, 10, 3, 11] [5, 6, 10] (iPat)
(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [5, 6, 7, 8] (iPat)

(ab, ab, 0) [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3,
11] [5, 6, 7, 9] (iPat)

(ab, ab, 0) [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3,
11] [9, 6, 10] (iPat)

(abc, abd, –1) [1, 2, 3, 4, 5, 6, 7, 9, 6, 7, 8,
10, 3, 11] [9, 6, 7, 8] (iPat)

(abc, abc, 0) [1, 2, 3, 4, 5, 6, 7, 9, 6, 7, 9, 6,
10, 3, 11] [9, 6, 7, 9] (iPat)

(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [2, 3, 4] (isPat)
(a, bc, –1) [1, 2, 3, 11] [2, 3, 11] (isPat)
No test case Infeasible [5, 6, 10, 3, 4] (isPat)
(ab, a, 0) [1, 2, 3, 4, 5, 6, 10, 3, 11] [5, 6, 10, 3, 11] (isPat)

(abc, ac –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 4, [8, 10, 3, 4] (isPat)

10, 3, 11]
(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [8, 10, 3, 11] (isPat)
(ab, c, –1) [1, 2, 3, 4, 10, 3, 4, 10, 3, 11] [1, 2, 3, 4, 10] (subject)

(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [1, 2, 3, 4, 5, 6, 7, 8]
(subject)

(ab, ab, 0) [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3,
11]

[1, 2, 3, 4, 5, 6, 7, 9]
(subject)

(ab, c, –1) [1, 2, 3, 4, 10, 3, 4, 10, 3, 11] [1, 2, 3, 4, 10] (pattern)

(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [1, 2, 3, 4, 5, 6, 7, 8]
(pattern)

(ab, ab, 0) [1, 2, 3, 4, 5, 6, 7, 9, 6, 10, 3,
11]

[1, 2, 3, 4, 5, 6, 7, 9]
(pattern)

(ab, c, –1) [1, 2, 3, 4, 10, 3, 4, 10, 3, 11] [2, 3, 4] (subjectLen)
(a, bc, –1) [1, 2, 3, 11] [2, 3, 11] (subjectLen)
(a, bc, –1) [1, 2, 3, 11] [2, 3, 11] (patternLen)

(ab, ac, –1) [1, 2, 3, 4, 5, 6, 7, 8, 10, 3, 11] [2, 3, 4, 5, 6, 7]
(patternLen)

(ab, a, 0) [1, 2, 3, 4, 5, 6, 10, 3, 11] [2, 3, 4, 5, 6, 10]
(patternLen)

EXERCISES
Section 7.3.

1. Use the following program fragment for questions a–e below.

(a) Draw a control flow graph for this program fragment. Use the
node numbers given above.

(b) Which nodes have defs for variable w?
(c) Which nodes have uses for variable w?
(d) Are there any du-paths with respect to variable w from node 1 to

node 7? If not, explain why not. If any exist, show one.
(e) List all of the du-paths for variables w and x.

2. Select a commercial coverage tool of your choice. Note that some
have free trial evaluations. Choose a tool, download it, and run it on
some software. You can use one of the examples from this text,
software from your work environment, or software available over the
Web. Write up a short summary report of your experience with the
tool. Be sure to include any problems installing or using the tool. The
main grading criterion is that you actually collect some coverage data
for a reasonable set of tests on some program.

3. Consider the pattern matching example in Figure 7.25. Instrument the
code to produce the execution paths in the text for this example. That
is, on a given test execution, your instrumented program should
compute and print the corresponding test path. Run the instrumented
program on the test cases listed at the end of Section 7.3.

4. Consider the pattern matching example in Figure 7.25. In particular,
consider the final table of tests in Section 7.3. Consider the variable
iSub. Number the (unique) test cases, starting at 1, from the top of the

iSub part of the table. For example, (ab, c, -1), which appears twice in
the iSub portion of the table, should be labeled test t4.

1. Give a minimal test set that satisfies all defs coverage. Use the test
cases given.

2. Give a minimal test set that satisfies all uses coverage.
3. Give a minimal test set that satisfies all du-paths coverage.
5. Again consider the pattern matching example in Figure 7.25.

Instrument the code to produce the execution paths reported in the
text for this example. That is, on a given test execution, your tool
should compute and print the corresponding test path. Run the
following three test cases and answer questions a-g below:

 subject = “brown owl” pattern = “wl” expected output = 7
 subject = “brown fox” pattern = “dog” expected output = -1
 subject = “fox” pattern = “brown” expected output = -1

(a) Find the actual path followed by each test case.
(b) For each path, give the du-paths that the path tours in the table at

the end of Section 7.3. To reduce the scope of this exercise,
consider only the following du-paths: du (10, iSub), du (2,
isPat), du (5, isPat), and du (8, isPat).

(c) Explain why the du-path [5, 6, 10, 3, 4] cannot be toured by any
test path.

(d) Select tests from the table at the end of Section 7.3 to complete
coverage of the (feasible) du-paths that are uncovered in
question (a).

(e) From the tests above, find a minimal set of tests that achieves
All-Defs Coverage with respect to the variable isPat.

(f) From the tests above, find a minimal set of tests that achieves
All-Uses Coverage with respect to the variable isPat.

(g) Is there any difference between All-Uses Coverage and all DU-
Paths Coverage with respect to the variable isPat in the pat()
method?

6. Use the method fmtRewrap() for questions a–e below. A
compilable version is available on the book website in the file
FmtRewrap.java. A line numbered version suitable for this
exercise is available on the book website in the file
FmtRewrap.num.
(a) Draw the control flow graph for the fmtRewrap() method.
(b) For fmtRewrap(), find a test case such that the corresponding

test path visits the edge that connects the beginning of the while
statement to the S = new String(SArr) + CR;
statement without going through the body of the while loop.

(c) List the test requirements for Node Coverage, Edge Coverage,
and Prime Path Coverage.

(d) List test paths that achieve Node Coverage but not Edge
Coverage on the graph.

(e) List test paths that achieve Edge Coverage but not Prime Path
Coverage on the graph.

7. Use the method printPrimes() for questions a–f below. A
compilable version is available on the book website in the file
PrintPrimes.java. A line-numbered version suitable for this
exercise is available on the book website in the file
PrintPrimes.num.
(a) Draw the control flow graph for the printPrimes() method.
(b) Consider test cases t1 = (n = 3) and t2 = (n = 5). Although these

tour the same prime paths in printPrimes(), they do not
necessarily find the same faults. Design a simple fault that t2
would be more likely to discover than t1 would.

(c) For printPrimes(), find a test case such that the
corresponding test path visits the edge that connects the
beginning of the while statement to the for statement without
going through the body of the while loop.

(d) List the test requirements for Node Coverage, Edge Coverage,
and Prime Path Coverage.

(e) List test paths that achieve Node Coverage but not Edge
Coverage on the graph.

(f) List test paths that achieve Edge Coverage but not Prime Path
Coverage on the graph.

8. Consider the equals() method from the java.util.AbstractList
class:

(a) Draw a control flow graph for this method. Several possible
values can be used for the node number in the graph. Choose
something reasonable.

(b) Label edges and nodes in the graph with the corresponding code
fragments. You may abbreviate predicates as follows when
labeling your graph:
A: o == this
B: !(o instanceof List)
C: e1.hasNext() && e2.hasNext()
C: e1.hasNext() && e2.hasNext()
D: !(o1 == null ? o2 == null :
o1.equals(o2))
E: !(e1.hasNext() \parallel e2.hasNext())

(c) Node coverage requires (at least) four tests on this graph.
Explain why.

(d) Provide four tests (as calls to equals()) that satisfy node
coverage on this graph. Make your tests short. You need to
include output assertions. Assume that each test is independent
and starts with the following state :

 
Use the constants null, “ant”, “bat”, etc. as needed.

7.4 GRAPH COVERAGE FOR DESIGN ELEMENTS

Use of data abstraction and object-oriented software has led to an
increased emphasis on modularity and reuse. This means that testing of
software based on various parts of the design (design elements) is
becoming more important than in the past. These activities are usually
associated with integration testing. One benefit of modularity is that the
software components can be tested independently, which is usually done
by programmers during unit and module testing.

7.4.1 Structural Graph Coverage for Design Elements

Graph coverage for design elements usually starts by creating graphs that
are based on couplings between software components. Coupling measures
the dependency relations between two units by reflecting their
interconnections; faults in one unit may affect the coupled unit. Coupling
provides summary information about the design and the structure of the
software. Most test criteria for design elements require that connections
among program components be visited.

The most common graph used for structural design coverage is the call
graph. In a call graph, the nodes represent methods (or units) and the
edges represent method calls. Figure 7.26 represents a small program that
contains six methods. Method A calls B, C, and D, C calls E and F, and D
also calls F.

Figure 7.26. A simple call graph.

The coverage criteria from Section 7.2.1 can be applied to call graphs.
Node Coverage requires that each method be called at least once and is
also called Method Coverage. Edge Coverage requires that each call be

executed at least once and is also called Call Coverage. For the example in
Figure 7.26, Node Coverage requires that each method be called at least
once, whereas Edge Coverage requires that F be called at least twice, once
from C and once from D.

Application to Modules
Recall from Chapter 2 that a module is a collection of related units, for
example a class is Java’s version of a module. As opposed to complete
programs, the units in a class may not all call each other. Thus, instead of
being able to obtain one connected call graph, we may generate several
disconnected call graphs. In a simple degenerative case (such as for a
simple stack), there may be no calls between units. In these cases, module
testing with this technique is not appropriate. Techniques based on
sequences of calls are needed.

Inheritance and Polymorphism
The object-oriented language features of inheritance and polymorphism
introduce new abilities for designers and programmers, but also new
problems for testers. The research community is still developing ways to
test these language features, so this text introduces the current state of
knowledge. The interested reader is encouraged to keep up with the
literature for continuing results and techniques for testing OO software.
The bibliographic notes give some current references, which can lead
readers to the most recent research. The most obvious graph to create for
testing these features (collectively called “the OO language features”) is
the inheritance hierarchy. Figure 7.27 represents a small inheritance
hierarchy with four classes. Classes C and D inherit from B, and B in turn
inherits from A.

Figure 7.27. A simple inheritance hierarchy.

The coverage criteria from Section 7.2.1 can be applied to inheritance
hierarchies in ways that are superficially simple, but have some subtle
problems. In OO programming, classes are not directly tested because they
are not executable. In fact, the edges in the inheritance hierarchy do not
represent execution flow at all, but rather inheritance dependencies. To
apply any type of coverage, we first need a model for what coverage
means. The first step is to require that objects be instantiated for some or
all of the classes.Figure 7.28 shows the inheritance hierarchy from Figure
7.27 with one object instantiated for each class.

Figure 7.28. An inheritance hierarchy with objects instantiated.

The most obvious interpretation of Node Coverage for this graph is to
require that at least one object be created for each class. However, this
seems weak because it says nothing about execution. The logical extension
is to require that for each object of each class, the call graph must be
covered according to the Call Coverage criterion above. We call this the
OO Call Coverage criterion, and it can be considered an “aggregation
criterion” because it requires Call Coverage to be applied on at least one
object for each class.

An extension of this is the All Object Call criterion, which requires that
Call Coverage is satisfied for every object that is instantiated for every
class.

7.4.2 Data Flow Graph Coverage for Design Elements

Control connections among design elements are simple and
straightforward and tests based on them are probably not very effective at
finding faults. On the other hand, data flow connections are often very
complex and difficult to analyze. For a tester, that should immediately
suggest that they are a rich source for software faults. The primary issue is
where the defs and uses occur. When testing program units, the defs and
uses are in the same unit. During integration testing, defs and uses are in
different units. This section starts with some standard compiler/program
analysis terms.

A caller is a unit that invokes another unit, the callee. The statement
that makes the call is the call site. An actual parameter is in the caller; its
value is assigned to a formal parameter in the callee. The call interface
between two units is the mapping of actual to formal parameters.

The underlying premise of the data flow testing criteria for design
elements is that to achieve confidence in the interfaces between integrated
program units, it must be ensured that variables defined in caller units be
appropriately used in callee units. This technique can be limited to the unit
interfaces, allowing us to restrict our attention to the last definitions of
variables just before calls to and returns from the called units, and the first
uses of variables just after calls to and returns from the called unit.

Figure 7.29 illustrates the relationships that the data flow criteria will
test. The criteria require execution from definitions of actual parameters
through calls to uses of formal parameters.

Figure 7.29. An example of parameter coupling.

Three types of data flow couplings have been identified. The most
obvious is parameter coupling, where parameters are passed in calls.
Shared data coupling occurs when two units access the same data object as
a global or other non-local variable, and external device coupling occurs
when two units access the same external medium such as a file. In the

following, all examples and discussion will be in terms of parameters and
it will be understood that the concepts apply equally to shared data and
external device coupling. We use the general term coupling variable for
variables that are defined in one unit and used in another.

This form of data flow is concerned only with last-defs before calls and
returns and first-uses after calls and returns. That is, it is concerned only
with defs and uses immediately surrounding the calls between methods.
The last-defs before a call are locations with defs that reach uses at call
sites and the last-defs before a return are locations with defs that reach a
return statement. The following definitions assume a variable that is
defined in either the caller or the callee, and used in the other.

Definition 7.39 Last-def: The set of nodes that define a variable x for
which there is a def-clear path from the node through the call site to a
use in the other unit.

The variable can be passed as a parameter, a return value, or a shared
variable reference. If the function has no return statement, an implicit
return statement is assumed to exist at the last statement in the method.

The definition for first-use is complementary to that of last-def. It
depends on paths that are not only def-clear, but also use-clear. A path
from ni to nj is use-clear with respect to variable v if for every node nk on
the path, k ≠ i and k ≠ j, v is not in use(nk). Assume that the variable y is
used in one of the units after having been defined in the other. Further
assume that y has received a value that has been passed from the other
unit, either through parameter passing, a return statement, shared data, or
other value passing.

Definition 7.40 First-use: The set of nodes that have uses of a
variable y and for which there exists a path that is def-clear and use-
clear from the entry point (if the use is in the callee) or the call site (if
the use is in the caller) to the nodes.

Figure 7.30 shows a caller F() and a callee G(). The call site has two
du-pairs; x in F() is passed to a in G() and b in G() is returned and
assigned to y in F(). Note that the assignment to y in F() is explicitly not
the use, but considered to be part of the transfer. Its use is further down, in
the print(y) statement.

Figure 7.30. Coupling du-pairs.

This definition allows for one anomaly when a return value is not
explicitly assigned to a variable, as in the statement print (f(x)). In
this case, an implicit assignment is assumed and the first-use is in the
print(y) statement.

Figure 7.31 illustrates last-defs and first-uses between two units with
two partial CFGs. The unit on the left, the caller, calls the callee B(), with
one actual parameter, X, which is assigned to formal parameter y. X is
defined at nodes 1, 2, and 3, but the def at node 1 cannot reach the call site
at node 4, thus the last-defs for X is the set {2, 3}. The formal parameter y
is used at nodes 11, 12, and 13, but no use-clear path goes from the entry
point at node 10 to 13, so the first-uses for y is the set{11, 12}.

Figure 7.31. Last-defs and first-uses.

Recall that a du-path is a path from a def to a use in the same graph.
This notion is refined to a coupling du-path with respect to a coupling
variable x. A coupling du-path is a path from a last-def to a first-use.

The coverage criteria from Section 7.2.3 can now be applied to coupling
graphs. All-Defs Coverage requires that a path be executed from every
last-def to at least one first-use. In this context, all-defs is called All-
Coupling-Def coverage. All-Uses Coverage requires that a path be
executed from every last-def to every first-use. In this context, all-uses is
also called All-Coupling-Use coverage.

Finally, All-du-Paths coverage requires that we tour every simple path
from every last-def to every first-use. As before, the All-du-Paths criterion
can be satisfied by tours that include sidetrips. In this context, All-du-Paths
is also called All-Coupling-du-Paths coverage.

Concrete Example
Now we will use a concrete example to illustrate coupling data flow. Class
Quadratic in Figure 7.32 computes the quadratic root of an equation,
given three integer coefficients. The call to Root() on line 34 in main
passes in three parameters. Each of the variables X, Y, and Z have three
last-defs in the caller at lines 16, 17, 18, lines 23, 24, and 25, and lines 30,
31, and 32. They are mapped to formal parameters A, B, and C in
Root(). All three variables have a first-use at line 47. The class variables
Root1 and Root 2 are defined in the callee and used in the caller. Their
last-defs are at lines 53 and 54 and the first-use is at line 37.

Figure 7.32. Quadratic root program.

The value of local variable Result is returned to the caller, with two
last-defs at lines 50 and 55 and a first-use in the caller at line 35.

The coupling du-pairs are listed as pairs of triples. Each triple gives a
unit name, variable name, and a line number. The first triple in a pair says
where the variable is defined, and the second where it is used. The

complete set of coupling du-pairs for class Quadratic is:

A couple of things are important to remember about coupling data flow.
First, only variables that are used or defined in the callee are considered.
That is, last-defs that have no corresponding first-uses are not useful for
testing. Second, we must remember implicit initialization of class and
global variables. In some languages (such as Java and C), class and
instance variables are given default values. These definitions can be
modeled as occurring at the beginning of appropriate units. For example,
class-level initializations may be considered to occur in the main()
method or in constructors. Although other methods that access class
variables may use the default values on the first call, it is also possible for
such methods to use values written by other methods, and hence the
normal coupling data flow analysis methods should be employed. Also,
this analysis is specifically not considering “transitive du-pairs. ” That is,
if unit A calls B, and B calls C, last-defs in A do not reach first-uses in C.
This type of analysis is prohibitively expensive with current technologies
and of questionable value. Finally, data flow testing has traditionally taken
an abstract view of array references. Identifying and keeping track of
individual array references is an undecidable problem in general and very
expensive even in finite cases. So, most tools consider a reference to one
element of an array to be a reference to the entire array.

Inheritance and Polymorphism (Advanced topic)
The previous discussion covers the most commonly used form of data flow
testing as applied beyond the method level. However, the flow of data
along couplings between callers and callees is only one type of a very
complicated set of data definition and use pairs. Consider Figure 7.33,

which illustrates the types of du-pairs discussed so far. On the left is a
method, A(), which contains a def and a use. (For this discussion we will
omit the variable for simplicity.) The right illustrates two types of inter-
procedural du-pairs.

Figure 7.33. Def-use pairs under intra-procedural and inter-procedural data flow.

Full inter-procedural data flow identifies all du-pairs between a caller (
A()) and a callee (B()). Coupling inter-procedural data flow is as
described in Section 7.4.2; identifying du-pairs between last-defs and first-
uses.

Figure 7.34 illustrates du-pairs in object-oriented software. DU pairs are
usually based on the class or instance variables defined for the class. The
left picture in Figure 7.34 shows the “direct” case for OO du-pairs. A
coupling method, F(), calls two methods, A() and B(). A() defines a
variable and B() uses it. For the variable reference to be the same, both
A() and B() must be called through the same instance context, or object
reference. That is, if the calls are o.A() and o.B(), they are called
through the instance context of o. If the calls are not made through the
same instance context, the definition and use will be to different instances
of the variable.

Figure 7.34. Def-use pairs in object-oriented software.

The right side of Figure 7.34 illustrates “indirect” du-pairs. In this
scenario, the coupling method F() calls methods M() and N(), which in
turn call two other methods, A() and B(). The def and use are in A()
and B(), so the reference is indirect. The analysis for indirect du-pairs is
considerably more complicated than for direct du-pairs. It should be
obvious that there can be more than one call between the coupling method
and the methods with the def and use.

In OO data flow testing, the methods A() and B() could be in the same
class, or they could be in different classes and accessing the same global
variables.

Finally, Figure 7.35 illustrates du-pairs in distributed software. P1 and
P2 are two processes, threads, or other distributed software components,
and they call A() and B(), which define and use the same variable. The
distribution and communication could use any of a number of methods,
including HTTP (Web-based), remote method invocation (RMI), or
CORBA. A() and B() could be in the same class or could access a
persistent variable such as a web session variable or permanent data store.
While this sort of “very loosely coupled” software can be expected to have
far fewer du-pairs, identifying them, finding def-clear paths between them,
and test cases to cover them is quite complicated.

Figure 7.35. Def-use pairs in web applications and other distributed software.

EXERCISES
Section 7.4.

1. Use the class Watch in Figures 7.38 and 7.39 in Section 7.5 to answer
questions a–d below.
(a) Draw control flow graphs for the methods in Watch.
(b) List all the call sites.
(c) List all coupling du-pairs for each call site.
(d) Create test data to satisfy All-Coupling-Use Coverage for

Watch.
2. Use the class Stutter for questions a–d below. A compilable

version is available on the book website in the file Stutter.java.
A line-numbered version suitable for this exercise is available on the
book website in the file Stutter.num.
(a) Draw control flow graphs for the methods in Stutter.
(b) List all the call sites.
(c) List all coupling du-pairs for each call site.
(d) Create test data to satisfy All-Coupling Use Coverage for

Stutter.
3. Use the following program fragment for questions a–e below.

Use the following test inputs:
 t1 = f1 (0, 0)
 t2 = f1 (1, 1)
 t3 = f1 (0, 1)
 t4 = f1 (3, 2)
 t5 = f1 (3, 4)

(a) Draw the call graph for this program fragment.
(b) Give the path in the graph followed by each test.

(c) Find a minimal test set that achieves Node Coverage.
(d) Find a minimal test set that achieves Edge Coverage.
(e) Give the prime paths in the graph. Which prime path is not

covered by any of the tests above?
4. Use the following methods trash() and takeOut() to answer

questions a–c.

(a) Give all call sites using the line numbers given.
(b) Give all pairs of last-def s and first-uses.
(c) Provide test inputs that satisfy all-coupling-uses (note that

trash() only has one input).

7.5 GRAPH COVERAGE FOR SPECIFICATIONS

Testers can also use software specifications as sources for graphs. The
literature presents many techniques for generating graphs and criteria for
covering those graphs, but most of them are in fact very similar. We begin
by looking at graphs based on sequencing constraints among methods in
classes, then graphs that represent state behavior of software.

7.5.1 Testing Sequencing Constraints

We pointed out in Section 7.4.1 that call graphs for classes often end up
being disconnected and in many cases, such as with small Abstract Data
Types (ADTs), methods in a class share no calls at all. However, the order

of calls is almost always constrained by rules. For example, many ADTs
must be initialized before being used, we cannot pop an element from a
stack until something has been pushed onto it, and we cannot remove an
element from a queue until an element has been put on it. These rules
impose constraints on the order in which methods may be called.
Generally, a sequencing constraint is a rule that imposes restriction on the
order in which certain methods may be called.

Sequencing constraints are sometimes explicitly expressed, sometimes
implicitly expressed, and sometimes not expressed at all. Sometimes they
are encoded as a precondition or other specification, but not directly as a
sequencing condition. For example, consider the following precondition
for the common deQueue() on a queue ADT:

Although it is not said explicitly, a programmer can infer that the only way
an element can “be on the queue” is if enQueue() has previously been
called. Thus, an implicit sequencing constraint occurs between
enQueue() and deQueue().

Of course, formal specifications can help make the relationships more
precise. A wise tester will certainly use formal specifications when
available, but a responsible tester must look for formal relationships even
when they are not explicitly stated. Also, note that sequencing constraints
do not capture all the behavior, but only abstract certain key aspects. The
sequence constraint that enQueue() must be called before deQueue()
does not capture the fact that if we only enQueue() one item, and then
try to deQueue() two items, the queue will be empty. The precondition
may capture this fact, but usually not in a formal way that automated tools
can use. This kind of relationship is beyond the ability of a simple
sequencing constraint but can be dealt with by some of the state behavior
techniques in the next section.

This relationship is used in two places during testing. We illustrate them
with a small example of a class that encapsulates operations on a file. Our
class FileADT will have three methods:

 open (String fName) // Opens the file with the name fName
 close (String fName) // Closes the file and makes it

unavailable for use
 write (String textLine) // Writes a line of text to the file

This class has several sequencing constraints. The following statements
use “must” and “should” in very specific ways. When “must” is used, it
implies that violation of the constraint is a fault. When “should” is used, it
implies that violation of the constraint is a potential fault, but the software
will not necessarily fail.

1. An open(F) must be executed before every write(t)
2. An open(F) must be executed before every close()
3. A write(t) must not be executed after a close() unless an
open(F) appears in between

4. A write(t) should be executed before every close()
5. A close() must not be executed after a close() unless an
open(F) appears in between

6. An open(F) must not be executed after an open(F) unless a
close() appears in between

Constraints are used in testing in two ways to evaluate software that
uses the class (a “client”), based on the CFG of Section 7.3.1. Consider the
two (partial) CFGs in Figure 7.36, representing two units that use
FileADT. We can use this graph to test the use of the FileADT class by
checking for sequence violations. This can be done both statically and
dynamically.

Figure 7.36. Control flow graph using the File ADT.

Static checks (not considered to be traditional testing) proceed by
checking each constraint. First consider the write(t) statements at
nodes 2 and 5 in graph (a). We can check to see whether paths exist from
the open(F) at node 1 to nodes 2 and 5 (constraint 1). We can also check
whether a path exists from the open(F) at node 1 to the close() at
node 6 (constraint 2). For constraints 3 and 4, we can check to see if a path
goes from the close() at node 6 to any of the write(t) statements,
and see if a path exists from the open(F) to the close() that does not
go through at least one write(t). This will uncover one possible
problem, the path [1, 3, 4, 6] goes from an open(F) to a close() with
no intervening write(t) calls.

For constraint 5, we can check if a path exists from a close() to a
close() that does not go through an open(F). For constraint 6, we can
check if a path exists from an open(F) to an open(F) that does not go
through a close().

This process will find a more serious problem with graph (b) in 7.36. A
path exists from the close() at node 7 to the write(t) at node 5 and
to the write(t) at node 4. While this may seem simple enough not to
require formalism for such small graphs, this process is quite difficult with
large graphs containing dozens or hundreds of nodes.

Dynamic testing follows a slightly different approach. Consider the
problem in graph (a) where no write() appears on the possible path [1,
3, 4, 6]. It is quite possible that the logic of the program dictates that the
edge (3, 4) can never be taken unless the loop [3, 5, 3] is taken at least
once. Because deciding whether the path [1, 3, 4, 6] can be taken or not is
formally undecidable, this situation can be checked only by executing the
program. Thus we generate test requirements to try to violate the
sequencing constraints. For the FileADT class, we generate the following
sets of test requirements:

1. Cover every path from the start node to every node that contains a
write(t) such that the path does not go through a node containing
an open(F).

2. Cover every path from the start node to every node that contains a
close() such that the path does not go through a node containing
an open(F).

3. Cover every path from every node that contains a close() to every
node that contains a write(t) such that the path does not contain
an open(F).

4. Cover every path from every node that contains an open(F) to
every node that contains a close() such that the path does not go
through a node containing a write(t).

5. Cover every path from every node that contains an open(F) to
every node that contains an open(F).

Of course, all of these test requirements will be infeasible in well-written
programs. However, any tests created as a result of these requirements will
almost certainly reveal a fault if one exists.

7.5.2 Testing State Behavior of Software

The other major method for using graphs based on specifications is to
model state behavior of the software by developing some form of finite
state machine (FSM). Over the last 25 years, many suggestions have been
made for creating FSMs and how to test software based on the FSM. The
topic of how to create, draw, and interpret an FSM has filled entire
textbooks, and authors have gone into great depth and effort to define what
exactly goes into a state, what can go onto edges, and what causes
transitions. Rather than using any particular language, we choose to define
a very generic model for FSMs that can be adapted to virtually any
notation. These FSMs are essentially graphs, and the graph testing criteria
already defined can be used to test software that is based on the FSM.

One advantage of basing tests on FSMs is that huge numbers of
practical software applications are based on an FSM model, or can be
modeled as FSMs. Virtually all embedded software fits in this category,
including software in remote controls, household appliances, watches,
cars, cell phones, airplane flight guidance, traffic signals, railroad control
systems, network routers, and factory automation. Indeed, most software
can be modeled with FSMs, the primary limitation being the number of
states needed to model the software. Word processors, for example,
contain so many commands and states that modeling them as FSMs may
be impractical.

Creating FSMs often has great value. If the test engineer creates an FSM

to describe existing software, he or she will almost certainly detect design
flaws. Some would even argue the converse; if the designers created
FSMs, the testers should not bother creating them because problems will
be rare. This would probably be true if programmers were perfect.

FSMs can be annotated with different types of actions, including actions
on transitions entry actions on nodes, and exit actions on nodes. Many
languages are used to describe FSMs, including UML statecharts, finite
automata state tables (SCR), and Petri nets. This book presents examples
with basic features that are common to many languages. It is closest to
UML statecharts, but not exactly the same.

A Finite State Machine is a graph whose nodes represent states in the
execution behavior of the software and edges represent transitions among
the states. A state represents a recognizable situation that remains in
existence over some period of time. A state is defined by specific values
for a set of variables; as long as those variables have those values the
software is considered to be in that state. (Note that these variables are
defined at the design modeling level and may not necessarily correspond
to variables in an implementation.) A transition is thought of as occurring
in zero time and usually represents a change to the values of one or more
variables. When the variables change, the software is considered to move
from the transition’s pre-state (predecessor) to its post-state (successor).
(If a transition’s pre-state and post-state are the same, then values of state
variables will not change.) FSMs often define preconditions or guards on
transitions, which define values that specific variables must have for the
transition to be enabled, and triggering events, which are changes in
variable values that cause the transition to be taken. A triggering event
“triggers” the change in state. For example, the modeling language SCR
calls these WHEN conditions and triggering events. The values the
triggering events have before the transition are called before-values, and
the values after the transition are called after-values. When graphs are
drawn, transitions are often annotated with the guards and the values that
change.

Figure 7.37 illustrates this model with a simple transition that opens an
elevator door. If the elevator button is pressed (the triggering event), the
door opens only if the elevator is not moving (the precondition, elevSpeed
= 0).

Figure 7.37. Elevator door open transition.

When preparing FSMs for testing, it is important to note that FSMs do
not necessarily have final nodes. They often represent the behavior of a
device that runs for a long time, ideally forever, like with the watch in the
following subsection. But a test graph that abstracts an FSM needs initial
and final nodes so we can derive test paths. Sometimes it is pretty much
arbitrary which nodes are designated as initial and final.

Given this type of graph, many of the previous criteria can be defined
directly. Node Coverage requires that each state in the FSM be visited at
least once and is called State Coverage. Edge Coverage is applied by
requiring that each transition in the FSM be visited at least once, which is
called Transition Coverage. The Edge-Pair Coverage criterion was
originally defined for FSMs and is also called transition-pair and two-trip.

The data flow coverage criteria are a bit more troublesome for FSMs. In
most formulations of FSMs, nodes are not allowed to have defs or uses of
variables. That is, all of the action is on the transitions. Unlike with code-
based graphs, different edges from the same node in an FSM need not have
the same set of defs and uses. In addition, the semantics of the triggers
imply that the effects of a change to the variables involved are felt
immediately by taking a transition to the next state. That is, defs of
triggering variables immediately reach uses.

Thus, the All-Defs and All-Uses criteria can only be applied
meaningfully to variables involved in guards. This also brings out a more
practical problem, which is that the FSMs do not always model assignment
to all variables. That is, the uses are clearly marked in the FSM, but defs
are not always easy to find. Because of these reasons, few attempts have
been made to apply data flow criteria to FSMs.

Deriving Finite State Machine Graphs
One difficulty of applying graph techniques to FSMs is deriving the FSM
model in the first place. As we said earlier, FSM models of the software
may or may not already exist. If not, the tester can dramatically increase
his or her understanding of the software by deriving the FSMs. However, it

is not necessarily obvious how to derive an FSM, so we offer some
suggestions. This is not a complete tutorial on constructing FSMs; indeed,
complete texts exist on the subject and we recommend that the interested
reader study them.

This section offers simple and straightforward suggestions to help
readers who are unfamiliar with FSMs get started and avoid some of the
more obvious mistakes. We offer the suggestions in terms of a running
example, the class Watch in Figures 7.38 and 7.39. Class Watch
implements part of a digital watch, using inner class Time.

Figure 7.38. Watch–Part A.

Figure 7.39. Watch–Part B.

Classes Watch and Time each have one interesting method,
doTransition() and changeTime(). When left to their own
devices, students will usually pick one of four strategies for generating
FSMs from code. Unfortunately, the first two are not effective or
recommended. Each of these is discussed in turn.

1. Combining control flow graphs
2. Using the software structure
3. Modeling state variables
4. Using the implicit or explicit specifications

1. Combining control flow graphs : For programmers who have little or no
knowledge of FSMs, this is often the most natural approach to deriving
FSMs. Our experience has been that the majority of students will use this

approach if not guided away from it. A control flow graph-based “FSM”
for class Watch is given in Figure 7.40.

Figure 7.40. An FSM representing Watch, based on control flow graphs of the
methods.

The graph in Figure 7.40 is not an FSM at all and this is not the way to
form graphs from software. This method has several problems, the first
being that the nodes are not states. The methods must return to the
appropriate call sites, which means that the graphs contain built-in non-
determinism. For example, Figure 7.40 has three edges from node 12 in
changeTime(), to nodes 6, 8, and 10 in doTransition(). Which
edge is taken depends on whether changeTime() was entered from
node 6, 8, or 10 in doTransition(). A second problem is the
implementation must be finished before the graph can be built; remember
from Chapter 1 that one of our goals is to prepare tests as early as possible.
Most importantly, however, this kind of graph does not scale to large
software products. The graph is complicated enough with small Watch,
and gets much worse with larger programs.
2. Using the software structure: A more experienced programmer may
consider the overall flow of operations in the software. This might lead to
something like the graph in Figure 7.41, where methods are mapped to

states.

Figure 7.41. An FSM representing Watch, based on the structure of the software.

Although an improvement over the control flow graph, methods are not
really states. This kind of derivation is also very subjective, meaning
different testers will draw different graphs, introducing inconsistency in
the testing. It also requires in-depth knowledge of the software, is not
possible until the detailed design is ready, and is hard to scale to large
programs.
3. Modeling state variables : A more mechanical method for deriving
FSMs is to consider the values of the state variables in the program. These
are usually defined early in design. The first step is to identify the state
variables, then choose which are actually relevant to the FSM (for
example, global and class variables).

The class level variables in Watch can be divided into constants
(NEXT, UP, DOWN, TIME, STOPWATCH, and ALARM) and non-
constants (mode, watch, stopwatch, and alarm). The constants are
not relevant to defining the state of a watch and should be omitted from the
model. The three variables of time Time(watch, stopwatch, and
alarm) are objects. They can be modeled hierarchically, but we choose to
replace them with the state variables in class Time (hour and minute).
Thus we model the states with mode, watch::hour,
watch::minute, stopwatch::hour, stopwatch::minute,
alarm::hour, and alarm::minute.

Theoretically, each combination of values for the state variables defines
a different state. In practice however, this can result in a very large number
of states; even infinite for some programs. For example, mode can have
only three values, but the hour and minute variables are of type int, so

can be considered to have an infinite number of values. Alternatively,
since they represent units of time, each minute could be assumed to have
60 possible values, and each hour could be assumed to have 24 possible
values. Even this simplification results in 1440 * 1440 * 1440 * 3 = 8, 957,
952, 000 possible states!

This is clearly too many, so we further simplify the model. First, instead
of representing 1440 values for each Time object, we combine values into
groups that are similar semantically. In this example, we assume that the
rollovers at noon and midnight are special cases, as are the rollovers from
one hour to the next. This leads to choosing the value 12:00, and the
ranges 12:01 ... 12:59 and 01:00 ... 11:59. That is:

This results in 3 * 3 * 3 * 3 = 81 states. Our next observation is that the
mode is not really independent of the three Time objects. For example, if
mode == TIME, only the watch is relevant. So we only really care about
3 + 3 + 3 = 9 states.

The resulting FSM is shown in Figure 7.42. Actually, Figure 7.42 does
not show two kinds of transitions. The state (mode = TIME; watch =
12:00) has three outgoing transitions on next, one each to the states
where mode = STOPWATCH. In the complete FSM, each state would have
three outgoing transitions on next. We omit those transitions because
they make the figure hard to read.

Figure 7.42. An FSM representing Watch, based on modeling state variables.
This figure omits numeroustransitions. The full diagram would have transitions on
next from each node to three other nodes, two of which are shown as dotted line
examples.

Second, the states with a range of values for watch should have “self-
loops,” that is, transitions back to themselves on UP and DOWN. Some
FSM styles say to omit these self-loops, whereas others say to include
them. If a variable is changed but does not put the FSM into a new state,
then the self loop can be assumed. But sometimes it is valuable to include
them. When our goal is to transform an FSM into a generic graph, and then
derive tests, it might be useful to include transitions from a state to itself.
Both of these situations are illustrated with dashed lines in the figure.

Having three outgoing transitions on next introduces a form of non-
determinism into the graph, but it is important to note that this non-
determinism is not reflected in the implementation. During execution,
which transition is taken depends on the current state of the other Time
object. The 81-state model would not have this non-determinism, and
whether to have a smaller, non-deterministic, model or a larger,
deterministic, model is an important test design decision. This situation
could also be handled by a hierarchy of FSMs, where each watch is in a
separate FSM and they are organized together.

The mechanical process of this strategy is appealing because we can
expect different testers to derive the same or similar FSMs. This strategy
also does not have the disadvantages of the first two methods. It is not yet
possible at this time to completely automate this process because of the
difficulty of determining transitions from the source and because the
decision of which variables to model requires judgment. The software is
not necessary for this diagram to be derived, but the design is needed. The
FSMs that are derived by modeling state variables may not completely
reflect the software.
4. Using the implicit or explicit specifications: The last method for
deriving FSMs relies on explicit requirements or formal specifications
describing the software’s behavior. A natural language specification for
the Watch is:

Specification for class Watch
Class Watch will store and update time for three watches: the current

time, the stopwatch, and an alarm. It will implement behavior for three
external buttons. A nextbutton will change the Watch from the current
time, to the stopwatch, to the alarm, and back to the current time. An up
button will increase the time by one minute for the current watch. A
down button will decrease the time by one minute for the current
watch. The watches will function in 12-hour format, that is, the hours
will be from 1 to 12.

These requirements will lead to an FSM that looks very much like the
FSM in Figure 7.42 that models state variables. FSMs based on
specifications are usually cleaner and easier to understand. If the software
is designed well, this type of FSM should contain the same information
that UML statecharts contain.

EXERCISES
Section 7.5.

1. Use the class BoundedQueue2 for questions a–f below. A
compilable version is available on the book website in the file
BoundedQueue2.java. The queue is managed in the usual
circular fashion.
Suppose we build an FSM where states are defined by the
representation variables of BoundedQueue2. That is, a state is a 4-
tuple defined by the values for [elements, size, front, back]. For
example, the initial state has the value [[null, null], 0, 0, 0], and the
state that results from pushing an object obj onto the queue in its
initial state is [[obj, null], 1, 0, 1].
(a) We do not care which specific objects are in the queue.

Consequently, there are really just four useful values for the
variable elements. What are they?

(b) How many states are there?
(c) How many of these states are reachable ?
(d) Show the reachable states in a drawing.
(e) Add edges for the enQueue() and deQueue() methods. (For

this assignment, ignore the exceptional returns, although you
should observe that when exceptional returns are taken, none of

the instance variables are modified.)
(f) Define a small test set that achieves Edge Coverage. Implement

and execute this test set. You might find it helps to write a
method that shows the internal variables at each call.

2. For the following questions a–c, consider the FSM that models a
(simplified) programmable thermostat. Suppose the variables that
define the state and the methods that transition between states are:

(a) How many states are there?
(b) Draw and label the states (with variable values) and transitions

(with method names). Notice that all of the methods are total,
that is, their behaviors are defined for all possible inputs.

(c) A test case is simply a sequence of method calls. Provide a test
set that satisfies Edge Coverage on your graph.

7.6 GRAPH COVERAGE FOR USE CASES

UML use cases are widely used to clarify and express software
requirements. They are meant to describe sequences of actions that
software performs as a result of inputs from the users, that is, they help
express the workflow of a computer application. Because use cases are
developed early in software development, they can help the tester start
testing activities early.

Many books and papers can help the reader develop use cases. As with
FSMs, it is not the purpose of this book to explain how to develop use
cases, but how to use them to create useful tests. The technique for using
graph coverage criteria to develop tests from use cases is expressed
through an example.

Figure 7.43 shows three common use cases for an automated teller
machine (ATM). In use cases, actors are humans or other software
systems that use the software being modeled. They are drawn as simple
stick figures. in Figure 7.43, the actor is an ATM customer who has three
potential use cases; Withdraw Funds, Get Balance, and
Transfer Funds.

Figure 7.43. ATM actor and use cases.

While Figure 7.43 is a graph, it is not a very useful graph for testing.
About the best we could do as a tester is to use Node Coverage, which
amounts to “try each use case once.” However, use cases are usually
elaborated, or “documented” with a more detailed textual description. The
description describes the details of operation and includes alternatives,
which model choices or conditions during execution. The Withdraw
Funds use case fromFigure 7.43 can be described as follows:

Use Case Name: Withdraw Funds
Summary: Customer uses a valid card to withdraw funds from a valid
bank account.
Actor: ATM Customer
Precondition: ATM is displaying the idle welcome message
Description:

 1. Customer inserts an ATM Card into the ATM Card Reader.
 2. If the system can recognize the card, it reads the card number.
 3. System prompts the customer for a PIN.
 4. Customer enters PIN.
 5. System checks the expiration date and whether the card has been

stolen or lost.

 6. If card is valid, the system checks whether the PIN entered matches
the card PIN.

 7. If the PINs match, the system finds out what accounts the card can
access.

 8. System displays customer accounts and prompts the customer to
choose a type of transaction. Three types of transactions are
Withdraw Funds, Get Balance, and Transfer Funds.
The previous eight steps are part of all three use cases; the following
steps are unique to the Withdraw Funds use case.

 9. Customer selects Withdraw Funds, selects account number, and
enters the amount.

10. System checks that the account is valid, makes sure that the
customer has enough funds in the account, makes sure that the daily
limit has not been exceeded, and checks that the ATM has enough
funds.

11. If all four checks are successful, the system dispenses the cash.
12. System prints a receipt with a transaction number, the transaction

type, the amount withdrawn, and the new account balance.
13. System ejects card.
14. System displays the idle welcome message.

Alternatives:

 If the system cannot recognize the card, it is ejected and a welcome
message is displayed.

 If the current date is past the card’s expiration date, the card is
confiscated and a welcome message is displayed.

 If the card has been reported lost or stolen, it is confiscated and a
welcome message is displayed.

 If the customer entered PIN does not match the PIN for the card, the
system prompts for a new PIN.

 If the customer enters an incorrect PIN three times, the card is
confiscated and a welcome message is displayed.

 If the account number entered by the user is invalid, the system
displays an error message, ejects the card, and a welcome message is
displayed.

 If the request for withdrawal exceeds the maximum allowable daily
withdrawal amount, the system displays an apology message, ejects
the card, and a welcome message is displayed.

 If the request for withdrawal exceeds the amount of funds in the ATM,
the system displays an apology message, ejects the card, and a
welcome message is displayed.

 If the customer enters Cancel, the system cancels the transaction, ejects
the card, and a welcome message is displayed.

 If the request for withdrawal exceeds the amount of funds in the
account, the system displays an apology message, cancels the
transaction, ejects the card, and a welcome message is displayed.

Postcondition: Funds have been withdrawn from the customer’s account.
At this point, some testing students will be wondering why this

discussion is included in a chapter on graph coverage. That is, there is little
obvious relationship with graphs thus far. We want to reiterate the first
phrase in Beizer’s admonition: “testers find a graph, then cover it.” In fact,
there is a nice graph structure in the use case textual description, which
may be up to the tester to express. This graph can be modeled as the
Transaction Flow Graphs in Beizer’s Chapter 4, or can be drawn as a UML
Activity Diagram.

An activity diagram shows the flow among activities. Activities can be
used to model a variety of things, including state changes, returning
values, and computations. We advocate using them to model use cases as
graphs by considering activities as user level steps. Activity diagrams have
two kinds of nodes, action states and sequential branches6.

We construct activity graphs as follows. The numeric items in the use
case Description express steps that the actors undertake. These correspond
to inputs to or outputs from the software and appear asnodes in the activity
diagram as action states. The Alternatives in the use case represent
decisions that the software or actors make and are represented as nodes in
the activity diagram as sequential branches.

The activity diagram for the withdraw funds scenario is shown in Figure
7.44. Several things are expected but not required of activity diagrams
constructed from use cases. First, they usually do not have many loops,
and most loops they do contain are tightly bounded or determinate. For
example, the graph in Figure 7.44 contains a three-iteration loop when the
PIN is entered incorrectly. This means that Complete Path Coverage is
often feasible and sometimes reasonable. Second, it is very rare to see a
complicated predicate that contains multiple clauses. This is because the
use case is usually expressed in terms that the users can understand. This

means that the logic coverage criteria in Chapter 8 are usually not useful.
Third, there are no obvious data definition-use pairs. This means that data
flow coverage criteria are not applicable.

Figure 7.44. Activity graph for ATM withdraw funds.

The two criteria that are most obviously applicable to use case graphs
are Node Coverage and Edge Coverage. Test case values are derived from
interpreting the nodes and predicates as inputs to the software. One other
criterion for use case graphs is based on the notion of “scenarios.”

7.6.1 Use Case Scenarios

A use case scenario is an instance of, or a complete path through, a use
case. A scenario should make some sense semantically to the users and is
often derived when the use cases are constructed. If the use case graph is
finite (as is usually the case), then it is possible to list all possible
scenarios. However, domain knowledge can be used to reduce the number
of scenarios that are useful or interesting from either a modeling or test
case perspective. Note that Specified Path Coverage, defined at the
beginning of this chapter, is exactly what we want here. The set S for
Specified Path Coverage is simply the set of all scenarios.

If the tester or requirements writer chooses all possible paths as

scenarios, then Specified Path Coverage is equivalent to Complete Path
Coverage. The scenarios are chosen by people and they depend on domain
knowledge. Thus it is not guaranteed that Specified Path Coverage
subsumes Edge Coverage or Node Coverage. That is, it is possible to
choose a set of scenarios that do not include every edge. This would
probably be a mistake, however. So in practical terms, Specified Path
Coverage can be expected to cover all edges.

EXERCISES
Section 7.6.

1. Construct two separate use cases and use case scenarios for
interactions with a bank Automated Teller Machine. Do not try to
capture all the functionality of the ATM into one graph; think about
two different people using the ATM and what each one might do.
Design test cases for your scenarios.

7.7 BIBLIOGRAPHIC NOTES

During the research for the first edition of this book, one thing that became
abundantly clear is that this field has had a significant amount of parallel
discovery of the same techniques by people working independently. Some
individuals have discovered various aspects of the same technique, which
were subsequently polished into very pretty test criteria. Others have
invented the same techniques, but based them on different types of graphs
or used different names. Thus, ascribing credit for software testing criteria
is a perilous task. We do our best, but claim only that the bibliographic
notes in this book are starting points for further study in the literature.

The research into covering graphs seems to have started with generating
tests from finite state machines (FSMs), which has a long and rich history.
Some of the earliest papers were in the 1970s [Chow, 1978, Howden,
1975, Huang, 1975, McCabe, 1976, Pimont and Rault, 1976]. The primary
focus of most of these papers was on using FSMs to generate tests for
telecommunication systems that were defined with standard finite
automata, although much of the work pertained to general graphs. The
control flow graph seems to have been invented (or should it be termed

“discovered”?) by Legard in 1975 [Legard and Marcotty, 1975]. In papers
published in 1975, Huang [Huang, 1975] suggested covering each edge in
the FSM, and Howden [Howden, 1975] suggested covering complete trips
through the FSM, but without looping. In 1976, McCabe [McCabe, 1976]
suggested the same idea on control flow graphs as the primary application
of his cyclomatic complexity metric. In 1976, Pimont and Rault [Pimont
and Rault, 1976] suggested covering pairs of edges, or “switches,” a
technique that they referred to as “switch-testing,” and which has also been
called “switch cover. ” In 1978, Chow [Chow, 1978] suggested generating
a spanning tree from an FSM and then basing test sequences on paths
through this tree. He also generalized the idea of a switch to “n-switch,”
which are sequences of n edges. Fujiwara et al. [Fujiwara et al., 1991]
referred to Chow’s approach with the term“W-method,” and developed the
“partial” W-method (the “Wp-method”). They also attributed the idea of
switches to Chow’s paper instead of Pimont and Rault’s. The idea of
covering pairs of edges was rediscovered in the 1990s. The British
Computer Society Standard for Software Component Testing called it two-
trip [British Computer Society, 2001] and Offutt et al. [Offutt et al., 2003],
called it transition-pair.

Other test generation methods based on FSMs include tour [Naito and
Tsunoyama, 1981], the distinguished sequence method [Gonenc, 1970],
and unique input-output method [Sabnani and Dahbura, 1988]. Their
objectives are to detect output errors based on state transitions driven by
inputs. FSM-based test generation has been used to test a variety of
applications including lexical analyzers, real-time process control
software, protocols, data processing, and telephony. One early realization
when developing the first edition of this book is that the criteria for
covering finite state machines are not substantially different from criteria
for other graphs.

This book has introduced the explicit inclusion of Node Coverage
requirements in Edge Coverage requirements (the “up to” clause). This
inclusion is not necessary for typical control flow graphs, where, indeed,
subsumption of Node Coverage by Edge Coverage is often presented as a
basic theorem, but is often required for graphs derived from other artifacts.

Several later papers focused on automatic test data generation to cover
structural elements in the program [Borzovs et al., 1991, Boyer et al.,
1975, Clarke, 1976, DeMillo and Offutt, 1993, Ferguson and Korel, 1996,
Howden, 1977, Korel, 1990a, Korel, 1992, Offutt et al., 1999,

Ramamoorthy et al., 1976]. Much of this work was based on the analysis
techniques of symbolic evaluation [Cheatham et al., 1979, Clarke and
Richardson, 1985, Darringer and King, 1978, DeMillo and Offutt, 1993,
Fairley, 1975, Howden, 1975], dynamic symbolic evaluation [Offutt et al.,
1999, Korel, 1990b, Korel, 1992], and slicing [Tip, 1994, Weiser, 1984].
Dynamic symbolic execution has been paired with various types of
constraint solvers [Korel, 1990a, Korel, 1992, Offutt et al., 1999] in the
1990s. Concolic execution [Godefroid et al., 2005, Sen et al., 2005] went a
step further by deriving inputs that follow “nearby” execution traces. In an
effort to summarize the state-of-the-art in test generation, Anand et al.
produced an orchestrated survey [Anand et al., 2013], which addressed a
broad variety of approaches to generating test data, including symbolic
execution approaches, model-based techniques, combinatorial approaches,
adaptive random sampling, and search-based methods. This paper provides
an especially rich index into the literature on the topic.

The problem of handling loops has plagued graph-based criteria from
the beginning. It seems obvious that we want to cover paths, but loops
create infinite numbers of paths. In Howden’s 1975 paper [Howden,
1975], he specifically addressed loops by covering complete paths
“without looping,” and Chow’s 1978 suggestion to use spanning trees was
an explicit attempt to avoid having to execute loops [Chow, 1978].
Binder’s book [Binder, 2000] used the technique from Chow’s paper, but
changed the name to round trip, which is the name used in this book.

Another early suggestion was based on testing loop-free programs
[Cherniavsky, 1979], which is certainly interesting from a theoretical view,
but not particularly practical.

White and Wiszniewski [White and Wiszniewski, 1991] suggested
limiting the number of loops that need to be executed based on specific
patterns. Weyuker, Weiss and Hamlet tried to choose specific loops to test
based on data definitions and uses [Weyuker et al., 1991].

The notion of subpath sets was developed by Offutt et al. [Jin and
Offutt, 1998, Offutt et al., 2000] to support inter-class path testing and is
essentially equivalent to tours with detours as presented here. Prime paths
were introduced in an unpublished manuscript by Ammann and Offutt in
2004, and first appeared in the research literature in an experimental
comparison paper by Li, Praphamontripong, and Offutt [Li et al., 2009].
The ideas of touring, sidetrips and detours were introduced in the first
edition of this book.

The earliest reference we have found on data flow testing was a
technical report in 1974 by Osterweil and Fosdick [Osterweil and Fosdick,
1974]. This technical report was followed by a 1976 paper in ACM
Computing Surveys [Fosdick and Osterweil, 1976], along with an almost
simultaneous publication by Herman in the Australian Computer Journal
[Herman, 1976]. The seminal data flow analysis procedure (without
reference to testing) was due to Allen and Cocke [Allen and Cocke, 1976].

Other fundamental and theoretical references are by Laski and Korel in
1983 [Laski and Korel, 1983], who suggested executing paths from
definitions to uses, Rapps and Weyuker in 1985 [Rapps and Weyuker,
1985], who defined criteria and introduced terms such as All-Defs and All-
Uses, and Frankl and Weyuker in 1988 [Frankl and Weyuker, 1988].
These papers refined and clarified the idea of data flow testing, and are the
basis of the presentation in this text. Stated in the language in this text,
[Frankl and Weyuker, 1988] requires direct tours for the All-du-Paths
Coverage, but allows sidetrips for All-Defs Coverage and All-
UsesCoverage. This text allows sidetrips (or not) for all of the data-flow
criteria. The pattern matching example used in this text has been employed
in the literature for decades; as far as we know, Frankl and Weyuker
[Frankl and Weyuker, 1988] were the first to use the example to illustrate
data flow coverage.

Forman also suggested a way to detect data flow anomalies without
running the program [Forman, 1984].

Some detailed problems with data flow testing have been recurring.
These include the application of data flow when paths between definitions
and uses cannot be executed [Frankl and Weyuker, 1986], and handling
pointers and arrays [Offutt et al., 1999, Weyuker et al., 1991].

The method of defining data flow criteria in terms of sets of du-paths is
original to this book, as is the explicit suggestion for Best Effort touring.

Many papers present empirical studies of various aspects of data flow
testing. One of the earliest was by Clarke, Podgurski, Richardson and Zeil,
who compared some of the different criteria [Clarke et al., 1989].
Comparisons with mutation testing (introduced in Chapter 9) started with
Mathur in 1991 [Mathur, 1991], which was followed by Mathur and Wong
[Mathur and Wong, 1994], Wong and Mathur [Wong and Mathur, 1995],
Offutt, Pan, Tewary and Zhang [Offutt et al., 1996b], and Frankl, Weiss
and Hu [Frankl et al., 1997]. Comparisons of data flow with other test
criteria have been published by Frankl and Weiss [Frankl and Weiss,

1993], Hutchins, Foster, Goradia and Ostrand [Hutchins et al., 1994], and
Frankl and Deng [Frankl and Deng, 2000].

Several tools have also been built by researchers to support data flow
testing. Most worked by taking a program and tests as inputs, and deciding
whether one or more data flow criteria have been satisfied (a recognizer).
Frankl, Weiss and Weyuker built ASSET in the mid-80s [Frankl et al.,
1985], Girgis and Woodward built a tool to implement both data flow and
mutation testing in the mid-80s [Girgis and Woodward, 1985], and Laski
built STAD in the late-80s [Laski, 1990]. Researchers at Bellcore
developed the ATAC data flow tool for C programs in the early’90s
[Horgan and London, 1991, Horgan and London, 1992], and the first tool
that included a test data generator for data flow criteria was built by Offutt,
Jin and Pan in the late ’90s [Offutt et al., 1999].

Coupling was first discussed as a design metric by Constantine and
Yourdon [Constantine and Yourdon, 1979] and its use for testing was
introduced implicitly by Harrold, Soffa and Rothermel [Harrold and
Rothermel, 1994, Harrold and Soffa, 1991] and explicitly by Jin and Offutt
[Jin and Offutt, 1998], who introduced the use of first-uses and last-defs.

Kim, Hong, Cho, Bae and Cha used a graph-based approach to generate
tests from UML state diagrams [Kim et al., 1999].

The USA’s Federal Aviation Administration (FAA) has recognized the
increased importance of modularity and integration testing by imposing
requirements on structural coverage analysis of software that “the analysis
should confirm the data coupling and control coupling between the code
components” [RTCA-DO-178B, 1992], pg. 33, section 6.4.4.2.

Data flow testing has also been applied to integration testing by Harrold
and Soffa [Harrold and Soffa, 1991], Harrold and Rothermel [Harrold and
Rothermel, 1994], and Jin and Offutt [Jin and Offutt, 1998]. This work
focused on class-level integration issues, but did not address inheritance or
polymorphism. Data flow testing has been applied to inheritance and
polymorphism in object-oriented software by Alexander and Offutt
[Alexander and Offutt, 2004, Alexander and Offutt, 2000, Alexander and
Offutt, 1999], and Buy, Orso and Pezze [Buy et al., 2000, Orso and Pezze,
1999]. Gallagher and Offutt modeled classes as interacting state machines,
and tested concurrency and communication issues among them [Gallagher
et al., 2007].

Generating tests to satisfy sequencing constraints is due to Olender and
Osterweil [Olender and Osterweil, 1989, Olender and Osterweil, 1986].

SCR was first discussed by Henninger [Henninger, 1980] and its use in
model checking and testing was introduced by Atlee [Atlee, 1994].

Constructing tests from UML diagrams is a more recent development,
though relatively straightforward. It was first suggested by Abdurazik and
Offutt [Abdurazik and Offutt, 2000, Offutt and Abdurazik, 1999], and
soon followed by Briand and Labiche [Briand and Labiche, 2001]. This
has since led to an entire field called model-based testing, with dozens of
papers every year and workshops such as the annual workshop on model-
based testing.

1 By way of example, typical control flow graphs have very few, if any,
syntactically unreachable nodes, but call graphs, especially for object-oriented
programs, often do.

2 Our mathematician readers might notice that this definition is constructive in that
it defines what is in the set TR, but does notactually bound the set. It is certainly
our intention that TR contains no other elements.

3 The reader might wonder why NOTFOUND fails to appear in the set use (2). The
reason, as explained in Section 7.3.2 is that the use is local.

4 Despite the names of the criteria, All-Defs and All-Uses treat definitions and uses
differently. Specifically, replacing the term “def” with “use” in All-Defs does not
result in All-Uses. While All-Defs focuses on definitions, All-Uses focuses on
def-use pairs. While the naming convention might be misleading, and that a
name such as “All-Pairs” might be clearer than All-Uses, we use the standard
usage from the data flow literature.

5 This is a bit of an over statement, and, as usual, the culprit is infeasibility.
Specifically, consider a du-path with respect to variable x that can only be toured
with a sidetrip. Further, suppose that there are two possible sidetrips, one of
which is def-clear with respect to x, and one of which is not. The relevant test
path from the All-du-Paths test set necessarily tours the former sidetrip, whereas
the corresponding test path from the Prime Path test set is free to tour the latter
side trip. Our opinion is that in most situations it is reasonable for the test
engineer to ignore this special case and simply proceed with Prime Path
Coverage.

6 As in previous chapters, we explicitly leave out concurrency, so concurrent forks
and joins are not considered.

8

Logic Coverage

Don’t let your weaknesses block your strengths.

This chapter uses logical expressions to define criteria and design tests.
This continues our progression into the RIPR model by ensuring that tests
not only reach certain locations, but the internal state is infected by trying
multiple combinations of truth assignments to the expressions. While logic
coverage criteria have been known for a long time, their use has been
steadily growing in recent years. One cause for their use in practice has
been standards such as used by the US Federal Aviation Administration
(FAA) for safety critical avionics software in commercial aircraft.

As in Chapter 7, we start with a sound theoretical foundation for logic
predicates and clauses with the goal of making the subsequent testing
criteria simpler. As before, we take a generic view of the structures and
criteria, then discuss how logic expressions can be derived from various
software artifacts, including code, specifications, and finite state machines.

This chapter presents two complementary approaches to logic testing.
The first, which we call semantic logic coverage, considers what logic
expressions mean regardless of how they are formulated. The strength of
the semantic approach is that we get the same tests even if the predicate is
rewritten in a different but equivalent form. The semantic approach is
more common and more likely to be familiar to readers. The second
approach, which we call syntactic logic coverage, develops tests
specifically tailored to how a logic expression is formulated. The strength
of the syntactic approach to logic coverage is that it addresses the specific
ways in which an engineer might incorrectly formulate a given logic
expression.

Studies have found that the syntactic approach usually detects more
faults, but the test criteria are relatively complicated and can be quite

expensive. In recent years, the research community has found ways to
reduce the number of tests required without sacrificing fault detection.
Specifically, the number of tests required for syntactic coverage has
dropped substantially–to the point where it is competitive with the
semantic approach. While the safety community still relies on the semantic
approach, it may be time for this community to consider the syntactic
approach.

This chapter presents both approaches, but in such a way that the
syntactic approach can be omitted.Section 8.1 presents the semantic
approach and Section 8.2 presents the syntactic approach. Subsequent
sections show how to apply the semantic approach to artifacts from
various parts of the lifecycle. The application of the syntactic approach to
these same artifacts is presented in the exercises. The intent is that users of
this textbook can cover both approaches, or choose to omit the syntactic
approach by skipping Section 8.2 and associated exercises.

Readers who are already familiar with some of the common criteria may
have difficulty recognizing them at first. This is because we introduce a
generic collection of test criteria, and thus choose names that best help
articulate all of the criteria. That is, we are abstracting several existing
criteria that are closely related, yet use conflicting terminology. When we
deviate, we mention the more traditional terminology and give detailed
pointers in the bibliographic notes.

8.1 SEMANTIC LOGIC COVERAGE CRITERIA
(ACTIVE)

Before introducing the semantic logic coverage criteria, we introduce
terms and notation. There are no standard terms or notations for these
concepts; they vary in different subfields, books, and papers. We formalize
logical expressions in a way that is common in discrete mathematics
textbooks.

A predicate is an expression that evaluates to a boolean value, and is our
topmost structure. A simple example is ((a > b) ∨ C) ∧ p(x). Predicates
may contain boolean variables, non-boolean variables that are compared
with comparative operators { >, <, =, ≥, ≤, ≠ }, and function calls. The
internal structure is created by the logical operators:

 –the negation operator

 ∧–the and operator
 ∨–the or operator
 →–the implication operator
 ⊕–the exclusive or operator
 ↔–the equivalence operator

Some of these operators (→, ⊕, ↔) may seem unusual for readers with a
bias toward source code, but they turn out to be common in some
specification languages and very handy in our computations. Short-circuit
versions of the and and or operators are also sometimes useful, and will be
addressed when necessary. We adopt a typical precedence, which, from
highest to lowest, matches the order listed above. When the order might
not be obvious, we use parentheses for clarity.

A clause is a predicate that does not contain any logical operators. For
example, the predicate (a = b) ∨ C ∧ p(x) contains three clauses: a
relational expression (a = b), a boolean variable C, and the function call
p(x). Because they may contain a structure of their own, relational
expressions require special treatment.

A predicate may be written in a variety of logically equivalent ways. For
example, the predicate ((a = b) ∨ C) ∧ ((a = b) ∨ p(x)) is logically
equivalent to the predicate given in the previous paragraph, but ((a = b) ∧
p(x)) ∨ (C ∧ p(x)) is not. The rules of boolean algebra (summarized in
Section 8.1.5) can be used to convert boolean expressions into equivalent
forms.

Logical expressions come from a variety of sources. The most familiar
to most readers will probably be source code of a program. For example,
the following if statement:

will yield the expression ((a > b) ∨ C) ∧ (x < y). Other sources of logical
expressions include transitions in finite state machines. A transition such
as button2 = true (when gear = park) will yield the expression
gear = park ∧ button2 = true. Similarly, a precondition in a specification
such as "pre: stack Not full ANDobject reference
parameter not null" will result in a logical expression such as
stackFull() ∧newObj ≠ null.

In the prior material we treat logical expressions according to their
semantic meanings, not their syntax. As a consequence, a given logical
expression yields the same test requirements for a given coverage criterion
no matter which form of the logic expression is used.

8.1.1 Simple Logic Expression Coverage Criteria

Clauses and predicates are used to introduce a variety of coverage criteria.
Let P be a set of predicates and C be a set of clauses in the predicates in P.
For each predicate p ∈ P, let Cp be the clauses in p, that is Cp = {c|c ∈
p}.C is the union of the clauses in each predicate in P, that is C = ⋃ p∈PCp.

CRITERION 8.18 Predicate Coverage (PC): For each p ∈ P, TR contains
two requirements: p evaluates to true, and p evaluates to false.

Predicate coverage is also known as decision coverage. The graph
version of Predicate Coverage was introduced in Chapter 7 as Edge
Coverage; this is where the graph coverage criteria overlap the logic
expression coverage criteria. For control flow graphs where P is the set of
predicates associated with branches, Predicate Coverage and Edge
Coverage are the same. For the predicate given above, ((a > b) ∨ C) ∧
p(x), two tests that satisfy Predicate Coverage are (a = 5, b = 4, C = true,
p(x) = true) and (a = 5, b = 6, C = false, p(x) = false).

An obvious failing of this criterion is that the individual clauses are not
always exercised. Predicate Coverage for the above clause could also be
satisfied with the two tests (a = 5, b = 4, C = true, p(x) = true) and (a = 5,
b = 4, C = true, p(x) = false), in which the first two clauses never have the
value false! To rectify this problem, we move to the clause level.

CRITERION 8.19 Clause Coverage (CC): For each c ∈ C, TR contains
two requirements: c evaluates to true, and c evaluates to false.

Clause coverage is also known as condition coverage. Our predicate ((a
> b) ∨C) ∧p(x) requires different values to satisfy CC. Clause Coverage
requires that (a > b) = true and false, C = true and false, and p(x) = true
and false. These requirements can be satisfied with two tests: ((a = 5, b =
4), (C = true), p(x) = true) and ((a = 5, b = 6), (C = false), p(x) = false).

Clause Coverage does not subsume Predicate Coverage, and Predicate
Coverage does not subsume Clause Coverage, as we show with the
predicate p = a∨b. The clauses C are {a, b}. The four test inputs that
enumerate the combinations of logical values for the clauses:

Consider two test sets, each with a pair of test inputs. Test set T23 = {2,
3} satisfies Clause Coverage, but not Predicate Coverage, because p is
never false. Conversely, test set T24 = {2, 4} satisfies Predicate Coverage,
but not Clause Coverage, because b is never true. These two test sets
demonstrate that neither Predicate Coverage nor Clause Coverage
subsumes the other.

From the testing perspective, we would certainly like a coverage
criterion that tests individual clauses and that also tests the predicate. The
most direct approach to rectify this problem is to try all combinations of
clauses:

CRITERION 8.20 Combinatorial Coverage (CoC): For each p ∈ P, TR
has test requirements for the clauses in Cp to evaluate to each possible
combination of truth values.

Combinatorial Coverage has also been called multiple condition
coverage. For the predicate (a ∨ b) ∧ c, the complete truth table contains
eight rows:

A predicate p with n independent clauses has 2n possible assignments of
truth values. Thus Combinatorial Coverage is unwieldy at best, and
impractical for predicates with more than a few clauses. What we need are

criteria that capture the effect of each clause, but do so in a reasonable
number of tests. These observations lead, after some thought1, to a
powerful collection of test criteria that are based on the notion of making
individual clauses “active” as defined in the next subsection. Specifically,
we check to see that if we vary a clause in a situation where the clause
should affect the predicate, then, in fact, the clause does affect the
predicate. Later we turn to the complementary problem of checking to see
that if we vary a clause in a situation where it should not affect the
predicate, then it, in fact, does not affect the predicate.

8.1.2 Active Clause Coverage

The lack of subsumption between Clause and Predicate Coverage is
unfortunate, but Clause and Predicate Coverage have deeper problems.
Specifically, when we introduce tests at the clause level, we want also to
have an effect on the predicate. The key notion is that of determination,
the conditions under which a clause influences the outcome of a predicate.
Although the formal definition is a bit messy, the basic idea is simple: if
you flip the clause, and the predicate changes value, then the clause
determines the predicate. To distinguish the clause in which we are
interested from the remaining clauses, we adopt the following convention.
The major clause, ci, is the clause on which we are focusing. All of the
other clauses cj, j ≠ i, are minor clauses. Typically, to satisfy a given
criterion, each clause is treated in turn as a major clause. Formally:

Definition 8.41 Determination: Given a major clause ci in predicate p,
we say that ci determines p if the minor clauses cj ∈ p, j ≠ i have
values so that changing the truth value of ci changes the truth value of
p.

Note that this definition explicitly does not require that ci = p. This issue
has been left ambiguous by previous definitions, some of which require the
predicate and the major clause to have the same value. This interpretation
is not practical. When the negation operator is used, for example, if the
predicate is p = a, it becomes impossible for the major clause and the
predicate to have the same value.

Consider the example where p = a ∨ b. If b is false, then clause a

determines p, because the value of p is exactly the value of a. However if b
is true, then a does not determine p, since p is true regardless of the value
of a.

From the testing perspective, we would like to test each clause under
circumstances where the clause determines the predicate. Consider this as
putting different members of a team in charge of the team. We do not
know if they can be effective leaders until they try. Consider again the
predicate p = a ∨ b. If we do not vary b under circumstances where b
determines p, then we have no evidence that b is used correctly. For
example, test set T = {TT, FF}, which satisfies both Clause and Predicate
Coverage, tests neither a nor b effectively.

In terms of criteria, we develop the notion of active clause coverage in a
general way first with the definition below, and then refine out the
ambiguities in the definition to arrive at the resulting formal coverage
criteria. This treats active clause coverage as a framework that generalizes
several similar criteria, including the several variations of modified
condition decision coverage (MCDC).

Definition 8.42 Active Clause Coverage (ACC): For each p ∈ P and
each major clause ci ∈ Cp, choose minor clauses cj, j ≠ i so that ci
determines p. TR has two requirements for each ci: ci evaluates to true
and ci evaluates to false.

For example, for p = a ∨ b, we end up with a total of four requirements
in TR, two for clause a and two for clause b. For clause a, a determines p if
and only if b is false. So we have the two test requirements {(a = true, b =
false), (a = false, b = false)}. For clause b, b determines p if and only if a
is false. So we have the two test requirements {(a = false, b = true), (a =
false, b = false)}. This is summarized in the partial truth table below (the
values for the major clauses are in bold face).

Two of these requirements are identical, so we end up with three distinct
test requirements for Active Clause Coverage for the predicate a∨b,
namely {(a = true, b = false), (a = false, b = true), (a = false, b = false)}.

Such overlap is common; a predicate with n clauses needs at least n tests,
but no more than 2n tests, to satisfy Active Clause Coverage.

ACC is almost identical to the way early papers described another
technique called MCDC. It turns out that this criterion has some
ambiguity, which has led to a fair amount of confusion about how to
interpret MCDC over the years. The most important question is whether
the minor clauses cj need to have the same values when the major clause ci
is true as when ci is false. Resolving this ambiguity leads to three distinct
and interesting flavors of Active Clause Coverage. For a simple predicate
such as p = a ∨ b, the three flavors turn out to be identical, but differences
appear for more complex predicates. The most general flavor allows the
minor clauses to have different values.

CRITERION 8.21 General Active Clause Coverage (GACC): For each p
∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j ≠ i so
that cidetermines p. TR has two requirements for each ci: ci evaluates to
true and cievaluates to false. The values chosen for the minor clauses cj
do not need to be the same when ci is true as when ci is false.

Unfortunately, it turns out that General Active Clause Coverage does
not subsume Predicate Coverage, as the following example shows.

Consider the predicate p = a ↔ b. Clause a determines p for any
assignment of truth values to b. So, when a is true, we choose b to be true
as well, and when a is false, we choose b to be false as well. We make the
same selections for clause b. We end up with only two test inputs: {TT,
FF}. p evaluates to true for both of these cases, so Predicate Coverage is
not achieved. GACC also does not subsume PC when an exclusive or
operator is used. We save that example for an exercise.

Many testing researchers have a strong feeling that ACC should
subsume PC, thus the second flavor of ACC requires that p evaluates to
true for one assignment of values to the major clause ci, and false for the
other. Note that ci and p do not have to have the same values, as discussed
with the definition for determination.

CRITERION 8.22 Correlated Active Clause Coverage (CACC): For each
p ∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j ≠ i so
that cidetermines p. TR has two requirements for each ci: ci evaluates to

true and cievaluates to false. The values chosen for the minor clauses cj
must cause p to be true for one value of the major clause ci and false for
the other.

So for the predicate p = a ↔ b above, CACC can be satisfied with
respect to clause a with the test set{TT, FT} and with respect to clause b
with the test set {TT, TF}. Merging these yields the CACC test set{TT, TF,
FT}.

Consider the example p = a ∧ (b ∨ c). For a to determine the value of
p, the expression b ∨ c must be true. This can be achieved in three ways:
b true and c false, b false and c true, and both b and c true. So, it would be
possible to satisfy Correlated Active Clause Coverage with respect to
clause a with the two test inputs: {TTF, FFT}. Other choices are possible
with respect to a. The following truth table helps enumerate them. The row
numbers are taken from the complete truth table for the predicate given
previously. Specifically, CACC can be satisfied for a by choosing one test
requirement from rows 1, 2 and 3, and the second from rows 5, 6 and 7. Of
course, nine possible ways exist to do this.

The final flavor forces the non-major clauses cj to be identical for both
assignments of truth values to the major clause ci.

CRITERION 8.23 Restricted Active Clause Coverage (RACC): For each
p ∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j ≠ i so
that cidetermines p. TR has two requirements for each ci: ci evaluates to
true and cievaluates to false. The values chosen for the minor clauses cj
must be the same when ci is true as when ci is false.

Note that the definition for RACC does not explicitly say that the value
of the predicate has to be different for each value of ci, even though the
definition for CACC did. It is true that the RACC tests will cause the

predicate to be different for each value of the major clause, however this is
a direct consequence of the definition of determination. That is, if you
change the value of a major clause a under conditions where Pa is true,
and you leave the minor clauses the same, this must change the value of
the predicate.

For the example p = a∧ (b∨c), only three of the nine sets of test
requirements that satisfy Correlated Active Clause Coverage with respect
to clause a will satisfy Restricted Active Clause Coverage with respect to
clause a. In terms of the previously given complete truth table, row 2 can
be paired with row 6, row 3 with row 7, or row 1 with row 5. Thus, instead
of the nine ways to satisfy CACC, only three can satisfy RACC.

CACC versus RACC
Examples of satisfying a predicate for each of these three criteria are given
later. One point that may not be immediately obvious is how CACC and
RACC differ in practice.

It turns out that some logical expressions can be completely satisfied
under CACC, but have infeasible test requirements under RACC. These
expressions are a little subtle and only exist if dependency relationships
exist among the clauses, that is, some combinations of values for the
clauses are prohibited. Since this often happens in real programs, because
program variables frequently depend upon one another, we introduce the
following example.

Consider a system with a valve that might be either open or closed, and
several modes, two of which are “Operational” and “Standby.” Assume the
following two constraints:

1. The valve must be open in “Operational” and closed in all other
modes.

2. The mode cannot be both “Operational” and “Standby” at the same
time.

This leads to the following clause definitions:

Suppose that a certain action can be taken only if the valve is closed and
the system status is either in Operational or Standby. That is:

This is exactly the predicate that was analyzed above. The constraints
above can be formalized as:

These constraints limit the feasible values in the truth table. As a
reminder, the complete truth table for this predicate is:

Recall that for a to determine the value of P, either b or c or both must
be true. Constraint 1 rules out the rows where a and b have the same
values, that is, rows 1, 2, 7, and 8. Constraint 2 rules out the rows where b
and c are both true, that is, rows 1 and 5. Thus, the only feasible rows are
3, 4, and 6. Recall that CACC can be satisfied by choosing one from rows
1, 2 or 3 and one from rows 5, 6 or 7. But RACC requires one of the pairs
2 and 6, 3 and 7, or 1 and 5. Thus, RACC is infeasible for a in this
predicate.

8.1.3 Inactive Clause Coverage

The Active Clause Coverage Criteria in Section 8.1.2 focus on making
sure the major clauses do affect their predicates. Inactive Clause Coverage

ensures that changing a major clause that should not affect the predicate
does not, in fact, affect the predicate.

Definition 8.43 Inactive Clause Coverage (ICC): For each p ∈ P and
each major clause ci ∈ Cp, choose minor clauses cj, j ≠ i so that ci
does not determine p. TR has four requirements for ci under these
circumstances: (1) ci evaluates to true with p true, (2) ci evaluates to
false with p true, (3) ci evaluates to true with p false, and (4) ci
evaluates to false with p false.

Although Inactive Clause Coverage (ICC) has some of the same
ambiguity as ACC, only two distinct flavors can be defined, namely
General Inactive Clause Coverage (GICC) and Restricted Inactive Clause
Coverage (RICC). The notion of correlation is not relevant for Inactive
Clause Coverage because ci cannot correlate with p since ci does not
determine p. Also, Predicate Coverage is guaranteed, subject to feasibility,
in all flavors due to the structure of the definition.

The following example illustrates the value of the inactive clause
coverage criteria. Suppose you are testing the control software for a
shutdown system in a reactor, and the specification states that the status of
a particular valve (open vs. closed) is relevant to the reset operation in
Normal mode, but not in Override mode. That is, the reset should
perform identically in Override mode when the valve is open and when
the valve is closed. The skeptical test engineer will want to test reset in
Override mode for both positions of the valve, since a reasonable
implementation mistake would be to take into account the setting of the
valve in all modes.

The formal versions of GICC and RICC are as follows.

CRITERION 8.24 General Inactive Clause Coverage (GICC): For each p
∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j ≠ i so
that cidoes not determine p. TR has four requirements for ci under these
circumstances: (1) ci evaluates to true with p true, (2) ci evaluates to
false with p true, (3) cievaluates to true with p false, and (4) ci evaluates
to false with p false. The values chosen for the minor clauses cj may vary
among the four cases.

CRITERION 8.25 Restricted Inactive Clause Coverage (RICC): For
each p ∈ P and each major clause ci ∈ Cp, choose minor clauses cj, j ≠
i so that cidoes not determine p. TR has four requirements for ci under
these circumstances: (1) ci evaluates to true with p true, (2) ci evaluates
to false with p true, (3) cievaluates to true with p false, and (4) ci
evaluates to false with p false. The values chosen for the minor clauses cj
must be the same in cases (1) and (2), and the values chosen for the
minor clauses cj must also be the same in cases (3) and (4).

8.1.4 Infeasibility and Subsumption

A variety of technical issues complicate the Active Clause Coverage
criteria. As with many criteria, the most vexing is the issue of infeasibility.
Infeasibility is often a problem because clauses are sometimes related to
one another. That is, choosing the truth value for one clause may affect the
truth value for another clause. Consider, for example, a common loop
structure, which assumes short-circuit semantics:

The idea here is to avoid evaluating a[i] if i is out of range, and
short-circuit evaluation is not only assumed, but depended on. Clearly, it is
not going to be possible to run a test case where i < n is false and a[i]
!= 0 is true.

In principle, the issue of infeasibility for clause and predicate criteria is
no different from that for graph criteria. In both cases, the solution is to
satisfy test requirements that are feasible, and then decide how to treat
infeasible test requirements. The simplest solution is to simply ignore
infeasible requirements, which usually does not affect the quality of the
tests. The difficulty here is in knowing whether a test requirement is truly
infeasible or simply hard to satisfy. Theoretically, recognizing infeasibility
is a formally undecidable problem.

However, a better solution for some infeasible test requirements is to
consider the counterparts of the requirements in a subsumed coverage
criterion. For example, if RACC coverage with respect to clause a in
predicate p is infeasible (due to additional constraints between the

clauses), but CACC coverage is feasible, then it makes sense to replace the
infeasible RACC test requirements with the feasible CACC test
requirements. This approach is similar to that of Best Effort Touring
developed in the graph coverage chapter.

Figure 8.1 shows the subsumption relationships among the logic
expression criteria. Note that the Inactive Clause Coverage criteria do not
subsume any of the Active Clause Coverage criteria, and vice versa. The
diagram assumes that infeasible test requirements are treated on a best
effort basis, as explained above. Where such an approach does not result in
feasible test requirements, the diagram assumes that the infeasible test
requirements are ignored.

Figure 8.1. Subsumption relations among logic coverage criteria.

8.1.5 Making a Clause Determine a Predicate

The next question we address is how to find values for the minor clauses cj
to ensure the major clause ci determines the value of p. A variety of
approaches solve this problem effectively. We suggest that each student
adopt an approach that resonates well with her mathematical background
and experience. We give a direct definitional method that uses a
mathematical approach first, then we give a simplified tabular shortcut.

The bibliographic notes give pointers to all methods the authors are aware
of.

A Direct Definitional Method for Determination
For a predicate p with clause (or boolean variable) c, let pc=true represent
the predicate p with every occurrence of c replaced by true and pc=false be
the predicate p with every occurrence of c replaced by false. For the rest of
this development, we assume no duplicates (that is, p contains only one
occurrence of c). Note that neither pc=true nor pc=false contains any
occurrences of the clause c. Now we connect the two expressions with an
exclusive or:

It turns out that pc describes the exact conditions under which the value
of c determines that of p. That is, if values for the clauses in pc are chosen
so that pc is true, then the truth value of c determines the truth value of p.
If the clauses in pc are chosen so that pc evaluates to false, then the truth
value of p is independent of the truth value of c. This is exactly what we
need to implement the various flavors of Active and Inactive Clause
Coverage.

As a first example, we try p = a ∨ b. pa is, by definition:

That is, for the major clause a to determine the predicate p, the only
minor clause b must be false. This should make sense intuitively, since the
value of a will effect the value of p only if b is false. By symmetry, it is
clear that pb is a.

If we change the predicate to p = a ∧ b, we get

That is, we need b = true to make a determine p. By a similar analysis,

pb = a.
The equivalence operator is a little less obvious and brings up an

interesting point. Consider p = a ↔ b.

That is, for any value of b, a determines the value of p without regard to
the value for b! This means that for a predicate p, such as this one, where
the value of pc is the constant true, the Inactive Clause Criteria are
infeasible with respect to c. Inactive Clause Coverage is likely to result in
infeasible test requirements when applied to expressions that use the
equivalence or exclusive-or operators.

A more general version of this conclusion can be drawn that applies to
the Active Clause Coverage criteria as well. If a predicate p contains a
clause c such that pc evaluates to the constant false, the Active Clause
Coverage criteria are infeasible with respect to c. The ultimate reason is
that the clause in question is redundant; the predicate can be rewritten
without it. While this may sound like a theoretical curiosity, it is actually a
very useful result for testers. If a predicate contains a redundant clause,
that is a very strong signal that something is wrong with the predicate!

Consider p = a ∧ b ∨ a ∧ b. This is really just the predicate p = a; b
is irrelevant. Computing pb, we get

so it is impossible for b to determine p.
We need to consider how to make clauses determine predicates for a

couple of more complicated expressions. For the expression p = a ∧ (b ∨
c), we get

This example ends with an undetermined answer, which points out the key
difference between CACC and RACC. Three choices of values make b ∨
c true, (b = c = true), (b = true, c = false), and (b = false, c = true). For
Correlated Active Clause Coverage, we could pick one pair of values when
a is true and another when a is false. For Restricted Active Clause
Coverage, we must choose the same pair for both values of a.

The derivation for b and equivalently for c is slightly more complicated:

The last step in the simplification shown above may not be immediately
obvious. If it is not, try constructing the truth table for a ⊕ (a ∧ c). The
computation for pc is equivalent and yields the solution a ∧ b.

Sidebar
Boolean Algebra Laws

You might have learned logic a long time ago. While a software tester
does not need to be an expert logician, it sometimes helps to have a
“toolbox” of Boolean algebra laws to help reduce predicates during
determination. For that matter, the Boolean laws can help simplify
predicates during design and development. The following summarizes
some of the most useful laws. They are taken from standard logic and
discrete mathematics textbooks. Some books will use ‘+’ for “or” (our
∨) and a dot (‘.’) or multiplication symbol (‘*’) for “and” (our ∧). It
is often common to imply “and” by simply placing the two symbols
adjacent to each other, that is, a ∧ b can be written as ab.
In the following, a and b are boolean. The precedence from high to low
is ∧, ∨, ⊕.

 Negation Laws

 AND Identity Laws

 OR Identity Laws

 XOR Identity Laws

 XOR Equivalence Laws

 Commutativity Laws

Sidebar (part 2)
 Associativity Laws

 Distributive Laws

 DeMorgan’s Laws

A Tabular Shortcut for Determination
The previous method to find the values for minor clauses to make a major
clause determine the value of a predicate is a general method that works in
all cases for all predicates. However, the math can be challenging to some,
so we present a simple shortcut.

This is done using a truth table. First, we draw the complete truth table
for a predicate, including a column for the predicate result. Then for each
pair of rows where the minor clauses have identical values, but the major
clause differs, we check whether the predicate results are different. If they
are, those two rows cause the major clause to determine the value of the
predicate. This technique, in effect, shortcuts the above computation in a
tabular form.

As an example, consider the predicate p = a ∧ (b ∨ c). The complete
truth table contains eight rows.

Now we add columns for each of pa, pb, and pc. Under pa, we note that
when b is true and c is true (rows 1 and 5, where b and c have identical
values), the predicate is true when a is true but false when a is false. Thus,
TTT and FTT cause a to determine the value of p. The same is true when b
is true and c is false (rows 2 and 6) and when b is false and c is true (rows
2 and 6). However, when both b and c are false (rows 4 and 8), p is false,
so those two rows do not cause a to determine the value of p. Thus, a
determines the value of p when either b is true or c is true, or both.
Mathematically, pa = b ∨ c, which matches what we showed in the
previous subsection.

The determinations for pb and pc are similar, although fewer rows allow
them to determine the value of the predicate. For b, rows 2 (TTF) and 4
(TFF) have different values for p. However, for the other pairs of rows

where a and c are identical (rows 1 and 3, rows 5 and 7, and rows 6 and 8),
the value of p is the same, so they do not allow b to determine the value of
the predicate. Likewise, rows 3 (TFT) and 4 (TFF) allow c to determine
the value of the predicate. Thus, b determines the value of p when a is true
and c is false, and c determines the value of p when a is true and b is false.

The tabular approach allows direct calculation of RACC, CACC, and
GACC. RACC, CACC, and GACC are the same for clauses b and c,
because only one pair of rows allow them to determine the value of p. For
a, GACC pairs are the cross product of tests where a is true and pa is true,
namely rows {1, 2, 3}, and tests where a is false and pa is true, namely,
rows {5, 6, 7}. This cross product yields nine pairs. CACC, which adds the
requirement of different truth values for p, is simply the subset of GACC
where the predicate differs: for this predicate, it is still all nine pairs for a.
RACC pairs for a requires “matching rows,” that is, rows 1 and 5, 2 and 6,
and 3 and 7, a total of three pairs. The tabular approach is used in the web
tool on the book website.

8.1.6 Finding Satisfying Values

The final step in applying the logic coverage criteria is to choose values
that satisfy the criteria. This section shows how to generate values for one
example; more cases are explored in the exercises and the application
sections later in the chapter. The example is from Section 8.1.1:

Finding values for Predicate Coverage is easy and was already shown
in Section 8.1.1. Two test requirements are:

TRPC = {p = true, p = false}
and they can be satisfied with the following values for the clauses:

To run the test cases, we need to refine these truth assignments to create
values for clauses a, b, and c. Suppose that clauses a, b, and c were defined
in terms of Java program variables as follows:

a x < y, a relational expression for program variables x and y

b done, a primitive boolean value
c list.contains(str), for List and String objects

Thus, the complete expanded predicate is actually:

Then the following values for the program variables satisfy the test
requirements for Predicate Coverage.

Note that the values for the program variables need not be the same as
another test if the goal is to set a clause to a particular value. For example,
clause a is true in both tests, even though program variables x and y have
different values.

Values to satisfy Clause Coverage were also shown in Section 8.1.1.
The test requirements are:

TRCC = {a = true, a = false, b = true, b = false, c = true, c = false}
and they can be satisfied with the following values for the clauses (blank
cells represent “don’t-care” values):

Refining the truth assignments to create values for program variables x, y,
done, list, and str is left as an exercise for the reader.

Before proceeding with the other criteria, we first choose values for
minor clauses to ensure that the major clauses will determine the value of
p. We gave a method of calculating pa, pb, and pc earlier. The
computations for this particular predicate p are left as an exercise.
However, the results are:

pa b ∧ c

pb a ∧ c
pc a ∨ b

Now we can turn to the other clause coverage criteria. The first is
Combinatorial Coverage, requiring all combinations of values for the
clauses. In this case, we have eight test requirements, which can be
satisfied with the following values:

Recall that General Active Clause Coverage requires that each major
clause be true and false and the minor clauses be such that the major clause
determines the value of the predicate. Similarly to Clause Coverage, three
pairs of test requirements can be defined:

TRGACC = {(a = true ∧ pa, a = false ∧ pa), (b = true ∧ pb, b = false ∧
pb), (c = true ∧ pc, c = false ∧ pc)}
The test requirements can be satisfied with the following values for the
clauses. Note that these can be the same as with Clause Coverage with the
exception that the blank cells from Clause Coverage are replaced with the
values from the determination analysis. In the following (partial truth)
table, values for major clauses are indicated with upper case letters in
boldface.

Note the duplication; the first and fifth rows are identical, and the second
and fourth are identical. Thus, only four tests are needed to satisfy GACC.

A different way of looking at GACC considers all of the possible pairs
of test inputs for each pair of test requirements. Recall that the active

clause coverage criteria always generate test requirements in pairs, with
one pair generated for each clause in the predicate under test. To identify
these test inputs, we will use the row numbers from the truth table. Hence,
the pair (3, 7) represents the first two tests listed in the table above.

It turns out that (3, 7) is the only pair that satisfies the GACC test
requirements with respect to clause a (when a is major), and (5, 7) is the
only pair that satisfies the GACC test requirements with respect to clause
b. For clause c, the situation is more interesting. Nine pairs satisfy the
GACC test requirements for clause c, namely

Recall that Correlated Active Clause Coverage requires that each
major clause be true and false, the minor clauses be such that the major
clause determines the value of the predicate, and the predicate must have
both the value true and false. As with GACC, three pairs of test
requirements can be defined: For clause a, the pair of test requirements is:

where x may be either true or false. The point is that p must have a
different truth value in the two test cases. We leave the reader to write out
the corresponding CACC test requirements with respect to b and c.

For our example predicate p, a careful examination of the pairs of test
cases for GACC reveals that p takes on both truth values in each pair.
Hence, GACC and CACC are the same for predicate p, and the same pairs
of test inputs apply. In the exercises the reader will find predicates where a
test pair that satisfies GACC with respect to some clause c turns out not to
satisfy CACC with respect to c.

The situation for RACC is quite different, however, in the example p.
Recall that Restricted Active Clause Coverage is the same as CACC
except that it requires the values for the minor clauses cj to be identical for
both assignments of truth values to the major clause, ci. For clause a, the
pair of test requirements that RACC generates is:

for some boolean constants B and C. An examination of the pairs given

above for GACC reveals that with respect to clauses a and b, the pairs are
the same. So pair (3, 7) satisfies RACC with respect to clause a and pair
(5, 7) satisfies RACC with respect to b. However, with respect to c, only
three of the pairs satisfy RACC, namely,

This example does leave one question about the different flavors of the
Active Clause Coverage criteria, namely, what is the practical difference
among them? That is, beyond the subtle difference in the arithmetic, how
do they affect practical testers? The real differences do not show up very
often, but when they do they can be dramatic and quite annoying.

GACC does not require that Predicate Coverage be satisfied on the pair
of tests for each clause, so use of that flavor may mean we do not test our
program as thoroughly as we might like. In practical use, it is easy to
construct examples where GACC is satisfied but Predicate Coverage is not
when the predicates are very small (one or two terms), but difficult with
three or more terms, since for one of the clauses, it is likely that the chosen
GACC tests will also be CACC tests.

The restrictive nature of RACC, on the other hand, can sometimes make
it hard to satisfy the criterion. This is particularly true when some
combinations of clause values are infeasible. Assume that in the predicate
used above, the semantics of the program effectively eliminate rows 2, 3,
and 6 from the truth table. Then RACC cannot be satisfied with respect to
clause list.contains(str) (that is, we have infeasible test requirements), but
CACC can. Additionally, we have no evidence that RACC gives more or
better tests. Wise readers, (that is, if still awake) will by now realize that
Correlated Active Clause Coverage is often the most practical flavor of
ACC.

EXERCISES
Section 8.1.

1. List all the clauses for the predicate below:
((f <= g) ∧ (X > 0)) ∨ (M ∧ (e < d + c))

2. List all the clauses for the predicate below:
(G ∨ ((m > a) ∨ (s <= o + n)) ∧ U)

3. Write the predicate (only the predicate) to represent the requirement:

“List all the wireless mice that either retail for more than $100 or for
which the store has more than 20 items. Also list non-wireless mice
that retail for more than $50.”

4. Use predicates (i) through (x) to answer the following questions.
Verify your computations with the logic coverage tool on the book
website.

 i. p = a ∧ (b ∨ c)

 ii. p = a ∨ (b ∧ c)

 iii. p = a ∧ b

 iv. p = a → (b → c)

 v. p = a ⊕ b

 i. p = a ↔ (b ∧ c)

 vii. p = (a ∨ b) ∧ (c ∨ d)

viii. p = (a ∧ b) ∨ (a ∧ c) ∨ (a ∧ c)

 ix. p = a ∨ b ∨ (c ∧ d)

 x. p = (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c)

(a) List the clauses that go with predicate p.
(b) Compute (and simplify) the conditions under which each clause

determines predicate p.
(c) Write the complete truth table for each clause. Label your rows

starting from 1. Use the format in the example underneath the
definition of Combinatorial Coverage in Section 8.1.1. That is,

row 1 should be all clauses true. You should include columns
for the conditions under which each clause determines the
predicate, and also a column for the value of the predicate itself.

(d) List all pairs of rows from your table that satisfy General Active
Clause Coverage (GACC) with respect to each clause.

(e) List all pairs of rows from your table that satisfy Correlated
Active Clause Coverage (CACC) with respect to each clause.

(f) List all pairs of rows from your table that satisfy Restricted
Active Clause Coverage (RACC) with respect to each clause.

(g) List all 4-tuples of rows from your table that satisfy General
Inactive Clause Coverage (GICC) with respect to each clause.
List any infeasible GICC test requirements.

(h) List all 4-tuples of rows from your table that satisfy Restricted
Inactive Clause Coverage (RICC) with respect to each clause.
List any infeasible RICC test requirements.

5. Show that GACC does not subsume PC when the exclusive or
operator is used. Assume p = a ⊕ b.

6. In Section 8.1.6, we introduced the example p = (a ∨ b) ∧ c, and
provided expanded versions of the clauses using program variables.
We then gave specific values to satisfy PC. We also gave truth values
to satisfy CC. Find values for the program variables given to satisfy
CC; that is, refine the abstract tests into concrete test values.

7. Refine the GACC, CACC, RACC, GICC, and RICC coverage criteria
so that the constraints on the minor clauses are made more formal.

8. (Challenging!) Find a predicate and a set of additional constraints so
that CACC is infeasible with respect to some clause, but GACC is
feasible.

8.2 SYNTACTIC LOGIC COVERAGE CRITERIA (DNF)

The semantic logic coverage criteria (active) apply to logic predicates, no
matter how they are written. This approach has the advantage of testing the
software’s logic irrespective of the way the predicates are written, but this
same advantage has the disadvantage of sometimes creating tests that are
blind to certain types of faults. This section introduces an approach that
results in criteria that are stronger than the semantic criteria, but that are
also more complicated to understand and use.

Specifically, this section considers testing predicates expressed in a
particular form known as Disjunctive Normal Form or (DNF). DNF is a
common choice for expressing logic expressions because it allows
complex situations to be captured in small, independent chunks. Suppose a
specifier thinks of some action as happening under one of several (possibly
overlapping) conditions. Then a DNF formalization directly captures the
specifier’s mental model. The fact that the format of the given DNF
expression closely tracks the specifier’s understanding of the problem has
important implications for testing. Specifically, it suggests that testing
should focus on the details of the representation. In other words, it
provides a strong motivation for approaching logic coverage criteria from
a syntactic perspective.

This section uses different terms and notations than the previous section.
This is both to match the still very active research literature and because
the notation works better with DNF predicates. Readers familiar with DNF
may be familiar with the dual formulation of Conjunctive Normal Form or
CNF. Every result for DNF has an equivalent result for CNF. CNF tends to
be used less than DNF, both in practice and in the research literature, so
we do not treat it here.

We use the same notion of a clause as in the treatment of semantic
coverage. For much of this section, it may be helpful to think of a clause
simply as a boolean variable. A literal is a clause or the negation of a
clause. A term is a set of literals connected only by logical ANDs. A DNF
predicate is a set of terms connected by logical ORs. Terms in DNF
predicates are also called implicants, because if a single term is true, that
implies the entire predicate is true.

For example, this predicate is in disjunctive normal form :

but this (equivalent) one is not:

This example has three clauses: a, b, and c; three literals : a, b, and c; and
two terms: (a ∧ c) and (b ∧ c).

In general, the DNF representation of a predicate is not unique. For
example, the above predicate can be rewritten in the following way, which
is also in DNF:

This section follows the convention from the DNF testing literature and
uses adjacency for the ∧ operator, “+” for the ∨ operator, and an
overstrike for the negation operator. This approach makes the sometimes
long expressions easier to read. So, the last DNF predicate above will be
written:

8.2.1 Implicant Coverage

The next three subsections explain how disjunctive normal form
expressions are used to design tests. As with the semantic logic coverage
criteria, we start small and build to a very strong coverage criterion,
MUMCUT.

One simple way of testing with respect to DNF representations is to
assign values to clauses so that each implicant in the DNF representation is
satisfied on at least one test. All of these tests result in the predicate
evaluating to true, so we never test the false case. We address this problem
by formulating a DNF expression for the negation of the predicate in
question, and evaluating tests for the negated predicate with the
samecoverage criteria used for the predicate itself. These ideas are enough
to define our first DNF coverage criterion:

CRITERION 8.26 Implicant Coverage (IC): Given DNF representations
of a predicate f and its negation f, for each implicant in f and f, TR
contains the requirement that the implicant evaluate to true.

As an example of IC, consider the following DNF expression for a
predicate f in three clauses (a, b, and c) and two terms ab and bc).

Its negation can be computed algebraically as follows:

Collectively, f and f have a total of four implicants:

An obvious but simple way to generate tests for these four implicants
would be to choose one test for each. However, they can be satisfied with
fewer tests. Consider the following table, which indicates the truth
assignments required for each of the four implicants.

The first and second row can be satisfied simultaneously, as can the third
and fourth. Thus only two tests are needed to satisfy IC for this example:

IC guarantees that the predicate will be both true and false, thus it
subsumes Predicate Coverage. However it does not subsume any of the
Active Clause Coverage criteria.

One problem with IC is that tests might be chosen so that a single test
satisfies multiple implicants. Indeed, this is how the two element test set T1
above was chosen. Although this lets testers minimize the size of test sets,
it makes it harder to test each implicant individually. Another problem
with IC is that the arbitrary nature of choosing a specific DNF
representation for the negation of a predicate. In short, IC is fairly weak,
and there are much stronger DNF coverage criteria available. Before we
can develop these criteria, we need to introduce a bit more mathematical
machinery.

8.2.2 Minimal DNF

Just as with the active clause criteria, we would like each implicant in a
DNF expression to “matter.” That is, we want a DNF form where each
implicant can be satisfied without satisfying any other implicant.

Fortunately, standard approaches already exist that can be used. A proper
subterm of an implicant is an implicant with one or more subterms
removed. For example, the proper subterms of abc are ab, bc, ac, a, b, and
c. A prime implicant is an implicant such that no proper subterm of the
implicant is also an implicant of the same predicate. That is, in a prime
implicant, it is not possible to remove a term without changing the value of
the predicate. For example, in the following reformulation of the previous
example

abc is not a prime implicant, because a proper subterm, namely ab, is an
implicant. abc is not a prime implicant either, because the proper subterm
ab is an implicant, as is the proper subterm bc.

We need one additional concept. An implicant is redundant if it can be
omitted without changing the value of the predicate. As an example, the
formula

has three prime implicants, but the first one, ab, is redundant because ac +
bc is exactly the same function as ab + ac + bc. A DNF representation is
minimal if every implicant is prime and no implicant is redundant.
Minimal DNF representations can be computed algebraically or by hand
with Karnaugh maps, as discussed in section 8.2.4. Since non-prime
implicants mean unnecessary constraints and redundant implicants are, by
definition, unnecessary, there is good reason for the software engineer to
refactor DNF predicates into minimal form.

With the above definitions, we can assume that we have a minimal DNF
representation of a predicate. Given a minimal DNF representation for f, a
unique true point with respect to the ith implicant is an assignment of truth
values to clauses such that the ith implicant is true and all other implicants
are false. It should be noted that if it is impossible to make all of the
“other” implicants false, then the implicant is redundant, violating our
assumption that f is in minimal DNF form. We illustrate unique true points
with an example. If f is:

then with respect to implicant ab, TTFT, TTTF, and TTFF are all unique
true points. TTTT is also a true point, but it is not a unique true point,

because both implicants ab and cd are true for TTTT.
There is a corresponding notion for false points. Given a DNF

representation of a predicate f, a near false point for f with respect to
clause c in implicant i is an assignment of truth values to clauses such that
f is false, but if c is negated and all other clauses are left as is, i (and hence
f) evaluates to true. For example, if f is:

then the near false points are FTFF, FTFT, and FTTF for clause a in the
implicant ab, and TFFF, TFFT, and TFTF for clause b in the implicant ab.

8.2.3 The MUMCUT Coverage Criterion

The literature contains many DNF coverage criteria. The motivation for
many of these criteria is their ability to detect certain categories of faults.
In this section, we develop MUMCUT, the most important of these criteria
in the sense that it guarantees detection of single instances of all possible
faults in a certain fault hierarchy. First, we need to introduce fault types for
logic expressions, then several preliminary criteria.

Table 8.1 defines nine syntactic faults on predicates in DNF form2.
These faults capture typical ways in which one might fail to express the
correct predicate by making a single mistake. For example, the LIF
represents the case where an additional constraint is mistakenly included in
a term. This set of fault classes has received considerable scrutiny in the
literature, and is regarded as reasonably complete. There are some obvious
faults, such as “stuck-at” faults, that are not included explicitly in the list.
These faults are not included because if the faults that are included are
found, then they will also be found.

Figure 8.2 gives a detection relationship between the types of faults in
8.1. If a test set is guaranteed to detect a given type of fault, then the test
set is also guaranteed to detect the types of faults “downstream” from that
fault. For example, a test set guaranteed to detect all LIFs is also
guaranteed to all TOFs and all LRFs, and by implication, all ORF+s,
LNFs, TNFs, and ENFs. Note that any test detects ENFs.

Figure 8.2. Fault detection relationships.

Table 8.1. DNF fault classes.

Fault Description
Expression Negation
Fault (ENF)

An expression incorrectly written as its negation: f =
ab + c written as f′ = ab + c

Term Negation Fault
(TNF)

A term incorrectly written as its negation: f = ab + c
written as f′ = ab + c

Term Omission Fault
(TOF)

A term incorrectly omitted: f = ab + c written as f′ =
ab

Literal Negation
Fault (LNF)

A literal incorrectly written as its negation: f = ab + c
written as f′ = ab + c

Literal Reference
Fault (LRF)

A literal incorrectly replaced by another literal: f = ab
+ bcd written as f′ = ad + bcd

Literal Omission
Fault (LOF)

A literal incorrectly omitted: f = ab + c written as f′ =
a + c

Literal Insertion
Fault (LIF)

A literal incorrectly added to a term: f = ab + c
written as f′ = ab + bc

Operator Reference
Fault (ORF+)

An ‘Or’ incorrectly replaced by ‘And’: f = ab + c
written as f′ = abc

Operator Reference
Fault (ORF*)

An ‘And’ incorrectly replaced by ‘Or’: f = ab + c
written as f′ = a + b + c

The first coverage criterion we introduce detects LIF faults, which is
targeted because LIF is at the top of the fault hierarchy. Multiple Unique
True Points (MUTP) is defined:

CRITERION 8.27 Multiple Unique True Points Coverage (MUTP):Given
a minimal DNF representation of a predicate f, for each implicant i,
choose unique true points (UTPs) such that clauses not in i take on
values T and F.

By way of example, consider:

For implicant ab, if we choose the unique true points TTFT and TTTF,
then c and d, the clauses not in implicant ab, take on the values T and F.
Similarly, for implicant cd, if we choose the unique true points FTTT and
TFTT, then a and b, the clauses not in implicant cd, take on the values T
and F. The resulting MUTP set for predicate ab + cd is:

MUTP is a powerful criterion in terms of detecting faults. As mentioned
earlier, MUTP is engineered to detect Literal Insertion Faults or LIFs, a
fault class that sits atop the fault hierarchy in figure 8.2. If MUTP is
feasible, that is, if there exist unique true points such that literals not in
each implicant can take on the values T and F, then MUTP detects all LIF
faults. Applying this fact to the fault hierarchy, we can see that if MUTP is
feasible, it detects seven of the nine fault classes. The only fault classes not
detected are LOF and ORF*.

To see why MUTP is so powerful, consider what happens when a literal
is inserted into a term. Because MUTP forces the clauses not in the
implicant to take on the values T and F on different tests, the inserted
literal is guaranteed to take on the value F on some test. That means that
the entire implicant is false at what is supposed to be a true point, and
hence the MUTP test fails by evaluating to false instead of true.

To make this concrete, consider the implicant ab in our earlier predicate
ab + cd. As we saw, MUTP is feasible for every implicant in this
predicate, which means that we found UTPs where c and d takes on both
truth values, namely TTFT and TTTF.

Now consider what happens if we insert a literal l into implicant ab:

If l is a, then the literal is redundant, and there is no change to the function,

and hence no fault to detect. If l is a, then both MUTP tests TTFT and
TTTF will evaluate to false, and the LIF is detected. Similar behavior
occurs if l is a b or b. If l is c, then test TTFT evaluates to false, and the
LIF is detected. Similarly, if l is c, test TTTF evaluates to false, and again
the LIF is detected. Similar behavior happens if l is d or d. Of course, this
argument breaks down for predicates where MUTP is not feasible for all
implicants, and hence there is no guarantee that MUTP detects all LIFs for
arbitrary predicates.

To summarize, MUTP is good, but it is not complete with respect to the
fault hierarchy. In particular, it cannot detect any LOF or ORF* faults,
since these faults require false points for detection, and, by definition,
MUTP generates only true points. MUTP also has blind spots were MUTP
is infeasible. The next criterion, CUTPNFP, includes false points to
address the first of these concerns:

CRITERION 8.28 Corresponding Unique True Point and Near False
Point Pair Coverage (CUTPNFP): Given a minimal DNF
representation of a predicate f, for each literal c in each implicant i, TR
contains a unique true point for i and a near false point for c in i such
that the two points differ only in the truth value of c.

By way of example, for:

if we consider clause a in the implicant ab, we can choose one of three
unique true points, namely, TTFF, TTFT, and TTTF, and pair each, in turn,
with the corresponding near false points FTFF, FTFT, and FTTF. So, for
example, to satisfy CUTPNFP with respect to clause a in implicant ab, we
could choose the first pair, TTFF and FTFF. Likewise, to satisfy
CUTPNFP with respect to clause b in implicant ab, we could choose the
pair TTFF and TFFF, to satisfy CUTPNFP with respect to clause c in
implicant cd, the pair FFTT and FFFT, and to satisfy CUTPNFP with
respect to clause d in implicant cd, the pair FFTT and FFTF. The resulting
CUTPNFP set is:

Note that the first two tests are unique true points, and the remaining four
are corresponding near false points.

Unlike MUTP, CUTPNFP effectively detects LOF faults if CUTPNFP
is feasible. The reason is that for every clause c in term i, CUTPNFP
demands a unique true point and a near false point. These two tests differ
only in the value of the clause c. Hence if c (or c) is incorrectly deleted in
the implementation, both of these tests will produce the same truth value,
thereby revealing the fault. Given the detection relationships in Figure 8.2,
we can infer that CUTPNFP, if feasible, also detects ORF*, LNF, TNF,
and ENF faults. It’s worth pointing out that CUTPNFP does subsume
RACC, which is not surprising if you consider the way in which
CUTPNFP picks pairs of tests. Also, CUTPNFP does not guarantee the
detection of LIF faults and hence cannot replace MUTP.

There are some cases where MUTP and CUTPNFP are infeasible, and
hence additional tests are needed. The MNFP criterion supplies these tests:

CRITERION 8.29 Multiple Near False Point Coverage (MNFP): Given a
minimal DNF representation of a predicate f, for each literal c in each
implicant i, choose near false points (NFPs) such that clauses not in i
take on values T and F.

Consider again:

For implicant ab, consider literal a. If we choose FTFT and FTTF as near
false points (NFPs) with respect to a, then c and d, the literals not in ab,
take on the values T and F. Similarly for literal b in implicant ab, we can
choose TFFT and TFTF. For implicant cd, if we choose FTFT and TFFT
as near false points (NFPs) with respect to c, then a and b, the literals not
in cd, take on the values T and F. Similarly for literal d in implicant cd, we
can choose FTTF and TFTF. There is overlap in these choices: only 4 tests
are needed. The resulting MNFP set for predicate ab + cd is:

It turns out that if you apply all of MUTP, CUTPNFP, and MNFP, the
resulting test set detects the entire fault hierarchy, even in those cases
where some test requirements are infeasible. Basically, feasible test
requirements from one criterion compensate for infeasible test
requirements from other criteria. Hence MUMCUT combines these three
criteria:

CRITERION 8.30 MUMCUT: Given a minimal DNF representation of a
predicate f, apply MUTP, CUTPNFP, and MNFP to f.

Compared to a semantic coverage criterion such as RACC, MUMCUT
is quite expensive in terms of the number of tests needed for a given
predicate. But less expensive variants of MUMCUT have been developed,
and these variants require far fewer tests, although still more than the
semantic (ACC) criteria. But there is a significant benefit to these extra
tests. Let’s consider the effectiveness of RACC in detecting faults in the
fault hierarchy.

From a theoretical perspective, RACC is only guaranteed to detect all
instances of the TNF and ENF faults. RACC tests are not guaranteed to
detect the faults for the other seven fault classes.

In practice, researchers have found that RACC tests only detect about
one-third of the faults from the fault hierarchy, failing to detect two-thirds.
Thus, MUMCUT should be considered when testing applications where
the consequences of failures are especially severe.

8.2.4 Karnaugh Maps

This section reviews Karnaugh maps, which are exceedingly useful for
producing DNF representations for predicates with a modest number of
clauses. Students looking for an in-depth treatment of Karnaugh maps can
turn to a wide variety of textbooks or internet resources.

A Karnaugh map is a tabular representation of a predicate with the
special property that groupings of adjacent table entries correspond to
simple DNF representations. Karnaugh maps are useful for predicates of
up to four or five clauses; beyond that, they become cumbersome. A
Karnaugh map for a predicate in four clauses is given below:

For now, suppose that entries in the table are restricted to truth values.
Truth values can be assigned in 22n

 possible ways to the 2n entries in a
table for n clauses. So, the four clauses represented in the table above have
24 or 16 entries, and 216 = 65, 536 possible functions. The reader will be
relieved to know that we will not enumerate all of these in the text. Notice
the labeling of truth values along the columns and rows. In particular,
notice that any pair of adjacent cells differ in the truth value of exactly one
clause. It might help to think of the edges of the Karnaugh map as being
connected as well, so that the top and bottom rows are adjacent, as are the
left and right columns (that is, a toroidal mapping from 2-space to 3-
space).

The particular function represented in the Karnaugh map above can be
spelled out in full:

The expression simplifies to:

The simplification can be read off the Karnaugh map by grouping together
adjacent cells into rectangles of size 2k for some k > 0 and forming
rectangles of size 1 for cells with no adjacent cells. Overlaps among the
groupings are fine. We give an example in three clauses to illustrate.
Consider the following Karnaugh map:

Four rectangles of size 2 can be extracted from this graph. They are the
functions bc, ab, ac, and bc, and are represented by the following
Karnaugh maps:

At first, the last of these might be a bit hard to see as a rectangle, but
remember that the Karnaugh map is joined at the edges, left and right, as
well as top and bottom. We could write the original function out as the
disjunction of these four Karnaugh maps, each of which gives a prime
implicant, but notice that the second, representing ab, is, in fact, redundant
with the other three implicants, since all of its entries are covered by
another Karnaugh map. The resulting minimal DNF expression is:

One can also note that all of the entries of ac are covered by other
Karnaugh maps, so ac is redundant with the remaining three implicants. So
a different minimal DNF representation is:

Negations in DNF form are also easy to pull from a Karnaugh map.
Consider again the function f given above. We can negate f by changing all
blank entries to ‘1’s and all ‘1’s to blank:

Here, the three cells in the Karnaugh map can be covered with two
rectangles, 1 of size 2, and the other of size 1. The resulting nonredundant,
prime implicant formulation is:

Karnaugh maps are extremely convenient notations to derive test sets
for many of the logic coverage criteria. For example, consider again the
predicate ab + cd. Unique true points are simply true points covered by a
single rectangle. Hence, of all the true points in ab + cd, all but TTTT are
unique true points. Near false points for any given true point are simply
those false points that are immediately adjacent in the Karnaugh map. For
MUTP, we can identify unique true points where clauses not in the term
take on both truth values. For CUTPNFP, pair up near false points with
unique true points, being careful to obtain a pairing for each clause in f.
For MNFP, we identify near false points for each literal such that clauses
not in the term under analysis take on both truth values. Karnaugh maps
are an easy way to compute determination: simply identify all pairs of
adjacent cells where the truth value of the variable in question and the
truth value of the predicate both change. Pairing of true points with near
false points is also an easy way to develop RACC tests. Note that for
RACC tests, it does not matter if the true points are unique or not. Slide
animations of all of these uses of Karnaugh maps are available on the book
website, as are some video illustrations.

EXERCISES
Section 8.2.

1. Use predicates (i) through (iv) to answer the following questions.

 i. f = abc + abc

 ii. f = abcd + abcd

iii. f = ab + abc + abc

iv. f = acd + cd + bcd

(a) Draw the Karnaugh maps for f and f.
(b) Find the nonredundant prime implicant representation for f and

f.
(c) Give a test set that satisfies Implicant Coverage (IC) for f.
(d) Give a test set that satisfies Multiple Unique True Points

(MUTP) for f.
(e) Give a test set that satisfies Corresponding Unique True Point

and Near False Point Pair Coverage (CUTPNFP) for f.
(f) Give a test set that satisfies Multiple Near False Points (MNFP)

for f.
(g) Give a test set that is guaranteed to detect all faults in Figure

8.2.
2. Use the following predicates to answer questions (a) through (f).

 W = (b ∧ c ∧ d)
 X = (b ∧ d) ∨ (b d)
 Y = (a ∧ b)
 Z = (b ∧ d)

(a) Draw the Karnaugh map for the predicates. Put ab on the top
and cd on the side. Label each cell with W, X, Y, and/or Z as
appropriate.

(b) Find the minimal DNF expression that describes all cells that
have more than one definition.

(c) Find the minimal DNF expression that describes all cells that
have no definitions.

(d) Find the minimal DNF expression that describes X ∨ Z.
(e) Give a test set for X that uses each prime implicant once.
(f) Give a test set for X that is guaranteed to detect all faults in

Figure 8.2.
3. (Challenging!) Consider “stuck-at” faults, where a literal is replaced

by the constant true or the constant false. These faults do not appear
in the fault list given in table 8.1 or the corresponding fault detection
relationships given in Figure 8.2.
(a) Which fault type “dominates” the stuck-at fault for the constant

true? That is, find the fault in Figure 8.2 such that if a test set is
guaranteed to detect every occurrence of that fault, then the test
set also detects all stuck-at true faults. Explain your answer.

(b) Which fault type dominates the stuck-at fault for the constant

false? That is, find the fault in Figure 8.2 such that if a test set is
guaranteed to detect every occurrence of that fault, then the test
set also detects all stuck-at false faults. Explain your answer.

8.3 STRUCTURAL LOGIC COVERAGE OF
PROGRAMS

As with graph coverage criteria, the logic coverage criteria apply to
programs in a straightforward way. Predicates are derived directly from
decision statements in the programs (if, case, and loop statements).
The higher-end criteria, such as active clause coverage, are most useful as
the number of clauses in the predicates grow. However, the vast majority
of predicates in real programs have only one clause, and programmers tend
to write predicates with a maximum of two or three clauses. It should be
clear that when a predicate only has one clause, all of the logic coverage
criteria collapse to Predicate Coverage.

The primary complexity of applying logic coverage to programs has
more to do with reachability than with the criteria. That is, a logic
coverage criterion imposes test requirements that are related to specific
decision points (statements) in the program. Getting values that satisfy
those requirements is only part of the problem; getting to the statement is
sometimes more difficult. Two issues are associated with getting there.
The first is simply that of reachability from Chapter 3; the test case must
include values to reach the statement. In small programs (that is, most
methods) this problem is not hard, but when applied within the context of
an entire arbitrarily large program, satisfying reachability can be
enormously complex. The values that satisfy reachability are prefix values
in the test case.

The other part of “getting there” can be even harder. The test
requirements are expressed in terms of program variables that may be
defined locally to the unit or locally to the statement block under test. Test
cases, on the other hand, can include values only for inputs to the program
that we are testing. Therefore these internal variables have to be resolved
to be in terms of the input variables. Although the values for the variables
in the test requirements should ultimately be a function of the values of the
input variables, this relationship may be arbitrarily complex. In fact, this
internal variable problem is formally undecidable.

Consider an internal variable X that is derived from a table lookup,
where the index to the table is determined by a complex function whose
inputs are program inputs. To choose a particular value for X, the tester has
to work backward from the statement where the decision appears, to the
table where X was chosen, to the function, and finally to an input that
would cause the function to compute the desired value. This controllability
problem has been explored in depth in the automatic test data generation
literature and will not be discussed in detail here, except to note that this
problem is a major reason why the use of program-level logic coverage
criteria is usually limited to unit and module testing activities.

We illustrate the logic coverage concepts through an example. Figure
8.3 shows the class Thermostat, which is part of a household
programmable thermostat. It contains one principle method,
turnHeaterOn(), which uses several instance variables to decide
whether to turn the heater on. The instance variables each have a short
“setter” method, so can be considered to be “half-beans.” Although a small
example, Thermostat has several advantages: Its purpose is relatively
easy to understand, it is small enough to fit in a classroom exercise, and its
logic structure is complicated enough to illustrate most of the concepts.
Line numbers have been added to the figure to allow us to reference
specific decision statements in the text.

Figure 8.3. Thermostat class.

When applying logic criteria to programs, predicates are taken from
decision points in the program, including if statements, case /
switch statements, for loops, while loops, and do-until loops.
This is illustrated with the turnHeaterOn() method in the
Thermostat class. turnHeaterOn() has the following predicates
(line numbers are shown on the left, and the else statement at line 40
does not have its own predicate):

The predicate on lines 28–30 has four clauses and uses seven variables
(two are used twice). We use the following substitutions to simplify the
discussion.

Thus we get:

The turnHeaterOn() method has one input parameter, an object
that contains the temperature settings the user has programmed.
turnHeaterOn() also uses the instance variables controlled by setter
methods. dTemp is an internal variable that determines the desired
temperature. It uses the period of the day and the type of day to ask the
ProgrammedSettings object for the current desired temperature. The
rest of this section illustrates how to satisfy the logic coverage criteria on
turnHeaterOn(). Before addressing the actual criteria, it is first
necessary to analyze the predicates to find values that will reach the
predicates (the reachability problem) and to understand how to assign
particular values to the internal variable dTemp (the internal variable
problem).

First we consider reachability. The predicate on lines 28–30 is always
reached, so the condition that must be satisfied to reach lines 28–30 (its
reachability condition) is True, as shown in Table 8.2. The predicate on
line 34 is inside the if block that starts on line 24, so is only reached if the
predicate on lines 28–30 is true. Thus, its reachability condition is (a ||
(b && c)) && d. The else part of the if block transfers control to
line 42. Its reachability condition is the negation of the reachability
condition to enter the if block: !((a || (b && c)) && d), which
can be simplified to !c || (!a && (!b || !d)).

Table 8.2. Reachability for Thermostat predicates.

28–30: True
34: (a || (b && c)) && d
40: !((a || (b && c)) && d)

Note that clause a is an abbreviation for curTemp < dTemp -
thresholdDiff, which uses the local (internal) variable dTemp. We
cannot pass a value directly to dTemp as part of the test inputs, so we have
to control its value indirectly. So the next step in generating test values is
to discover how to assign specific values to dTemp.

Line 26 uses the programmedSettings object to call the method
getSetting() with the parameters period and day. Let’s suppose
we want the desired temperature to be a room comfortable 69F (about
20.5C). This is an issue of controllability that complicates test automation.
A naive solution would be to change the method under test by replacing
the method call with a direct assignment. This has two disadvantages: (1)
we must recompile the Thermostat class before running each test, and
(2) we are testing a different method than we plan to deploy.

A more robust approach is to learn how to set the program state so that
the call in turnHeaterOn() will return the desired value. In the
Thermostat program, this is accomplished with a call to the
setSetting() method in the programmedSettings object. The
period and day are Java enum types. The source for
Thermostat.java, ProgrammedSettings.java,
Period.java, and DayType.java are all available on the book
website. We choose to set the temperature in the morning on a weekday,
so our test needs the following three calls:

 setSetting (Period.MORNING, DayType.WEEKDAY,
69);

 setPeriod (Period.MORNING);
 setDay (DayType.WEEKDAY);

These statements must appear in the automated test before the call to
turnHeaterOn(). This also illustrates an implicit requirement for
automated testing—the test team must include programmers who can
understand the software well enough to create these kinds of calls.

8.3.1 Satisfying Predicate Coverage

Finding values to satisfy Predicate Coverage for the predicate on lines 28–
30 in turnHeaterOn() involves four clauses and seven variables,
including the internal variable dTemp. To set the predicate (a || (b
&& c)) && d to be true, d must be true and the left side, (a || (b
&& c)), must also be true. Let’s make it simple and try to assign all four
clauses, a, b, c, and d, to be true, as shown in Table 8.3.

Table 8.3. Clauses in the Thermostat predicate on lines 28–30.

Clause Label Clause Detail Value
a: curTemp < dTemp - thresholdDiff true
b: Override true
c: curTemp < overTemp - thresholdDiff true
d: timeSinceLastRun > minLag true

Clause a is straightforward, although we must remember that we fixed
dTemp to be 69 to solve the internal variable problem. If we set the
current temp (curTemp) to be 63 and the threshold difference (
thresholdDiff) to be 5, then 63 is less than 69–5 and a is true. (The
threshold difference is the maximum we allow the current temperature to
deviate from the desired temperature before cycling the heater on again.)

Clause b is even simpler: an override means a human has entered a new
desired temperature that will temporarily override the programming. So
the variable Override is simply given the value true.

Clause c is associated with an override. An override must come with a
new temperature (overTemp), and the heater is only turned on if the
current temperature is less than the new overriding temperature, minus the
threshold. We have already fixed thresholdDiff at 5 and curTemp
at 63, so clause c can be set true by setting overTemp to be 70.

Finally, clause d compares timeSinceLastRun with minLag. The
minLag variable defines how long the heater must be off before it can be
turned on again (a safety or engineering constraint from the heater
manufacturer). We will assume it is 10 minutes. Then we must set
timeSinceLastRun to be greater than 10, for example, 12.

Putting all of these decisions together results in the executable test in

Figure 8.4.

Figure 8.4. PC true test for Thermostat class.

The expected result is true, as stated in the comments. Analysis for the
false case is similar and is left as an exercise. We also include an exercise
to complete the automated test in a framework such as JUnit.

It should be obvious from this example that Predicate Coverage on
programs is simply another way to formulate the Edge Coverage criterion.
It is not necessary to draw a graph for the logic criteria, but the control
flow graph can be used to find values for reachability.

Previously we said that selection of values for “don’t care” inputs
should be postponed until reachability is determined. This is because of
potential interactions with the requirements for reachability and the
selection of values. That is, some inputs may be “don’t care” for the test
requirements, but may need specific values to reach the decision. Thus, if
we select values too early, it may become difficult or impossible to satisfy
reachability.

8.3.2 Satisfying Clause Coverage

We have already done most of the work to satisfy clause coverage for the
predicate on lines 28–30 when satisfying predicate coverage. We use the
same clause abbreviations from Table 8.3 (a, b, c, and d). To satisfy CC,
we need to set each clause to be both true and false. Since we set each
clause to be true for the PC tests, half our work is already done.

For clause a, we already discovered how to set dTemp to be 69, so we
can reuse that part of the test. We can also set thresholdDiff at 5
again. If we set curTemp to be 66, then clause a evaluates to false.

All we need to do for clause b is set the variable to be false.
For clause c, we have already fixed thresholdDiff at 5 and

curTemp at 66. We make clause c false by setting overTemp to be 67.
Finally, clause d compares timeSinceLastRun with minLag. The

minLag variable defines how long the heater must be off before it can be
turned on again (a safety or engineering constraint from the heater
manufacturer). For consistency with other tests, we will again assume it is
10 minutes. Then we must set timeSinceLastRun to be less than or
equal to 10, for example, 8.

The definition for CC does not specify whether the values for each
clause should be in separate tests, or combined into one test. We can
satisfy CC on this predicate with two tests—one where all clauses are true,
and another where all clauses are false. The first disadvantage of this
approach is that PC and CC become the same. The second is that short-
circuit evaluation means some clauses will never be evaluated. With the
predicate (a || (b && c)) && d, if (a || (b && c)) is false,
then d is not evaluated. If a is true, (b && c) is not evaluated. Thus, if
all true clauses are combined into one test, yielding (a=true ||
(b=true && c=true)) && d=true, b and c are not even evaluated.
Likewise, if all false clauses are combined into one test, yielding
(a=false|| (b=false && c=false)) && d=false, c and d are
not evaluated.

Rather than resolve this question, we simply list the Java statements
needed to automate the clause assignments in Figure 8.5. Each clause is
listed separately and the tester can combine them as desired.

Figure 8.5. CC test assignments for Thermostat class.

8.3.3 Satisfying Active Clause Coverage

Rather than going through all of the active clause criteria, we focus on
Correlated Active Clause Coverage. Our predicate is p = (a ∨ (b ∧ c))
∧ d. Computing pa, we get:

That is, clause a determines the value of the predicate exactly when d is
true, and either b or c is false. We suggest students verify this computation
with the tabular method and with the online tool on the book website.
Similar computations for clauses b, c, and d yield:

Table 8.4 shows the truth assignments needed to satisfy CACC for all
four clauses, based on the determination computations. The table shows
the truth assignments for the various clauses. The major clauses are in the
left column, and major clause values are shown with capital ‘T’s and ‘F’s.

Table 8.4. Correlated active clause coverage for Thermostat.

In Table 8.4, the second truth assignment for a as a major clause is the
same as the second truth assignment for c. Likewise, the first truth
assignment for b is the same as the first for c. These are duplicated truth
assignments and can be removed, so we only need six tests to satisfy
CACC on this predicate.

The six tests specified in Table 8.4 can be turned into executable tests
by using the appropriate values for the clauses as worked out in Sections
8.3.1 and 8.3.2. Putting these all together results in six tests. Again, each
test must start by instantiating the objects, and then setting the internal
variable dTemp:

Since these will be common to all tests, we would expect them to be in a
JUnit @Setup method (or something similar in another test framework).

Putting the setting for dTemp into @Setup must be done with care,
however, in case another test needs a different value. It is possible for a
test to override what happens in the @Setup methods, but it can be
confusing for tests that have a long life span.

The key assignments for the tests are listed below. Test number five has
all clauses true, so can be taken directly from Figure 8.4 in section 8.3.1.
The following list includes short notes about the clauses that are set to be
false.

The tester can be very confident that these six tests will exercise the
turnHeaterOn() method thoroughly, and test the predicate with great
rigor.

8.3.4 Predicate Transformation Issues

ACC criteria are considered to be expensive for testers, and attempts have
been made to reduce the cost. One approach is to rewrite the program to
eliminate multi-clause predicates, thus reducing the problem to branch
testing. A conjecture is that the resulting tests will be equivalent to ACC.
However, we explicitly advise against this approach for two reasons. One,
the resulting rewritten program may have substantially more complicated
control structure than the original (including repeated statements), thus
endangering both reliability and maintainability. Second, as the following
examples demonstrate, the transformed program may not require tests that
are equivalent to the tests for ACC on the original program.

Consider the following program segment, where a and b are arbitrary
boolean clauses and S1 and S2 are arbitrary statements. S1 and S2 could
be single statements, block statements, or function calls.

The Correlated Active Clause Coverage criterion requires the test
specifications (t, t), (t, f), and (f, t) for the predicate a ∧ b. However, if the
program segment is transformed into the following functionally equivalent
structure:

the Predicate Coverage criterion requires three tests: (t, t) to reach
statement S1, (t, f) to reach the first occurrence of statement S2, and either

(f, f) or (f, t) to reach the second occurrence of statement S2. Choosing (t,
t), (t, f), and (f, f) means that our tests do not satisfy CACC in that they do
not allow a to determine fully the predicate’s value. Moreover, the
duplication of S2 in the above example has been taught to be poor
programming for years, because of the potential for mistakes when
duplicating code.

A slightly larger example reveals the flaw even more clearly. Consider
the simple program segment:

A straightforward rewrite of this program fragment to remove the multi-
clause predicate results in this complicated ugliness:

This fragment is cumbersome in the extreme, and likely to be error-prone
with five occurrences of S1 and two of S2. Applying the Predicate
Coverage criterion to this would be equivalent to applying Combinatorial
Coverage to the original predicate. A reasonably clever programmer (or
good optimizing compiler) would simplify it as follows:

This fragment is still much harder to understand than the original. Imagine
a maintenance programmer trying to change this thing!

The following table illustrates truth assignments that can be used to
satisfy CACC for the original program segment and predicate testing for
the modified version. An ‘X’ under CACC or Predicate indicates that truth
assignment is used to satisfy the criterion for the appropriate program
fragment. Clearly, Predicate Coverage on an equivalent program is not the
same as CACC testing on the original. Predicate coverage on this modified
program does not subsume CACC, and CACC does not subsume Predicate
Coverage.

8.3.5 Side Effects in Predicates

One more difficult issue comes up when applying logic criteria to
predicates. If a predicate contains the same clause twice, and a clause in
between has a side effect that can change the value of the clause that
appears twice, the test values get much harder to create.

Consider the predicate A && (B || A), where A appears twice. We
might assume that the runtime system will first check A, then check B. If B
is false, then A is checked again. However, suppose B is actually a method

call, changeVar (A), which has a side effect of changing the value of
A.

This introduces a very difficult controllability problem—how can we
write the test to control for two different values of A in the same predicate?
Neither the literature on logic testing nor the literature on test automation
give a clear answer to this problem, so the tester probably needs to handle
this as a special case.

Our best suggestion is social, rather than technical. Go ask the
programmer if she really wants to do that. Perhaps the best solution to this
example would be to replace the predicate A && (B || A) with the
equivalent A.

EXERCISES
Section 8.3.

1. Complete and run the tests to satisfy PC for the Thermostat class.
2. Complete and run the tests to satisfy CC for the Thermostat

class.
3. Complete and run the tests to satisfy CACC for the Thermostat

class.
4. For the Thermostat class, check the computations for how to

make each major clause determine the value of the predicate by
using the online tool, then the tabular method.

5. Answer the following questions for the method checkIt() below:

(a) Transform checkIt() to checkItExpand(), a method
where each if statement tests exactly one boolean variable.
Instrument checkItExpand() to record which edges are
traversed. (“print” statements are fine for this.)

(b) Derive a GACC test set T1 for checkIt(). Derive an Edge

Coverage test set T2 for checkItExpand(). Build T2 so
that it does not satisfy GACC on the predicate in
checkIt().

(c) Run both T1 and T2 on both checkIt() and checkItExpand().
6. Answer the following questions for the method twoPred() below:

(a) List test inputs for twoPred() that achieve Restricted Active
Clause Coverage (RACC).

(b) List test inputs for twoPred() that achieve Restricted
Inactive Clause Coverage (RICC).

7. Answer the following questions for the program fragments below:

(a) Give a GACC test set for fragment P. (Note that GACC,
CACC, and RACC yield identical test sets for this example.)

(b) Does the GACC test set for fragment P satisfy Edge Coverage

on fragment Q?
(c) Write down an Edge Coverage test set for fragment Q. Make

your test set include as few tests from the GACC test set as
possible.

8. For the index() program in Chapter 7, complete the test sets for
the following coverage criteria by filling in the “don’t care” values.
Make sure to ensure reachability. Then derive the expected output.
Download the program, compile it, and run it with your resulting
test cases to verify correct outputs.
(a) Predicate Coverage (PC)
(b) Clause Coverage (CC)
(c) Combinatorial Coverage (CoC)
(d) Correlated Active Clause Coverage (CACC)

9. For the Quadratic program in Chapter 7, complete the test sets
for the following coverage criteria by filling in the “don’t care”
values. Make sure to ensure reachability. Then derive the expected
output. Download the program, compile it, and run it with your
resulting test cases to verify correct outputs.
(a) Predicate Coverage (PC)
(b) Clause Coverage (CC)
(c) Combinatorial Coverage (CoC)
(d) Correlated Active Clause Coverage (CACC)

10. The program TriTyp is an old and well-used example from the
unit testing research literature. TriTyp is used as a teaching tool
for the same reasons it has staying power in the literature: the
problem is familiar; the control structure is interesting enough to
illustrate most issues; and it does not use language features that
make this analysis really hard, such as loops and indirect references.
This version of TriTyp is more complicated than some, but that
helps illustrate the concepts. TriTyp is a simple triangle
classification program. Line numbers were added to allow us to refer
to specific decision statements in the answers.
Use TriTyp, a numbered version of which is available on the book
website, to answer the questions below. Only the triang()
method is considered.
(a) List all predicates in the triang() method. Index them by

the line numbers in the program listing.

(b) Compute reachability for each of triang()’s predicates.
You may abbreviate the input variables as S1, S2, and S3.

(c) Many of the reachability predicates contain an internal variable
(triOut). Resolve the internal variable in terms of input
variables. That is, determine what values the input variables
need to have to give triOut each possible value.

(d) Rewrite the reachability predicates by solving for triOut.
That is, the reachability predicates should be completely in
terms of the input variables.

(e) Find values for each predicate to satisfy predicate coverage
(PC).

(f) Find values for each predicate to satisfy clause coverage (CC).
(g) Find values for each predicate to satisfy correlated active

clause coverage (CACC).
11. (Challenging!) For the TriTyp program, complete the test sets for

the following coverage criteria by filling in the “don’t care” values,
ensuring reachability, and deriving the expected output. Download
the program, compile it, and run it with your resulting test cases to
verify correct outputs.

(a) Predicate Coverage (PC)
(b) Clause Coverage (CC)
(c) Combinatorial Coverage (CoC)
(d) Correlated Active Clause Coverage (CACC)

12. Consider the GoodFastCheap class, available on the book
website. This class implements the old engineering joke: “Good, Fast,
Cheap: Pick any two!”

(a) Develop tests that achieve RACC for the predicate in the
isSatisfactory() method. Implement these tests in
JUnit.

(b) Suppose we refactor the isSatisfactory() method as
shown below:

The RACC tests from the original method do not satisfy

RACC on the refactored method. List what is missing, and add
the missing tests to the JUnit from the prior exercise.
(c) Develop tests that achieve MUMCUT for the predicate in
the isSatisfactory() method of the GoodFastCheap
class. Implement these tests in JUnit.

8.4 SPECIFICATION-BASED LOGIC COVERAGE

Software specifications, both formal and informal, appear in a variety of
forms and languages. They almost invariably include logical expressions,
allowing the logic coverage criteria to be applied. We start by looking at
their application to simple preconditions on methods.

Programmers often include preconditions as part of their methods. The
preconditions are sometimes written as part of the design, and sometimes
added later as documentation. Specification languages typically make
preconditions explicit with the goal of analyzing the preconditions in the
context of an invariant. A tester may consider developing the
preconditions specifically as part of the testing process if preconditions do
not exist. For a variety of reasons, including defensive programming and
security, transforming preconditions into exceptions is common practice.
In brief, preconditions are common and rich sources of predicates in
specifications, and so we focus on them here. Of course, other
specification constructs, such as postconditions and invariants, also are
rich sources of complex predicates.

Consider the cal() method in Figure 8.6. The method lists explicit
preconditions in natural language. These can be translated into predicate
form as follows:

The comment about day1 and day2 being in the same year can be safely
ignored, because that prerequisite is enforced syntactically by the fact that
only one parameter appears for year. It is probably also clear that these
preconditions are not complete. Specifically, a day of 31 is valid only for
some months. This requirement should be reflected in the specifications or
in the program.

Figure 8.6. Calendar method.

This predicate has a very simple structure. It has eleven clauses (which
sounds like a lot!) but the only logical operator is “and.” Satisfying
Predicate Coverage for cal() is simple–all clauses need to be true for the
true case and at least one clause needs to be false for the false case. So
(month1 = 4, month2 = 4, day1 = 12, day2 = 30, year = 1961) satisfies the
true case, and the false case is satisfied by violating the clause month1 <=
month2, with (month1 = 6, month2 = 4, day1 = 12, day2 = 30, year =
1961). Clause coverage requires all clauses to be true and false. We might
try to satisfy this requirement with only two tests, but some clauses are
related and cannot both be false at the same time. For example, month1
cannot be less than 1 and greater than 12 at the same time. The true test for
Predicate Coverage allows all clauses to be true, then we use the following
tests to make each clause false: (month1 = -1, month2 = -2, day1 = 0, day2
= 0, year = 0) and (month1 = 13, month2 = 14, day1 = 32, day2 = 32, year
= 10500).

We must first find how to make each clause determine the predicate to
apply the active clause coverage criteria. This turns out to be simple with
disjunctive normal form predicates–all we have to do is make each minor
clause true. To find the remaining tests, each other clause is made to be
false in turn. Therefore, CACC (also RACC and GACC) is satisfied by the
tests that are specified in Table 8.5. (To save space, we use abbreviations
of the variable names.)

Table 8.5. Correlated active clause coverage for cal() preconditions.

EXERCISES
Section 8.4.

1. Consider the remove() method from the Java Iterator
interface. The remove() method has a complex precondition on the
state of the Iterator, and the programmer can choose to detect
violations of the precondition and report them as
IllegalStateException.
(a) Formalize the precondition.
(b) Find (or write) an implementation of an Iterator. The Java

Collection classes are a good place to search.
(c) Develop and run CACC tests on the implementation.

8.5 LOGIC COVERAGE OF FINITE STATE
MACHINES

Chapter 7 discussed the application of graph coverage criteria to Finite

State Machines. Recall that FSMs are graphs with nodes that represent
states and edges that represent transitions. Each transition has a pre-state
and a post-state. FSMs usually model behavior of software and can be
more or less formal and precise, depending on the needs and inclinations
of the developers. This text views FSMs in the most generic way, as
graphs. Differences in notations are considered only in terms of the effect
they have on applying the criteria.

The most common way to apply logic coverage criteria to FSMs is to
use logical expressions from the transitions as predicates. In the Elevator
example in Chapter 7, the trigger and thus the predicate is openButton =
pressed. Tests are created by applying the criteria from Section 8.1.1 to
these predicates.

Consider the example in Figure 8.7. This FSM models the behavior of
the memory seat in a car (Nissan Maxima 2012). The memory seat has two
configurations for two separate drivers and controls the side mirrors (
sideMirrors), the vertical height of the seat (seatBottom), the
horizontal distance of the seat from the steering wheel (seatBack), and
the lumbar support (lumbar). The intent is to remember the
configurations so that the drivers can conveniently switch configurations
with the press of a button. Each state in the figure has a number for
efficient reference.

Figure 8.7. FSM for a memory car seat–Nissan Maxima 2012.

The initial state of the FSM is whichever configuration it was in when
the system was last shut down, either Driver 1, Driver 2, or Modified
Configuration. The drivers can modify the configuration by changing one
of the four controls; changing the side mirrors, moving the seat backwards
or forwards, raising or lowering the seat, or modifying the lumbar support
(triggering events). These controls work only if the ignition is on (a
guard). The driver can also change to the other configuration by pressing
either Button1 or Button2 when the ignition is on. In these cases,
the guards allow the configuration to be changed only if the Gear is in
Park or the ignition is off. These are safety constraints, because it
would be dangerous to allow the driver’s seat to go flying around when the
car is moving.

When the driver changes one of the controls, the memory seat is put into
the modified configuration state. The new state can be saved by
simultaneously pressing the Reset button and either Button1 or
Button2 when the ignition is on. The new configuration is saved
permanently when the ignition is turned off.

This type of FSM provides an effective model for testing software,

although several issues must be understood and dealt with when creating
predicates and then test values. Guards are not always explicitly listed as
conjuncts, but they are conjuncts in effect and so should be combined with
the triggers using the AND operator. In some specification languages,
most notably SCR, the triggers actually imply two values. In SCR, if an
event is labeled as triggering, it means that the value of the resulting
expression must explicitly change. This implies two values—a before
value and an after value—and is modeled by introducing a new variable.
For example, in the memory seat example, the transition from New
Configuration Driver 1 (state 4) to Driver 1
Configuration (state 1) is taken when the ignition is turned off. If that
is a triggering transition in the SCR sense, then the predicate needs to have
two parts: ignition = on ∧ ignition′ = off. ignition′ is the after value.

The transitions from Modified Configuration (state 3) to the
two New Configuration states (states 4 and 5) demonstrate another
issue. The two buttons Reset and Button1 (or Button2) must be
pressedsimultaneously. In practical terms for this example, we would like
to test for what happens when one button is pressed slightly prior to the
other. Unfortunately, the mathematics of logical expressions used in this
chapter do not have an explicit way to represent this requirement, thus it is
not handled explicitly. The two buttons are connected in the predicate with
the AND operator. In fact, this is a simple example of the general problem
of timing, and needs to be addressed in the context of real-time software.

The predicates for the memory seat example are in Table 8.6 (using the
state numbers from Figure 8.7).

Table 8.6. Predicates from memory seat example.

Pre-state Post-state Predicate
 1 2 Button2 ∧ (Gear = Park ∨ ignition = off)
 1 3 sideMirrors ∧ ignition = on
 1 3 seatBottom ∧ ignition = on
 1 3 lumbar ∧ ignition = on
 1 3 seatBack ∧ ignition = on
 2 1 Button1 ∧ (Gear = Park ∨ ignition = off)
 2 3 sideMirrors ∧ ignition = on
 2 3 seatBottom ∧ ignition = on
 2 3 lumbar ∧ ignition = on
 2 3 seatBack ∧ ignition = on

 3 1 Button1 ∧ (Gear = Park ∨ ignition = off)
 3 2 Button2 ∧ (Gear = Park ∨ ignition = off)
 3 4 Reset ∧ Button1 ∧ ignition = on
 3 5 Reset ∧ Button2 ∧ ignition = on
 4 1 ignition = off
 4 3 sideMirrors ∧ ignition = on
 4 3 seatBottom ∧ ignition = on
 4 3 lumbar ∧ ignition = on
 4 3 seatBack ∧ ignition = on
 5 2 ignition = off
 5 3 sideMirrors ∧ ignition = on
 5 3 seatBottom ∧ ignition = on
 5 3 lumbar ∧ ignition = on
 5 3 seatBack ∧ ignition = on

The tests to satisfy the various criteria are fairly straightforward and are
left to the exercises. Several issues must be addressed when choosing
values for test cases. The first is that of reachability; the test case must
include prefix values to reach the pre-state. For most FSMs, this is just a
matter of finding a path from an initial state to the pre-state (a depth first
search can be used), and the predicates associated with the transitions are
solved to produce inputs. The memory seat example has three initial states,
and the tester cannot control which one is entered because it depends on
the state the system was in when it was last shut down. In this case,
however, an obvious solution presents itself. We can begin every test by
putting the Gear in park and pushing Button 1 (part of the prefix). If
the system is in the Driver 2 or the Modified Configuration
state, these inputs will cause the system to transition to the Driver 1
state. If the system is in the Driver 1 state, these inputs will have no
effect. In all three cases, the system will effectively start in the Driver 1
state.

To automate the tests, we must also define a complete execution through
the FSM. Some FSMs also have exit states that must be reached with
postfix values. Finding these values is essentially the same as finding
prefix values; that is, finding a path from the post-state to a final state. The
memory seat example does not have an exit state, so this step can be
skipped. We also need a way to see the results of the test case (verification
values). This might be possible by giving an input to the program to print

the current state, or causing some other output that is dependent on the
state. The exact form and syntax this takes depends on the implementation,
and so it cannot be finalized until the input-output behavior syntax of the
software is designed.

One major advantage of this form of testing is determining the expected
output. It is simply the post-state of the transition for the test case values
that cause the transition to be true, and the pre-state for the test case values
that cause the transition to be false (the system should remain in the
current state). The only exception to this rule is that occasionally a false
predicate might coincidentally be a true predicate for another transition, in
which case the expected output should be the post-state of the alternate
transition. This situation can be recognized automatically. Also, if a
transition is from a state back to itself, then the pre-state and the post-state
are the same and the expected output is the same whether the transition is
true or false.

The final problem is that of converting a test case (composed of prefix
values, test case values, postfix values, and expected results) into an
executable test script. The potential problem here is that the variable
assignments for the predicates must be converted into inputs to the
software. This has been called the mapping problem with FSMs and is
analogous to the internal variable problem of Section 8.3. Sometimes this
step is a simple syntactic rewriting of predicate assignments (Button1 to
program input button1). Other times, the input values can be directly
encoded as method calls and embedded into a program (for example,
Button1 becomes pressButton1()). At other times, however, this
problem is much greater and can involve turning seemingly small inputs at
the FSM modeling level into long sequences of inputs or method calls. The
exact situation depends on the software implementation; thus a general
solution to this problem is elusive at best.

EXERCISES
Section 8.5.

1. For the Memory Seat finite state machine, complete the test sets
for the predicate coverage criterion (PC) by satisfying the predicates,
ensuring reachability, and computing the expected output.

2. For the Memory Seat finite state machine, complete the test sets

for the correlated active clause coverage criterion (CACC) by
satisfying the predicates, ensuring reachability, and computing the
expected output.

3. For the Memory Seat finite state machine, complete the test sets
for the general inactive active clause coverage criterion (GICC) by
satisfying the predicates, ensuring reachability, and computing the
expected output.

4. Redraw Figure 8.7 to have fewer transitions, but more clauses.
Specifically, nodes 1, 2, 4, and 5 each has four transitions to node 3.
Rewrite these transitions to have only one transition from each of
nodes 1, 2, 4, and 5 to node 3, and the clauses are connected by ORs.
Then derive tests to satisfy CACC for the four resulting predicates.
(You can omit the other predicates.) How do these tests compare with
the tests derived from the original graph?

5. Consider the following deterministic finite state machine:

Current State Condition Next State
Idle a ∨ b Active
Active a ∧ b Idle
Active b WindDown
WindDown a Idle

(a) Draw the finite state machine.
(b) This machine does not specify which conditions cause a state to

transition back to itself. However, these conditions can be
derived from the existing conditions. Derive the conditions
under which each state will transition back to itself.

(c) Find CACC tests for each transition from the Active state
(including the transition from Active to Active).

6. Pick a household appliance such as a watch, calculator, microwave,
VCR, clock-radio or programmable thermostat. Draw the FSM that
represents your appliance’s behavior. Derive abstract tests to satisfy
Predicate Coverage, Correlated Active Clause Coverage, and General
Inactive Clause Coverage. (An abstract test is in terms of the model,
not the implementation.)

7. Implement the memory seat FSM. Design an appropriate input
language to your implementation and turn the tests derived for
question 1

8.6 BIBLIOGRAPHIC NOTES

The active clause criteria seem to have their beginnings in Myers’ 1979
book [Myers, 1979]. A more accessible paper is by Zhu [Zhu et al., 1997].
He defined decision and condition coverage, which this book calls
predicate and clause coverage. Chilenski and Miller later used these
definitions as a conceptual basis for MCDC [Chilenski and Miller, 1994,
RTCA-DO-178B, 1992]. The definitions as originally given correspond to
GACC in this book and did not address whether minor clauses had to have
the same value for both values of the major clause. Chilenski also
emphasized that the abbreviation should be “MCDC,” not “MC/DC,” and
he has never put the ‘/’ in the middle [Chilenski, 2003]. Most members of
the aviation community originally interpreted MCDC to mean that the
values of the minor clauses had to be the same, an interpretation that is
called “unique-cause MCDC” [Chilenski, 2003]. Unique-cause MCDC
corresponds to our RACC. More recently, the FAA has accepted the view
that the minor clauses can differ, which is called “masking
MCDC”[Chilenski and Richey, 1997]. Masking MCDC corresponds to our
CACC. Our previous paper [Ammann et al., 2003] clarified the definitions
in the form used in this book and introduced the “ACC” terms.

The inactive clause criteria are adapted from the RC/DC method of
Vilkomir and Bowen [Vilkomir and Bowen, 2002].

The result that the internal variable problem is formally undecidable is
from Offutt’s PhD dissertation [DeMillo and Offutt, 1993, Offutt, 1988].
The problem is of primary importance in the automatic test data generation
literature [Bird and Munoz, 1983, Borzovs et al., 1991, DeMillo and
Offutt, 1993, DeMillo and Offutt, 1991, Hanford, 1970, Ince, 1987, Jones
et al., 1998, Korel, 1990a, Korel, 1992, Miller and Melton, 1975,
Ramamoorthy et al., 1976, Offutt et al., 1999].

Jasper et al. presented techniques for generating tests to satisfy MCDC
[Jasper et al., 1994]. They took the definition of MCDC from Chilenski
and Miller’s paper with the “default” interpretation that the minor clauses
must be the same for both values of the major clauses. They went on to
modify the interpretation so that if two clauses are coupled, which implies
it is impossible to satisfy determination for both, the two clauses are
allowed to have different values for the minor clauses. The fact that
different values are allowed only when clauses are coupled puts their
interpretation of MCDC between the RACC and CACC of this book.

Weyuker, Goradia and Singh presented techniques for generating test
data for software specifications that are limited to boolean variables
[Weyuker et al., 1994]. The techniques were compared in terms of the
ability of the resulting test cases to kill mutants (introduced in Chapter 9)
[DeMillo et al., 1978, DeMillo and Offutt, 1993]. The results were that
their technique, which is closely related to MCDC, performed better than
any of the other techniques. Weyuker et al. incorporated syntax as well as
meaning into their criteria. They presented a notion called meaningful
impact, which is related to the notion of determination, but which has a
syntactic basis rather than a semantic one.

Kuhn investigated methods for generating tests to satisfy various
decision-based criteria, including MCDC tests [Kuhn, 1999]. He used the
definition from Chilenski and Miller [Chilenski and Miller, 1994, RTCA-
DO-178B, 1992], and proposed the boolean derivative to satisfy MCDC.
In effect, this interpreted MCDC in such a way to match CACC.

Dupuy and Leveson’s 2000 paper evaluated MCDC experimentally
[Dupuy and Leveson, 2000]. They presented results from an empirical
study that compared pure functional testing with functional testing
augmented by MCDC. The experiment was performed during the testing
of the attitude control software for the HETE-2 (High Energy Transient
Explorer) scientific satellite. The definition of MCDC from their paper is
the traditional definition given in the FAA report and Chilenski and
Miller’s paper: “Every point of entry and exit in the program has been
invoked at least once, every condition in a decision in the program has
taken on all possible outcomes at least once, and each condition has been
shown to affect that decision outcome independently. A condition is
shown to affect a decision’s outcome independently by varying just that
decision while holding fixed all other possible conditions.”

Note the misstatement in last line: “varying just that decision ” should
be “varying just that condition”. This does not say that the decision has a
different value when the condition’s value changes. “Holding fixed” can
be assumed to imply that the minor clauses cannot change with different
values for the major clause (that is, RACC, not CACC).

The full predicate method of Offutt, Liu, Abdurazik and Ammann
[Offutt et al., 2003] explicitly relaxes the requirement that the major
clauses have the same value as the predicate. This is equivalent to CACC
and almost the same as masking MCDC.

Jones and Harrold developed a method for reducing the regression tests

that were developed to satisfy MCDC [Jones and Harrold, 2003]. They
defined MCDC as follows: “MCDC is a stricter form of decision (or
branch) coverage. …MCDC requires that each condition in a decision be
shown by execution to independently affect the outcome of the decision.”
This is taken directly from Chilenski and Miller’s original paper, and their
interpretation of the definition is the same as CACC.

SCR was first discussed by Henninger [Henninger, 1980] and its use in
model checking and testing was introduced by Atlee [Atlee, 1994, Atlee
and Gannon, 1993].

The cost of active clause coverage was originally reported by Chilenski
and Miller [Chilenski and Miller, 1994, RTCA-DO-178B, 1992], who
claimed that the minimum test set size for MCDC is n + 1, and the
maximum is 2n. In his dissertation, Kaminski [Kaminski, 2012] confirmed
that in general, MCDC and the RACC criteria need at least n + 1 tests, but
always fewer than 2n tests. Kaminski also showed that n + 1 is enough
when n < 4, because of the overlap among tests, but the number of tests
needed for some functions gets closer to 2n as n grows.

The statement that “the vast majority of predicates in real programs
have only one clause” is due to Durelli et al. [Durelli et al., 2016], who
counted the number of clauses in 400, 811 predicates in 63 open-source
Java programs. They found that 88.02% of the predicates had only one
clause, 9.97% had two clauses, 1.29% had three clauses, 0.47% had four
clauses, 0.11% had five clauses, and less than 0.15% had more than five
clauses.

The method of determining pc given in this book uses the boolean
derivative developed by Akers [Akers, 1959]. Both Chilenski and Richey
[Chilenski and Richey, 1997] and Kuhn [Kuhn, 1999] applied Akers’s
derivative to exactly the problem given in this chapter. The other methods
are the pairs table method of Chilenski and Miller and the tree method,
independently discovered by Chilenski and Richey [Chilenski and Richey,
1997] and Offutt et al. [Offutt et al., 2003]. The tree method can be
thought of as implementing the boolean derivative method in a procedural
way.

Ordered Binary Decision Diagrams (OBDDs) offer another way to
determine pc. In particular, consider any OBDD in which clause c is
ordered last. Then any path through the OBDD that reaches a node labeled
c (there will be exactly zero, one, or two such nodes) is, in fact, an
assignment of values to the other variables so that c determines p.

Continuing the path on to the constants T and F yields a pair of tests
satisfying RACC with respect to c. Selecting two different paths that reach
the same node labeled c, and then extending each so that one reaches T and
the other reaches F yields a pair of tests that satisfy CACC, but not RACC,
with respect to c. Finally, if two nodes are labeled c, then it is possible to
satisfy GACC but not CACC with respect to c by selecting paths to each of
the two nodes labeled c, extending one path by choosing c true, and
extending the other by choosing c false. Both paths will necessarily end up
in the same node, namely, either T or F. ICC tests with respect to c can be
derived by considering paths to T and F in the OBDD where the paths do
not include variable c. The attractive aspect of using OBDDs to derive
ACC or ICC tests is that a variety of existing tools can handle a relatively
large number of clauses. The unattractive aspect is that for a predicate with
N clauses, N different OBDDs for a given function are required, since the
clause being attended to needs to be the last in the ordering. To the
knowledge of the authors, the use of OBDDs to derive ACC or ICC tests
does not appear in the literature.

Beizer’s [Beizer, 1990] book includes a chapter on DNF testing,
including a variant of IC coverage for f, but notf, and an extensive
development of Karnaugh maps. Kuhn [Kuhn, 1999] developed the first
fault detection relations; this work was greatly expanded by Yu, Lau and
Chen, who developed much of the key material relating DNF coverage
criteria to fault detecting ability. Two good papers to begin study of this
topic are by Chen and Lau [Chen and Lau, 2001], which develops
MUMCUT, and Lau and Yu [Lau and Yu, 2005], which is the source for
the fault class hierarchy shown in Figure 8.2. Kaminski and Ammann
[Kaminski and Ammann, 2009, Kaminski and Ammann, 2011] developed
a minimal version of MUMCUT, and then later [Kaminski and Ammann,
2010] used optimization techniques to develop a minimum version of
MUMCUT. Kaminski, Offutt, and Ammann [Kaminski et al., 2013]
presented the results with respect to test set size and fault detection for
RACC vs. MUMCUT. Gargantini and Fraser [Gargantini and Fraser,
2010] developed a different algorithm for reducing MUMCUT sets. In
personal communications, Greg Williams and Gary Kaminski provided the
authors with valuable assistance in organizing and expanding the DNF
fault detection material.

1 In practice, this “thought” turned out to be the collective effort of many
researchers, who published dozens of papers over a period of several decades.

2 The notion of mutation operators developed in the Chapter 9 is closely related to
the notion of fault classes presented here.

9

Syntax-Based Testing

If you achieve all your dreams, you didn’t dream big enough.

In previous chapters, we learned how to generate tests from the input
space, graphs, and logical expressions. These criteria required reachability
(for graphs) and infection (for logical expressions). A fourth major source
for test coverage criteria is syntactic descriptions of software artifacts,
which allows propagation to be required. As with graphs and logical
expressions, several types of artifacts can be used, including source and
input requirements.

The essential characteristic of syntax-based testing is that a syntactic
description such as a grammar or BNF is used. Chapter 6 discussed how to
build a model of the inputs based on some description of the input space.
Chapters 7 and 8 discussed how to build graph models and logic models
from artifacts such as the program, design descriptions, and specifications.
Then test criteria were applied to the models. With syntax-based testing,
however, the syntax of the software artifact is used as the model and tests
are created from the syntax.

9.1 SYNTAX-BASED COVERAGE CRITERIA

Syntax structures can be used for testing in several ways. We can use the
syntax to generate artifacts that are valid (correct syntax), or artifacts that
are invalid (incorrect syntax). Sometimes the structures we generate are
test cases themselves, and sometimes they are used to help us design test
cases. We explore these differences in the subsections of this chapter. As
usual, we begin by defining general criteria on syntactic structures, and
then make them specific to specific artifacts.

9.1.1 Grammar-Based Coverage Criteria

It is very common in software engineering to use structures from automata
theory to describe the syntax of software artifacts. Programming languages
are described in BNF grammar notation, program behavior is described in
finite state machines, and allowable inputs to programs are defined by
grammars. Regular expressions and context free grammars are especially
useful. Consider the regular expression:

The star is a “closure” operator that indicates zero or more occurrences
of the expression it modifies. The vertical bar is the “choice” operator, and
indicates either choice can be taken. Thus, this regular expression
describes any sequence of “G s n” and “B t n.” G and B may be commands
to a program and s, t and n may be arguments, method calls with
parameters, or messages with values. The arguments s, t and n can be
literals or represent a large set of values, for example, numbers or strings.

A test case can be a sequence of strings that satisfy the regular
expression. For example, if the arguments are supposed to be numbers, the
following may represent one test with four components, two separate tests,
three separate tests, or four separate tests:

Although regular expressions are sometimes sufficient, a more
expressive grammar is often used. The prior example can be refined into a
grammar form as follows:

Sidebar
BNF Syntax Note

We simplify the syntax a bit in our examples. Specifically, we
intentionally omit spaces. More formal treatments are given in formal
language textbooks, however that level of formalism is not needed for
testing. Details of the syntax will be added when test requirements are
refined into executable tests.

A grammar has a special symbol called the start symbol. In this case, the
start symbol is stream. Symbols in the grammar are either nonterminals,
which must be rewritten further, or terminals, for which no rewriting is
possible. In the example, the symbols on the left of the ::= sign are all
nonterminals, and everything in quotes is a terminal. Each possible
rewriting of a given nonterminal is called a production or rule. In this
grammar, a star superscript means zero or more, a plus superscript means
one or more, a numeric superscript indicates the required number of
repetitions, and a numeric range (a - b) means there has to be at least a
repetitions, and no more than b.

Grammars can be used in two ways. A recognizer, as defined in Chapter
5, decides whether a given string (or test case) is in the grammar. This is
the classical automata theory problem of parsing, and automated tools
(such as the venerable lex and yacc) make the construction of
recognizers very easy. Recognizers are extremely useful in testing,
because they make it possible to decide if a given test case is in a
particular grammar or not. The other use of grammars is to build
generators, also defined in Chapter 5. A generator derives a string of
terminals from the grammar start symbol. In this case, the strings are test
inputs. For example, the following derivation results in the test case G 25
08.01.90.

The derivation proceeds by systematically replacing the next
nonterminal (for example, “ action^*”) with one of its productions.
Derivation continues until all nonterminals have been rewritten and only
terminal symbols remain. The key to testing is which derivations should be
used, and this is how criteria are defined on grammars.

Although many test criteria could be defined, the most common and
straightforward are terminal symbol coverage and production coverage.

CRITERION 9.31 Terminal Symbol Coverage (TSC): TR contains each
terminal symbol t in the grammar G.

CRITERION 9.32 Production Coverage (PDC): TR contains each
production p in the grammar G.

By now, it should be easy to see that PDC subsumes TSC (if we cover
every production, we cover every terminal symbol). Some readers may
also note that grammars and graphs have a natural relationship. Therefore,
Terminal Symbol Coverage and Production Coverage can be rewritten to
be equivalent to Node Coverage and Edge Coverage on the graph that
represents the grammar. Of course, this means that the other graph-based
coverage criteria can also be defined on grammars. To our knowledge,
neither researchers nor practitioners have taken this step.

The only other related criterion defined here is the impractical one of
deriving all possible strings in a graph.

CRITERION 9.33 Derivation Coverage (DC): TR contains every possible
string that can be derived from the grammar G.

The number of tests generated by TSC will be bounded by the number
of terminal symbols. The stream BNF above has 13 terminal symbols:

G, B,. , 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. It has 18 productions (note the ‘|’ symbol
adds productions, so “ action” has two productions and “ digit” has
10). The number of derivations for DC depends on the details of the
grammar, but generally can be infinite. If we ignore the first production in
the stream BNF, we have a finite number of derivable strings. Two
possible actions are actG and actB, s and t each has a maximum of three
digits with 10 choices, or 1000. The nonterminal n has three sets of two
digits with 10 choices apiece, or 106. Altogether, the stream grammar
can generate 2 * 1000 * 106 = 2,000,000,000 strings. DC is of theoretical
interest but is obviously impractical. (A point to remember the next time a
tool salesperson or job applicant claims to have done “full string coverage”
or “full path coverage.”)

TSC, PDC and DC generate test cases that are members of the set of
strings defined by the grammar. It is sometimes very helpful to generate
test cases that are not in the grammar, which is addressed by the criteria in
the next subsection.

EXERCISES
Section 9.1.1.

1. Consider how often the idea of covering nodes and edges pops up in
software testing. Write a short essay to explain this.

2. Just as with graphs, it is possible to generate an infinite number of
tests from a grammar. How and what makes this possible?

9.1.2 Mutation Testing

One of the interesting things that grammars do is describe what an input is
not. We say that an input is valid if it is in the language specified by the
grammar, and invalid otherwise. For example, it is quite common to
require a program to reject malformed inputs, and this property should
clearly be tested, since it is easy for programmers to forget it or get it
wrong.

Thus, it is often useful to produce invalid strings from a grammar. It is
also helpful in testing to use strings that are valid but that follow a
different derivation from a pre-existing string. Both of these strings are

called mutants1. This can be done by mutating the grammar, then
generating strings, or by mutating values during a derivation.

Mutation can be applied to various artifacts, as discussed in the
following subsections. However, it has primarily been used as a program-
based testing method, and much of the theory and many of the detailed
concepts are specific to program-based mutation. Therefore, a lot more
details appear in Section 9.2.2.

Mutation is always based on a set of “mutation operators,” which are
expressed with respect to a “ground” string.

Definition 9.44 Ground String: A string that is in the grammar.

Definition 9.45 Mutation Operator: A rule that specifies syntactic
variations of strings generated from a grammar.

Definition 9.46 Mutant: The result of one application of a mutation
operator.

Mutation operators are usually applied to ground strings, but can also be
applied to a grammar, or dynamically during a derivation. The notion of a
mutation operator is extremely general, and so a very important part of
applying mutation to any artifact is the design of suitable mutation
operators. A well-designed set of operators can result in very powerful
testing, but a poorly designed set can result in ineffective tests. For
example, a commercial tool that “implements mutation” but that only
changes predicates to true and false would simply be an expensive way to
implement branch coverage.

We sometimes have a particular ground string in mind, and sometimes
the ground string is simply the implicit result of not applying any mutation
operators. For example, we care about the ground string when applying
mutation to program statements. The ground string is the sequence of
program statements in the program under test, and the mutants are slight
syntactic variations of that program. We do not care about the ground
string during invalid input testing, when the goal is to see if a program
correctly responds to invalid inputs. The ground strings are valid inputs,
and variants are the invalid inputs. For example, a valid input might be a
transaction request from a correctly logged-in user. The invalid version
might be the same transaction request from a user who is not logged in.

Consider the grammar in Section 9.1.1. If the first string shown, G 25

08.01.90, is taken as a ground string, two valid mutants may be:

Two invalid mutants may be:

When the ground string does not matter, mutants can be created directly
from the grammar by modifying productions during a derivation, using a
generator approach as introduced in the previous section. That is, if the
ground strings are not of direct interest, they do not need to be explicitly
generated.

When applying mutation operators, two issues often come up. First,
should more than one mutation operator be applied at the same time to
create one mutant? That is, should a mutated string contain one mutated
element, or several? Common sense indicates no, and strong experimental
and theoretical evidence has been found that indicates we usually only
want to mutate one element at a time in program-based mutation. An
exception is where so called “subsuming higher order mutants” can be
useful; we do not discuss this topic. Another question is should every
possible application of a mutation operator to a ground string be
considered? This is usually done in program-based mutation. One
theoretical reason is that program-based mutation subsumes a number of
other test criteria, and if operators are not applied comprehensively, then
that subsumption is lost. However, this is not always done when the
ground string does not matter, for example, in the case of invalid input
testing. This question is explored in more detail in the following
application subsections.

Mutation operators have been designed for several programming
languages, formal specification languages, BNF grammars, and at least
one data definition language (XML). For a given artifact, the set of
mutants is M and each mutant m ∈ M will lead to a test requirement.

When a derivation is mutated to produce valid strings, the testing goal is
to “kill” the mutants by causing the mutant to produce different output.
More formally, given a mutant m ∈ M for a derivation D and a test t, t is

said to kill m if and only if the output of t on D is different from the output
of t on m. The derivation D may be represented by the complete list of
productions followed, or it may simply be represented by the final string.
For example, in Section 9.2.2, the strings are programs or program
components. Coverage is defined in terms of killing mutants.

CRITERION 9.34 Mutation Coverage (MC): For each mutant m ∈ M, TR
contains exactly one requirement, to kill m.

Thus, coverage in mutation equates to killing the mutants. The amount
of coverage is usually written as the ratio of mutants killed over all
mutants and called the “mutation score. ”

When a grammar is mutated to produce invalid strings, the testing goal
is to run the mutants to see if the behavior is correct. The coverage
criterion is therefore simpler, as the mutation operators are the test
requirements.

CRITERION 9.35 Mutation Operator Coverage (MOC): For each
mutation operator, TR contains exactly one requirement, to create a
mutated string m that is derived using the mutation operator.

CRITERION 9.36 Mutation Production Coverage (MPC): For each
mutation operator, and each production that the operator can be applied
to, TR contains the requirement to create a mutated string from that
production.

The number of test requirements for mutation is somewhat difficult to
quantify because it depends on the syntax of the artifact as well as the
mutation operators. In most situations, mutation yields more test
requirements than any other coverage criterion. Subsequent sections have
some data on quantifying specific collections of mutation operators and
more details are in the bibliographic notes.

Mutation testing is also difficult to apply by hand, and automation is
more complicated than for most other criteria. As a result, mutation is
widely considered a “high-end” coverage criterion, more effective than
most but also more expensive. One common use of mutation is as a sort of
“gold standard” in experimental studies for comparative evaluation of
other test criteria.

The rest of this chapter explores various forms of BNF and mutation
testing. The table below summarizes the sections and the characteristics of
the various flavors of syntax testing. Whether the use of syntax testing
creates valid or invalid tests is noted for both BNF and mutation testing.
For mutation testing, we also note whether a ground string is used, whether
the mutants are tests or not, and whether mutants are killed.

EXERCISES
Section 9.1.2.

1. Define mutation score.
2. How is the mutation score related to coverage from Chapter 5?
3. Consider the stream BNF in Section 9.1.1 and the ground string “ B
21 06.27.94.” Give three valid and three invalid mutants of the
string.

4. Consider the following BNF:

(a) How many nonterminal symbols are in the grammar?
(b) How many terminal symbols are in the grammar?
(c) Write two strings that are valid according to the BNF.
(d) For each of your two strings, give two valid mutants of the

string.
(e) For each of your two strings, give two invalid mutants of the

string.
5. Consider the following BNF:

(a) How many nonterminal symbols are in the grammar?
(b) How many terminal symbols are in the grammar?
(c) Write two strings that are valid according to the BNF.
(d) For each of your two strings, give two valid mutants of the

string.
(e) For each of your two strings, give two invalid mutants of the

string.

9.2 PROGRAM-BASED GRAMMARS

As with most criteria, syntax-based testing criteria have been applied to
programs more than other artifacts. The BNF coverage criteria have been
used to generate programs to test compilers. Mutation testing has been
applied to methods (unit testing) and to classes (integration testing).
Application to classes is discussed in the next section.

9.2.1 BNF Grammars for Compilers

The primary purpose of BNF testing for languages has been to generate
test sets for compilers. As this is a very specialized application, we choose
not to dwell on it in this book. The bibliographic notes section has pointers
to the relevant, mostly rather old, literature.

9.2.2 Program-Based Mutation

Mutation was originally developed for programs and this section has
significantly more depth than other sections in this chapter. Program-based
mutation uses operators that are defined in terms of the grammar of a
particular programming language. We start with a ground string, which is
a program that is being tested. We then apply mutation operators to create
mutants. These mutants must be compilable, so program-based mutation
creates valid strings. The mutants are not tests, but are used to help us
design tests.

Given a ground string program or method, a mutation-adequate test set
distinguishes the program from a set of syntactic variations, or mutants, of
that program. A simple example of a mutation operator for a program is
the Arithmetic Operation Mutation operator, which changes an assignment
statement like "x = a+ b" into a variety of alternatives, including “ x
= a - b,” “ x = a * b,” and “ x = a / b.” Unless the assignment
statement appears in a very strange program, it probably matters which
arithmetic operator is used, and a decent test set should be able to
distinguish among the various possibilities. It turns out that by careful
selection of the mutation operators, a tester can develop very powerful test
sets.

Mutation testing is used to help the user strengthen the quality of test
data iteratively. Test data are used to evaluate the ground program with the
goal of causing each mutant to exhibit different behavior. When this
happens, the mutant is considered dead and no longer needs to remain in
the testing process since the fault that it represents will be detected by the
same test that killed it. More importantly, the mutant has satisfied its
requirement of identifying a useful test case.

A key to successful use of mutation is the mutation operators, which are
designed for each programming, specification, or design language. In
program-based mutation, invalid strings are syntactically illegal and would
be caught by a compiler. These are called stillborn mutants and either
should not be generated or should be immediately discarded. A trivial
mutant can be killed by almost any test case. Some mutants are
functionally equivalent to the original program. That is, they always
produce the same output as the original program, so no test case can kill
them. Equivalent mutants represent infeasible test requirements, as
discussed in the previous chapters.

We refine the notion of killing and coverage for program-based
mutation. These definitions are consistent with the previous section.

Definition 9.47 Killing Mutants: Given a mutant m ∈ M for a ground
string program P and a test t, t is said to kill m if and only if the
output of t on P is different from the output of t on m.

As said in Section 9.1.2, it is hard to quantify the number of test
requirements for mutation. In fact, it depends on the specific set of
operators used and the language that the operators are applied to. One of
the most widely used mutation systems was Mothra. It generated 44
mutants for the Fortran version of the Min() method in Figure 9.1. For
most collections of operators, the number of program-based mutants is
roughly proportional to the product of the number of references to
variables times the number of variables that are declared (O(Refs * V ars)).
The selective mutation approach mentioned below under “Designing
Mutation Operators” eliminates the number of data objects so that the
number of mutants is proportional to the number of variable references
(O(Refs)). More details are in the bibliographic notes.

Figure 9.1. Method Min and six mutants.

Program-based mutation has traditionally been applied to individual
statements for unit level testing. Figure 9.1 contains a small Java method
with six mutated lines (each preceded by the Δ symbol). Note that each
mutated statement represents a separate program. The mutation operators
are defined to satisfy one of two goals. One goal is to mimic typical
programmer mistakes, thus trying to ensure that the tests can detect those
mistakes. The other goal is to force the tester to create tests that have been

found to effectively test software. in Figure 9.1, mutants 1, 3, and 5 replace
one variable reference with another, mutant 2 changes a relational
operator, and mutant 4 is a special mutation operator that causes a runtime
failure as soon as the statement is reached. This forces every statement to
be executed, thus achieving statement or node coverage.

Mutant 6 looks unusual, as the operator is intended to force the tester to
create an effective test. The failOnZero() method is a special mutation
operator that causes a failure if the parameter is zero, and does nothing if
the parameter is not zero (it returns the value of the parameter). Thus,
mutant 6 can be killed only if B has the value zero, which forces the tester
to follow the time-tested heuristic of causing every variable and expression
to have the value of zero.

One point that is sometimes confusing about mutation is how tests are
created. When applying program-based mutation, the direct goal of the
tester is to kill mutants; an indirect goal is to create good tests. Even less
directly, the tester wants to find faults. Tests that kill mutants can be found
by intuition, or if more rigor is needed, by analyzing the conditions under
which a mutant will be killed.

The RIPR fault /failure model was introduced in Chapter 2. Program-
based mutations represent a software failure by a mutant, and reachability,
infection, and propagation refer to reaching the mutant, the mutant causing
the program state to be incorrect, and the eventual output of the program to
be incorrect.

Weak mutation relaxes the definition of “killing” a mutant to include
only reachability and infection, but not propagation. Weak mutation
checks the internal state of the program immediately after execution of the
mutated component (that is, after the expression, statement, or basic block
). If the state is incorrect the mutant is killed. This is weaker than standard
(or strong) mutation because an incorrect state does not always propagate
to the output. That is, strong mutation may require more tests to satisfy
coverage than weak mutation. Experimentation has shown that the
difference is very small in most cases.

This difference can be formalized by refining the definition of killing
mutants given previously.

Definition 9.48 Strongly Killing Mutants: Given a mutant m ∈ M for
a program P and a test t, t is said to strongly kill m if and only if the
output of t on P is different from the output of t on m.

CRITERION 9.37 Strong Mutation Coverage (SMC): For each m ∈ M,
TR contains exactly one requirement, to strongly kill m.

Definition 9.49 Weakly Killing Mutants: Given a mutant m ∈ M that
modifies a location l in a program P, and a test t, t is said to weakly
kill m if and only if the state of the execution of P on t is different
from the state of the execution of m immediately after l.

CRITERION 9.38 Weak Mutation Coverage (WMC): For each m ∈ M,
TR contains exactly one requirement, to weakly kill m.

Consider mutant 1 in Figure 9.1. The mutant is on the first statement,
thus the reachability condition is always satisfied (true). In order to infect,
the value of B must be different from the value of A, which is formalized
as (A ≠ B). To propagate, the mutated version of Min must return an
incorrect value. In this case, Min must return the value that was assigned
in the first statement, which means that the statement inside the if block
must not be executed. That is, (B < A) = false. The complete test
specification to kill mutant 1 is:

Thus, the test case value (A = 5,B = 7) should cause mutant 1 to result in a
failure. The original method will return the value 5 (A) but the mutated
version returns 7.

Mutant 3 is an example of an equivalent mutant. Intuitively, minVal
and A have the same value at that point in the program, so replacing one
with the other has no effect. As with mutant 1, the reachability condition is
true. The infection condition is (B < A)≠(B < minV al). However, dutiful
analysis can reveal the assertion (minV al = A), leading to the combined
condition ((B < A)≠(B < minV al)) ∧ (minV al = A). Simplifying by
eliminating the inequality ≠ gives:

Rearranging the terms gives:

If (A > B) and (B ≥ minV al), then by transitivity, (A > minV al). Applying
transitivity to both the first two disjuncts gives:

Finally, the first disjunct can be reduced to a simple inequality, resulting in
the following contradiction:

The contradiction means that no values exist that can satisfy the
conditions, thus the mutant is provably equivalent. In general, detecting
equivalent mutants, just like detecting infeasible paths, is an undecidable
problem. However, strategies such as algebraic manipulations and program
slicing can detect some equivalent mutants.

As a final example, consider the following method, with one mutant
shown embedded in statement 4:

The reachability condition for mutant Δ4 is (X < 0) and the infection
condition is (X ≠0). If the test case X =-6 is given, then the value of X
after statement 4 is executed is 6 and the value of X after the mutated
version of statement 4 is executed is 0. Thus, this test satisfies reachability
and infection, and the mutant will be killed under the weak mutation
criterion. However, 6 and 0 are both even, so the decision starting on
statement 5 will return true for both the mutated and non-mutated
versions. That is, propagation is not satisfied, so test case X = -6 will not
kill the mutant under the strong mutation criterion. The propagation
condition for this mutant is that the number be odd. Thus, to satisfy the
strong mutation criterion, we require (X < 0) ∧ (X ≠0) ∧ odd(X), which
can be simplified to X must be an odd, negative integer.

Testing Programs with Mutation
A test process gives a sequence of steps to follow to generate test cases. A
single criterion may be used with many processes, and a test process may
not even include a criterion. Many people find mutation less intuitive than
other coverage criteria. The idea of “killing” a mutant is not as obvious as
“reaching” a node, “traversing” a path, or “satisfying” a set of truth
assignments. It is clear however, that the software is tested, and tested
well, or the test cases do not kill mutants. This point can best be
understood by examining a typical mutation analysis process.

Figure 9.2 shows how mutation testing can be applied. The tester
submits the program under test to an automated system, which starts by
creating mutants. Optionally, those mutants are then analyzed by a
heuristic that detects and eliminates as many equivalent mutants as
possible2. A set of test cases is then generated automatically and executed
first against the original program, and then the mutants. If the output of a
mutant program differs from the original (correct) output, the mutant is
marked as being dead and is considered to have been strongly killed by
that test case. Dead mutants are not executed against subsequent test cases.
Test cases that do not strongly kill at least one mutant are considered to be
“ineffective” and eliminated, even though such test cases may weakly kill
one or more mutants. This is because the requirement stated above requires
the output (and not the internal state) to be different.

Figure 9.2. Mutation testing process. Bold boxes represent steps that are
automated; other boxes represent manual steps.

Once all test cases have been executed, coverage is computed as a
mutation score. The mutation score is the ratio of dead mutants over the
total number of non-equivalent mutants. If the mutation score reaches
1.00, that means all mutants have been detected. A test set that kills all the
mutants is said to be adequate relative to the mutants.

A mutation score of 1.00 is usually impractical, so the tester defines a
“threshold” value, which is a minimum acceptable mutation score. If the
threshold has not been reached, then the process is repeated, each time
generating test cases to target live mutants, until the threshold mutation
score is reached. Up to this point, the process has been entirely automatic.
To finish testing, the tester will examine expected output of the effective
test cases, and fix the program if any faults are found. This leads to the
fundamental premise of mutation testing: In practice, if the software
contains a fault, there will usually be a set of mutants that can only be
killed by a test case that also detects that fault.

Designing Mutation Operators
Mutation operators must be chosen for each language and although they
overlap quite a bit, some differences are particular to the language, often
depending on the language features. Researchers have designed mutation
operators for many programming languages, including Fortran IV,
COBOL, Fortran 77, C, C integration testing, Lisp, Ada, Java, and Java
class relationships. Researchers have also designed mutation operators for
the formal specification language SMV (discussed in Section 9.4.2), and
for XML messages (discussed in Section 9.5.2).

As a field, we have learned a lot about designing mutation operators
over the years. Detailed lists of mutation operators for various languages
are provided in the literature, as referenced in the bibliographic notes for
this chapter. Mutation operators are generally designed either to mimic
typical programmer mistakes, or to encourage testers to follow common
testing heuristics. Operators that change relational operators or variable
references are examples of operators that mimic typical programmer
mistakes. The failOnZero() operator used in Figure 9.1 is an example of
the latter design; the tester is encouraged to follow the common testing
heuristic of “causing each expression to become zero.”

When first designing mutation operators for a new language, it is
reasonable to be “inclusive,” that is, include as many operators as possible.
However, this often results in a large number of mutation operators, and an

even larger number of mutants. Researchers have devoted a lot of effort to
trying to find ways to use fewer mutants and mutation operators. The two
most common ways to have fewer mutants are (1) to randomly sample
from the total number of mutants, and (2) to use mutation operators that
are particularly effective.

The term selective mutation has been used to describe the strategy of
using only mutation operators that are particularly effective. Effectiveness
has been evaluated as follows: If tests that are created specifically to kill
mutants created by mutation operator oi also kill mutants created by
mutation operator oj with very high probability, then mutation operator oi
is more effective than oj.

This notion can be extended to consider a collection of effective
mutation operators as follows:

Definition 9.50 Effective Mutation Operators: If tests that are created
specifically to kill mutants created by a collection of mutation
operators O = {o1,o2,...} also kill mutants created by all remaining
mutation operators with very high probability, then O defines an
effective set of mutation operators.

Researchers have concluded that a collection of mutation operators that
insert unary operators and that modify unary and binary operators will be
effective. The actual research was done with Fortran-77 (the Mothra
system), but the results are adapted to Java in this book. Corresponding
operators are usually defined for other languages. The operators defined
below are used throughout the remainder of this chapter as the defining set
of program-level mutation operators.

1. ABS—Absolute Value Insertion:

Modify each arithmetic expression (and subexpression) by the functions
abs(), negAbs(), and failOnZero().

abs() returns the absolute value of the expression and negAbs() returns
the negative of the absolute value.failOnZero() tests whether the value of
the expression is zero. If it is, the mutant is killed; otherwise, execution
continues and the value of the expression is returned. This operator is
designed specifically to force the tester to cause each numeric expression

to have the value 0, a negative value, and a positive value. For example,
the statement "x = 3 * a;" is mutated to create the following
statements:

2. AOR—Arithmetic Operator Replacement:

Replace each occurrence of one of the arithmetic operators (+, –, *, /, **,
and %) by each of the other operators. In addition, replace each by the
special mutation operators leftOp, rightOp, and mod.

leftOp returns the left operand (the right is ignored), rightOp returns the
right operand, and mod computes the remainder when the left operand is
divided by the right. For example, the statement "x = a + b;" is
mutated to create the following seven statements:

3. ROR—Relational Operator Replacement:

Replace each occurrence of one of the relational operators (<, ≤, >, ≥,
==, ≠) by each of the other operators and by falseOp and trueOp.

falseOp always returns false and trueOp always returns true. For
example, the statement "if (m > n)” ismutated to create the following
seven statements:

4. COR—Conditional Operator Replacement:

Replace each occurrence of each logical operator (and–&&, or– k, and
with no conditional evaluation–&, or with no conditional evaluation–j,
and not equivalent–ˆ) by each of the other operators. In addition, replace
each by falseOp, trueOp, leftOp, and rightOp.

leftOp returns the left operand (the right is ignored) and rightOp returns
the right operand. falseOp always returns false and trueOp always returns
true. For example, the statement "if (a && b)" is mutated to create
the following eight statements:

5. SOR—Shift Operator Replacement:

Replace each occurrence of one of the shift operators (<<, >>, and >>>)
by each of the other operators. In addition, replace each by the special
mutation operator leftOp.

leftOp returns the left operand unshifted. For example, the statement "x
= m << a;" is mutated to create the following three statements:

6. LOR—Logical Operator Replacement:

Replace each occurrence of each bitwise logical operator (bitwise and

(&), bitwise or (j), and exclusive or (ˆ)) by each of the other operators. In
addition, replace each by leftOp and rightOp.

leftOp returns the left operand (the right is ignored) and rightOp returns
the right operand. For example, the statement "x = m & n;" is mutated
to create the following four statements:

7. ASR—Assignment Operator Replacement:

Replace ach occurrence of one of the assignment operators (=, +=, -=, *=,
/=,%=, &=, —=, ˆ=, <<=, >>=, >>>=) by each of the other operators.

For example, the statement "x += 3;" is mutated to create the
following ten statements:

8. UOI—Unary Operator Insertion:

Insert each unary operator (arithmetic +, arithmetic –, conditional !, and
logical ~) before each expression of the correct type.

For example, the statement "x = 3 * a;" is mutated to create the
following four statements:

9. UOD—Unary Operator Deletion:

Delete each unary operator (arithmetic +, arithmetic -, conditional !, and
logical ~).

For example, the statement "if !(a > -b)" is mutated to create the
following two statements:

Two other operators that are useful in examples are scalar variable
replacement and the “bomb” operator. Scalar variable replacement results
in a lot of mutants (V 2 if V is the number of variables), and it turns out that
it is not necessary given the above operators. It is included here as a
convenience for examples. The bomb operator results in only one mutant
per statement, but it is also not necessary given the above operators.
10. SVR—Scalar Variable Replacement:

Replace each variable reference by every other variable of the appropriate
type that is declared in the current scope.

For example, the statement "x = a * b;" is mutated to create the
following six statements:

11. BSR—Bomb Statement Replacement:

Replace each statement by a special Bomb() function.

Bomb() signals a failure as soon as it is executed, thus requiring the
tester to reach each statement. For example, the statement "x = a *
b;" is mutated to create the following statement:

Subsumption of Other Test Criteria (Advanced Topic)
Mutation is widely considered the strongest coverage criterion in terms of
finding the most faults. It is also the most expensive. This section shows
that mutation subsumes a number of other coverage criteria. The proofs are
developed by showing that specific mutation operators impose
requirements that are identical to a specific coverage criterion. For each
specific requirement defined by a criterion, a single mutant is created that
can be killed only by test cases that satisfy the requirement. Therefore, the
coverage criterion is satisfied if and only if the mutants associated with the
requirements for the criterion are killed. In this case, the mutation
operators that ensure coverage of a criterion are said to yield the criterion.
If a criterion is yielded by one or more mutation operators, then mutation
testing subsumes the criterion. Although mutation operators vary by
language and mutation analysis tool, this section uses common operators
that are used in most implementations. It is also possible to design
mutation operators to force mutation to subsume other testing criteria.
Further details are given in the bibliographic notes.

This type of proof has one subtle problem. All previous coverage
criteria impose only a local (reachability) requirement; for example, edge
coverage requires each branch in the program to be executed. Mutation, on
the other hand, imposes global (propagation) requirements in addition to
local requirements. That is, mutation also requires that the mutant program
produce incorrect output. For edge coverage, some specific mutants can be
killed only if each branch is executed and the final output of the mutant is
incorrect. On the one hand, this means that mutation imposes stronger
requirements than the condition coverage criteria. On the other hand, and
somewhat perversely, this also means that sometimes a test set that
satisfies a coverage criteria will not strongly kill all the associated mutants.
Thus, mutation as defined earlier will not strictly subsume the condition
coverage criteria.

This problem is solved by basing the subsumptions on weak mutation.
In terms of subsuming other coverage criteria, weak mutation only
imposes the local requirements. In weak mutation, mutants that are not
equivalent at the infection stage but are equivalent at the propagation stage
(that is, an incorrect state is masked or repaired) are left in the set of test
cases, so that edge coverage is subsumed. It is precisely the fact that such
test cases are removed that strong mutation does not subsume edge
coverage.

Thus, this section shows that the coverage criteria are subsumed by
weak mutation, not strong mutation.

Subsumption is shown for graph coverage criteria from Chapter 7 and
logic coverage criteria from Chapter 8. Some mutation operators only
make sense for program source statements whereas others can apply to
arbitrary structures such as logical expressions. For example, one common
mutation operator is to replace statements with “bombs” that immediately
cause the program to terminate execution or raise an exception. This
mutation can only be defined for program statements. Another common
mutation operator is to replace relational operators (<, >, etc.) with other
relational operators (the ROR operator). This kind of relational operator
replacement can be applied to any logical expression, including guards in
FSMs.

Node coverage requires each statement or basic block in the program to
be executed. The mutation operator that replaces statements with “bombs”
yields node coverage. To kill these mutants, we are required to design test
cases that reach each basic block. Since this is exactly the requirement of
node coverage, this operator yields node coverage and mutation subsumes
node coverage.

Edge coverage requires each edge in the control flow graph to be
executed. The ROR mutation operator replaces each predicate with both
true and false. To kill the true mutant, a test case must take the false
branch, and to kill the false mutant, a test case must take the true branch.
This operator forces each branch in the program to be executed, and thus it
yields edge coverage and mutation subsumes edge coverage.

Clause coverage requires each clause to become both true and false.
The ROR, COR, and LOR mutation operators will together replace each
clause in each predicate with both true and false. To kill the true mutant, a
test case must cause the clause (and also the full predicate) to be false, and
to kill the false mutant, a test case must cause the clause (and also the full
predicate) to be true. This is exactly the requirement for clause coverage.
A simple way to illustrate this is with a modified form of a truth table.

Consider a predicate that has two clauses connected by an AND. Assume
the predicate is (a∧b), where a and b are arbitrary boolean-valued clauses.
The partial truth table in Figure 9.3 shows (a ∧ b) on the top line with the
resulting value for each of the four combinations of values for a and b.
Below the line are four mutations that replace each of a and b with true

and false. To kill the mutants, the tester must choose an input (one of the
four truth assignments on top of the table) that causes a result that is
different from that of the original predicate. Consider mutant 1, true∧b.
Mutant 1 has the same result as the original clause for three of the four
truth assignments. Thus, to kill that mutant, the tester must use a test case
input value that causes the truth assignment (F T), as shown in the box.
Likewise, mutant 3, a ∧ true, can be killed only if the truth assignment (T
F) is used. Thus, mutants 1 and 3 are killed if and only if clause coverage
is satisfied, and the mutation operator yields clause coverage for this case.
Note that mutants 2 and 4 are not needed to subsume clause coverage.

Figure 9.3. Partial truth table for (a ∧ b).

Although the proof technique of showing that mutation operators yield
clause coverage on a case-by-case basis with the logical operators is
straightforward and relatively easy to grasp, it is clumsy. More generally,
assume a predicate p and a clause a, and the clause coverage requirements
to test p(a), which says that a must evaluate to both true and false.
Consider the mutation Δp(a → true) (that is, the predicate where a is
replaced by true). The only way to satisfy the infection condition for this
mutant (and thus kill it) is to find a test case that causes a to take on the
value of false. Likewise, the mutation Δp(a → false) can be killed only by
a test case that causes a to take on the value of true. Thus, in the general
case, the mutation operator that replaces clauses with true and false yield
clause coverage and is subsumed by mutation.

Combinatorial coverage requires that the clauses in a predicate
evaluate to each possible combination of truth values. In the general case
combinatorial coverage has 2N requirements for a predicate with N clauses.
Since no single or combination of mutation operators produces 2N mutants,
it is easy to see that mutation cannot subsume COC.

Active clause coverage requires that each clause c in a predicate p
evaluates to true and false and determines the value of p. The first version
in Chapter 8, General Active Clause Coverage allows the values for

other clauses in p to have different values when c is true and c is false. It is
simple to show that mutation subsumes General Active Clause Coverage;
in fact, we already have.

To kill the mutant Δp(a → true), we must satisfy the infection condition
by causing p(a → true) to have a different value from p(a), that is, a
must determine p. Likewise, to kill Δp(a → false), p(a → false) must have
a different result from p(a), that is, a must determine p. Since this is
exactly the requirement of GACC, this operator yields node coverage and
mutation subsumes general active clause coverage. Note that this is only
true if the incorrect value in the mutated program propagates to the end of
the expression, which is one interpretation of weak mutation.

Neither Correlated Active Clause Coverage nor Restricted Active
Clause Coverage are subsumed by mutation operators. The reason is that
both CACC and RACC require pairs of tests to have certain properties. In
the case of CACC, the property is that the predicate outcome be different
on the two tests associated with a particular clause. In the case of RACC,
the property is that the minor clauses have exactly the same values on the
two tests associated with a particular clause. Since each mutant is killed
(or not) by a single test case, (as opposed to a pair of test cases), mutation
analysis, at least as traditionally defined, cannot subsume criteria that
impose relationships between pairs of test cases.

Researchers have not determined whether mutation subsumes the
inactive clause coverage criteria.

All-defs data flow coverage requires that each definition of a variable
reach at least one use. That is, for each definition of a variable X on node
n, there must be a definition-clear subpath for X from n to a node or an
edge with a use of n. The argument for subsumption is a little complicated
for All-defs, and unlike the other arguments, all-defs requires that strong
mutation be used.

A common mutation operator is to delete statements with the goal of
forcing each statement in the program to make an impact on the output3.
To show subsumption of All-defs, we restrict our attention to statements
that contain variable definitions. Assume that the statement si contains a
definition of a variable x, and mi is the mutant that deletes si (Δsi → null).
To kill mi under strong mutation, a test case t must (1) cause the mutated
statement to be reached (reachability), (2) cause the execution state of the
program after execution of si to be incorrect (infection), and (3) cause the
final output of the program to be incorrect (propagation). Any test case

that reaches si will cause an incorrect execution state, because the mutated
version of si will not assign a value to x. For the final output of the mutant
to be incorrect, two cases are possible. First, if x is an output variable, t
must have caused an execution of a subpath from the deleted definition of
x to the output without an intervening definition (def-clear). Since the
output is considered a use, this satisfies the criterion. Second, if x is not an
output variable, then not defining x at si must result in an incorrect output
state. This is possible only if x is used at some later point during execution
without being redefined. Thus, t satisfies the all-defs criterion for the
definition of x at si, and the mutation operator yields all-defs, ensuring that
mutation subsumes all-defs.

It is possible to design a mutation operator specifically to subsume all-
uses, but such an operator has never been published or used in any tool.

EXERCISES
Section 9.2.

1. Provide reachability conditions, infection conditions, propagation
conditions, and test case values to kill mutants 2, 4, 5, and 6 in
Figure 9.1.

2. Answer questions (a) through (d) for the mutant on line 5 in the
method findVal().
(a) If possible, find test inputs that do not reach the mutant.
(b) If possible, find test inputs that satisfy reachability but not

infection for the mutant.
(c) If possible, find test inputs that satisfy infection, but not

propagation for the mutant.
(d) If possible, find test inputs that strongly kill the mutants.

3. Answer questions (a) through (d) for the mutant on line 6 in the
method sum().
(a) If possible, find test inputs that do not reach the mutant.
(b) If possible, find test inputs that satisfy reachability but not

infection for the mutant.
(c) If possible, find test inputs that satisfy infection, but not

propagation for the mutant.
(d) If possible, find test inputs that strongly kill the mutants.

4. Refer to the patternIndex() method in the PatternIndex

program in Chapter 7. Consider Mutant A and Mutant B given
below. Implementations are available on the book website in files
PatternIndexA.java and PatternIndexB. java.

Answer the following questions for each mutant.
(a) If possible, design test inputs that do not reach the mutants.
(b) If possible, design test inputs that satisfy reachability but not

infection for the mutants.
(c) If possible, design test inputs that satisfy reachability and

infection, but not propagation for the mutants.
(d) If possible, design test inputs that strongly kill the mutants.

5. Why does it make sense to remove ineffective test cases?
6. Define 12 mutants for the following method cal() using the

effective mutation operators given previously. Try to use each
mutation operator at least once. Approximately how many mutants
do you think there would be if all mutants for cal() were created?

7. Define 12 mutants for the following method power() using the
effective mutation operators given previously. Try to use each
mutation operator at least once. Approximately how many mutants
do you think there would be if all mutants for power() were
created?

8. The fundamental premise of mutation was stated as: “In practice, if
the software contains a fault, there will usually be a set of mutants
that can be killed only by a test case that also detects that fault.”
(a) Give a brief argument in support of the fundamental mutation

premise.
(b) Give a brief argument against the fundamental mutation

premise.
9. Try to design mutation operators that subsume Combinatorial

Coverage. Why wouldn’t we want such an operator?
10. Look online for the tool Jester (jester.sourceforge.net),

which is based on JUnit. Based on your reading, evaluate Jester as a
mutation-testing tool.

11. Download and install the Java mutation tool muJava from the book
website Enclose the method cal() from question 6 inside a class,
and use muJava to test cal(). Use all the operators. Design tests to
kill all non-equivalent mutants. Note that a test case is a method call
to cal().
(a) How many mutants are there?
(b) How many test cases do you need to kill the non-equivalent

mutants?
(c) What mutation score were you able to achieve before analyzing

for equivalent mutants?

(d) How many equivalent mutants are there?

9.3 INTEGRATION AND OBJECT-ORIENTED
TESTING

This book defined the term integration testing in Chapter 2 as testing
connections among separate program units. In Java, that involves testing
the way classes, packages, and components are connected. This section
uses the general term component. This is also where features that are
unique to object-oriented programming languages are tested, specifically,
inheritance, polymorphism, and dynamic binding.

9.3.1 BNF Integration Testing

As far as we know, BNF testing has not been used at the integration level.

9.3.2 Integration Mutation

This section first discusses how mutation can be used for testing at the
integration level without regard to object-oriented relationships, then how
mutation can be used to test for problems involving inheritance,
polymorphism, and dynamic binding.

Faults that can occur in the integration between two components usually
depend on a mismatch of assumptions. For example, Chapter 1 discussed
the Mars lander of September 1999, which crashed because a component
sent a value in English units (miles) and the recipient component assumed
the value was in kilometers. Whether such a flaw should be fixed by
changing the caller, the callee, or both depends on the design specification
of the program and possibly pragmatic issues such as which is easier to
change.

Integration mutation (also called interface mutation) works by mutating
the connections between components. Most mutants are around method
calls, and both the calling (caller) and called (callee) method must be
considered. Interface mutation operators do the following:

 Change a calling method by modifying the values that are sent to a

called method.
 Change a calling method by modifying the call.
 Change a called method by modifying the values that enter and leave a

method. This should include parameters as well as variables from a
higher scope (class level, package, public, etc.).

 Change a called method by modifying statements that return from the
method.

1. IPVR—Integration Parameter Variable Replacement:

Replace each parameter in a method call with each other variable of
compatible type in the scope of the method call.

IPVR does not use variables of an incompatible type because they would
be syntactically illegal (the compiler should catch them). In OO languages,
this operator replaces primitive type variables as well as objects.

2. IUOI—Integration Unary Operator Insertion:

Replace each parameter in each method call with each other variable of
compatible type in the scope of the method call.

The unary operators vary by language and type. Java includes ++ and -
- as both prefix and postfix operators for numeric types.

3. IPEX—Integration Parameter Exchange:

Exchange each parameter in each method call with each parameter of
compatible type in that method call.

For example, if a method call is max (a, b), a mutated method call
of max (b, a) is created.

4. IMCD—Integration Method Call Deletion:

Delete each method call. If the method returns a value and the value is
used in an expression, replace the method call with an appropriate
constant value.

In Java, the default values should be used for methods that return values
of primitive type. If the method returns an object, the method call should
be replaced by a call to new() on the appropriate class.

5. IREM—Integration Return Expression Modification:

Modify each expression in each return statement in each method by
applying the UOI and AOR operators from Section 9.2.2.

Object-Oriented Mutation Operators
Chapter 2 defined intra-method, inter-method, intra-class, and inter-class
testing. The five integration mutation operators can be used at the inter-
method level (between methods in the same class) and at the inter-class
level (between methods in different classes). When testing at the inter-
class level, testers also have to worry about faults in the use of inheritance
and polymorphism. These are powerful language features that can solve
difficult programming problems, but also introduce difficult testing
problems.

Languages that include features for inheritance and polymorphism often
also include features for information hiding and overloading. Thus,
mutation operators to test those features are usually included with the OO
operators, even though these are not usually considered to be essential to
calling a language “object-oriented.”

To understand how mutation testing is applied to such features, we need
to examine the language features in depth. This is done in terms of Java;
other OO languages tend to be similar but with some subtle differences.

Encapsulation is an abstraction mechanism to enforce information
hiding, a design technique that frees clients of an abstraction from
unnecessary dependence on design decisions in the implementation of the
abstraction. Encapsulation allows objects to restrict access to their member
variables and methods by other objects. Java supports four distinct access
levels for member variables and methods: private, protected, public, and
default (also called package). Many programmers do not understand these
access levels well, and often do not consider them during design, so they
are a rich source of faults. Table 9.1 summarizes these access levels. A
private member is available only to the class in which it is defined. If
access is not specified, the access level defaults to package, which allows
access to classes in the same package, but not subclasses in other

packages. A protected member is available to the class itself, subclasses,
and classes in the same package. A public member is available to any class
in any inheritance hierarchy or package (the world).

Table 9.1. Java’s access levels.

Java does not support multiple class inheritance, so every class has only
one immediate parent. A subclass inherits variables and methods from its
parent and all of its ancestors, and can use them as defined, or override the
methods or hide the variables. Subclasses can also explicitly use their
parent’s variables and methods using the keyword “super” (
super.methodname();). Java’s inheritance allows method
overriding, variable hiding, and class constructors.

Method overriding allows a method in a subclass to have the same
name, arguments and result type as a method in its parent. Overriding
allows subclasses to redefine inherited methods. The child class method
has the same signature, but a different implementation.

Variable hiding is achieved by defining a variable in a child class that
has the same name and type of an inherited variable. This has the effect of
hiding the inherited variable from the child class. This is a powerful
feature, but it is also a potential source of errors.

Class constructors are not inherited in the same way other methods are.
To use a constructor of the parent, we must explicitly call it using the
super keyword. The call must be the first statement in the derived class
constructor and the parameter list must match the parameters in the
argument list of the parent constructor.

Java supports two versions of polymorphism, attributes and methods,
both of which use dynamic binding. Each object has a declared type (the
type in the declaration statement, that is, “Parent P;”) and an actual type
(the type in the instantiation statement, that is, “P = new Child();,” or the
assignment statement, “P = Pold;”). The actual type can be the declared
type or any type that is descended from the declared type.

A polymorphic attribute is an object reference that can take on various
types. At any location in the program, the type of the object reference can
be different in different executions. A polymorphic method can accept
parameters of different types by having a parameter that is declared of type
Object. Polymorphic methods are used to implement type abstraction
(templates in C++ and generics in Ada).

Overloading is the use of the same name for different constructors or
methods in the same class. They must have different signatures, or lists of
arguments. Overloading is easily confused with overriding because the two
mechanisms have similar names and semantics. Overloading occurs with
two methods in the same class, whereas overriding occurs between a class
and one of its descendants.

In Java, member variables and methods can be associated with the class
rather than with individual objects. Members associated with a class are
called class or static variables and methods. The Java runtime system
creates a single copy of a static variable the first time it encounters the
class in which the variable is defined. All instances of that class share the
same copy of the static variable. Static methods can operate only on static
variables; they cannot access instance variables defined in the class.
Unfortunately the terminology varies; we say instance variables are
declared at the class level and are available to objects, class variables are
declared with static, and local variables are declared within methods.

Mutation operators can be defined for all of these language features. The
purpose of mutating them is to make sure that the programmer is using
them correctly. One reason to be particularly concerned about the use of
OO language features is because many programmers today have learned
them “on the job,” without having the opportunity to study the theoretical
rules about how to use them appropriately.

Following are 25 mutation operators for information hiding language
features, inheritance, polymorphism and dynamic binding, method
overloading, and classes.

Group 1: Encapsulation mutation operators
1. AMC—Access Modifier Change:

Change the access level for each instance variable and method to each
other access level.

The AMC operator helps testers generate tests to ensure that
accessibility is correct. These mutants can be killed only if the new access
level denies access to another class or allows access that causes a name
conflict.

Group 2: Inheritance mutation operators
2. IHI—Hiding Variable Insertion:

Add a declaration for each variable declared in an ancestor to hide the
ancestor’s declaration.

These mutants can be killed only by test cases that can show that the
reference to the overriding variable is incorrect.

3. IHD—Hiding Variable Deletion:

Delete each declaration of an overriding (hiding) variable.

This causes references to that variable to access the variable defined in
the parent (or ancestor), which is a common programming mistake.

4. IOD—Overriding Method Deletion:

Delete each entire declaration of an overriding method.

References to the method will then use the parent’s version. This
ensures that the method invocation is to the intended method.

5. IOP—Overridden Method Calling Position Change:

Move each call to an overridden method to the first and last statements of
the method and up and down one statement.

Overriding methods in child classes often call the original method in the
parent class, for example, to modify a variable that is private to the parent.
A common mistake is to call the parent’s version at the wrong time, which
can cause incorrect state behavior.

6. IOR—Overridden Method Rename:

Rename the parent’s versions of methods that are overridden in a
subclass so that the overriding does not affect the parent’s method.

The IOR operator is designed to check whether an overriding method
causes problems with other methods. Consider a method m() that calls
another method f(), both in a class List. Further, assume that m() is
inherited without change in a child class Stack, but f() is overridden in
Stack. When m() is called on an object of type Stack, it calls Stack’s
version of f() instead of List’s version. In this case, Stack’s version of f()
may interact with the parent’s version that has unintended consequences.

7. ISI—super Keyword Insertion:

Insert the super keyword before overriding variables or methods (if the
name is also defined in an ancestor class).

After the change, references will be to an ancestor’s version. The ISI
operator is designed to ensure that hiding/hidden variables and
overriding/overridden methods are used appropriately.

8. ISD—super Keyword Deletion:

Delete each occurrence of the super keyword.

After the change, the reference will be to the local version instead of the
ancestor’s version. The ISD operator is designed to ensure that
hiding/hidden variables and overriding/overridden methods are used
appropriately.

9. IPC—Explicit Parent’s Constructor Deletion:

Delete each call to a super constructor.

The parent’s (or ancestor’s) default constructor will be used. To kill
these mutants, it is necessary to find a test case for which the parent’s
default constructor creates an initial state that is incorrect.

Group 3: Polymorphism mutation operators

10. PNC—new Method Call With Child Class Type:

Change the actual type of a new object in the new() statement.

This causes the object reference to refer to an object of a type that is
different from the original actual type. The new actual type must be in the
same “type family” (a descendant) of the original actual type.

11. PMD—Member Variable Declaration with Parent Class Type:

Change the declared type of each new object in the declaration.

The new declared type must be an ancestor of the original type. The
instantiation will still be valid (it will still be a descendant of the new
declared type). To kill these mutants, a test case must cause the behavior
of the object to be incorrect with the new declared type.

12. PPD—Parameter Variable Declaration with Child Class Type:

Change the declared type of each parameter object in the declaration.

This is the same as PMD except on parameters.

13. PCI—Type Cast Operator Insertion:

Change the actual type of an object reference to the parent or to the child
of the original declared type.

The mutant will have different behavior when the object to be cast has
hiding variables or overriding methods.

14. PCD—Type Cast Operator Deletion:

Delete type casting operators.

This operator is the inverse of PCI.

15. PCC—Cast Type Change:

Change the type to which an object reference is being cast.

The new type must be in the type hierarchy of the declared type (that is,
it must be a valid cast).

16. PRV—Reference Assignment with Other Compatible Type:

Change the right side objects of assignment statements to refer to objects
of a compatible type.

For example, if an Integer is assigned to a reference of type
Object, the assignment may be changed to that of a String. Since both
Integers and Strings descend from Object, both can be assigned
interchangeably.

17. OMR—Overloading Method Contents Replace:

For each pair of methods that have the same name, interchange the
bodies.

This ensures that overloaded methods are invoked appropriately.

18. OMD—Overloading Method Deletion:

Delete each overloaded method declaration, one at a time.

The OMD operator ensures coverage of overloaded methods; that is, all
the overloaded methods must be invoked at least once. If the mutant still
works correctly without the deleted method, there may be an error in
invoking one of the overloading methods; the incorrect method may be
invoked, or an incorrect parameter type conversion has occurred.

19. OAC—Arguments of Overloading Method Call Change:

Change the order of the arguments in method invocations to be the same
as that of another overloading method, if one exists.

This causes a different method to be called, thus checking for a common

fault in the use of overloading.

Group 4: Java-specific mutation operators
20. JTI–this Keyword Insertion:

Insert the keyword this whenever possible.

Within a method body, uses of the keyword this refers to the current
object if the member variable is hidden by a local variable or method
parameter that has the same name. JTI replaces occurrences of “X” with
“this.X.” JTI mutants are killed when using the local version instead of the
current object changes the behavior of the software.

21. JTD—this Keyword Deletion:

Delete each occurrence of the keyword this.

The JTD operator checks if the member variables are used correctly by
replacing occurrences of “this.X” with “X.”

22. JSI–static Modifier Insertion:

Add the static modifier to instance variables.

This operator ensures that variables that are declared as non-static really
need to be non-static.

23. JSD–static Modifier Deletion:

Remove each instance of the static modifier.

This operator ensures that variables that are declared as static really
need to be static.

24. JID—Member Variable Initialization Deletion:

Remove initialization of each member variable.

Instance variables can be initialized in the variable declaration and in

constructors for the class. The JID operator removes the initializations so
that member variables are initialized to the default values.

25. JDC—Java-supported Default Constructor Deletion:

Delete each declaration of a default constructor.

This ensures that default constructors are implemented correctly.

9.4 SPECIFICATION-BASED GRAMMARS

The general term “specification-based” is applied to languages that
describe software in abstract terms. This includes formal specification
languages such as Z, SMV, and OCL, and informal specification
languages and design notations such as statecharts, FSMs, and other UML
diagram notations. Design notations are also referred to as “model-based.”
Thus, the line between specification-based and model-based is blurry.
Such languages are becoming more widely used, partly because of
increased emphasis on software quality and partly because of the
widespread use of the UML.

9.4.1 BNF Grammars

To our knowledge, terminal symbol coverage and production coverage
have been applied to only one type of specification language: algebraic
specifications. The idea is to treat an equation in an algebraic specification
as a production rule in a grammar, and then derive strings of method calls
to cover the equations. As algebraic specifications are not widely used, this
book does not discuss this topic.

9.4.2 Specification-Based Mutation

Mutation testing can also be a valuable method at the specification level.
In fact, for certain types of specifications, mutation analysis is actually
easier. We address specifications expressed as finite state machines in this
section.

A finite state machine is essentially a graph G, as defined in Chapter 7,
with a set of states (nodes), a set of initial states (initial nodes), and a
transition relation (the set of edges). When finite state machines are used,
sometimes the edges and nodes are explicitly identified, as in the typical
bubble and arrow diagram. However, sometimes the finite state machine is
more compactly described in the following way:

1. States are implicitly defined by declaring variables with limited
ranges. The state space is then the Cartesian product of the ranges of
the variables.

2. Initial states are defined by limiting the ranges of some or all of the
variables.

3. Transitions are defined by rules that characterize the source and target
of each transition.

The following example clarifies these ideas in the language SMV. We
describe a machine with a simple syntax, and show the same machine with
explicit enumerations of the states and transitions. Although this example
is too small to show this point, the syntax version in SMV is typically
much smaller than the graph version. In fact, since state space growth is
combinatorial, it is quite easy to define finite state machines where the
explicit version is far too long to write, even though the machine itself can
be analyzed efficiently. Below is an example in the SMV language.

Two variables appear, each of which can have only two values
(boolean), so the state space is of size 2 * 2 = 4. One initial state is defined
in the two init statements under ASSIGN. The transition diagram is
shown in Figure 9.4. Transition diagrams for SMV can be derived by
mechanically following the specifications. Take a given state and decide
what the next value for each variable is. For example, assume the above
specification is in the state (true, true). The next value for x will be
determined by the “ x : false” statement. x is true, so its next value
will be false. Likewise, x & y is true, so the next value of y will be its
current value, or true. Thus, the state following (true, true) is (false, true).
If multiple conditions in a case statement are true, the first one that is
true is chosen. SMV has no “fall-through” semantics, such as in languages
like C or Java.

Figure 9.4. Finite state machine for SMV specification.

Our context has two particularly important aspects of such a structure.

1. Finite state descriptions can capture system behavior at a very high
level—suitable for communicating with the end user. FSMs are
incredibly useful for the hardest part of testing, namely system
testing.

2. The verification community has built powerful analysis tools for
finite state machines. These tools are highly automated. Further, these
tools produce explicit evidence, in the form of witnesses or
counterexamples, for properties that do not hold in the finite state
machine. These counterexamples can be interpreted as test cases.

Thus, it is easier to automate test case generation from finite state
machines than from program source.

Mutations and Test Cases
Mutating the syntax of state machine descriptions is very much like
mutating program source. Mutation operators must be defined, and then
they are applied to the description. One example is the Constant
Replacement operator, which replaces each constant with other constants.
Given the phrase !x & y : false in the next statement for y,
replace it with !x & y : true. The finite state machine for this mutant
is shown in Figure 9.5. The new transition is drawn as an extra thick arrow
and the replaced transition is shown as a crossed-out dotted arrow.

Figure 9.5. Mutated finite state machine for SMV specification.

Generating a test case to kill this mutant is a little different from
program-based mutation. We need a sequence of states that is allowed by
the transition relation of the original state machine, but not by the mutated
state machine. Such a sequence is precisely a test case that kills the
mutant.

Jia and Harman [Jia and Harman, 2008, Harman et al., 2010] discovered
that higher order mutants (HOMs), where more than one change is made at
the same time, can be very helpful. They are primarily useful when the two
changes interact, but do not cancel each other out.

Finding a test to kill a mutant of a finite state machine expressed in
SMV can be automated using a model checker. A model checker takes two
inputs. The first is a finite state machine, described in a formal language
such as SMV. The second is a statement of some property, expressed in a
temporal logic. We will not fully explain temporal logic here, other than to
say that such a logic can be used to express properties that are true “now,”
and also properties that will (or might) be true in the future. The following
is a simple temporal logic statement:

The original expression, !x & y : false in this case, is always the
same as the mutated expression, x | y : true.

For the given example, this statement is false with respect to a sequence
of states allowed by the original machine if and only if that sequence of
states is rejected by the mutant machine. In other words, such a sequence
in question is a test case that kills the mutant. If we add the following
SMV statement to the above machine:
SPEC AG (!x & y) -→ AX (y = true)
The model checker will obligingly produce the desired test sequence:

Some mutated state machines are equivalent to the original machine.
The model checker is exceptionally well adapted to deal with this. The key
theoretical reason is that the model checker has a finite domain to work in,
and hence the equivalent mutant problem is decidable (unlike with
program code). In other words, if the model checker does not produce a
counterexample, we know that the mutant is equivalent.

EXERCISES
Section 9.4.

1. Translate the following SMV machine into a finite state machine.

2. Translate the following finite state machine into an SMV machine.

3. (Challenging!) Find or write a small SMV specification and a
corresponding Java implementation. Restate the program logic in
SPEC assertions. Mutate the assertions systematically, and collect the
traces from (nonequivalent) mutants. Use these traces to test the
implementation.

9.5 INPUT SPACE GRAMMARS

One common use of grammars is to define the syntax of the inputs to a
program, method, or software component formally. This section explains
how to apply the criteria of this chapter to grammars that define the input

space of a piece of software.

9.5.1 BNF Grammars

Section 9.1.1 of this chapter presented criteria on BNF grammars. One
common use of a grammar is to define a precise syntax for the input of a
program or method.

Consider a program that processes a sequence of deposits and debits,
where each deposit is of the form deposit account amount and each
debit is of the form debit account amount. The input structure of this
program can be described with the regular expression:

(deposit account amount | debit account amount)*

This regular expression describes any sequence of deposits and debits.
(The example in Section 9.1.1 is actually an abstract version of this
example.)

The regular expression input description is still fairly abstract, in that it
does not say anything about what an account or an amount looks like. We
will refine those details later. One input that can be derived from this
grammar is:

It is easy to build a graph that captures the effect of regular expressions.
Formally, these graphs are finite automata, either deterministic or non-
deterministic. In either case, one can apply the coverage criteria from
Chapter 7 directly.

One possible graph for the above structure is shown in Figure 9.6. It
contains one state (Ready) and two transitions that represent the two
possible inputs. The input test example given above satisfies both the all
nodes and all edges criteria for this graph.

Figure 9.6. Finite state machine for bank example.

Although regular expressions suffice for some programs, others require
grammars. As grammars are more expressive than regular expressions we
do not need to use both. The prior example specified in grammar form,
with all of the details for account and amount, is:

The graph for even this simple example is substantially larger once all
details have been included. It is shown in Figure 9.7.

Figure 9.7. Finite state machine for bank example grammar.

A full derivation of the test case above begins as follows:

Deriving tests from this grammar proceeds by systematically replacing
the next nonterminal (action) with one of its productions. The exercises

below ask for complete tests to satisfy Terminal Symbol Coverage and
Production Coverage.

Of course, it often happens that an informal description of the input
syntax is available, but not a formal grammar. This means that the test
engineer is left with the engineering task of formally describing the input
syntax. This process is extremely valuable, and will often expose
ambiguities and omissions in the requirements and software. Thus, this
step should be carried out early in development, definitely before
implementation and preferably before design. Once defined, it is
sometimes helpful to use the grammar directly in the program for
execution-time input validation.

XML Example
A language for describing inputs that is widely used is the eXtensible
Markup Language (XML). The most common use of XML is in web
applications and web services, but XML’s structure is generic enough to
be useful in many contexts. XML is a language for describing, encoding
and transmitting data. All XML “messages” (also sometimes called
“documents”) are in plain text and use a syntax similar to HTML. XML
comes with a built-in language for describing the input messages in the
form of a grammar, called schemas.

Like HTML, XML uses tags, which are textual descriptions of data
enclosed in angle brackets (‘ <’ and ‘ >’). All XML messages must be
well-formed, that is, have a single document element with other elements
properly nested under it, and every tag must have a corresponding closing
tag. A simple example XML message for books is shown in Figure 9.8.
This example is used to illustrate the use of BNF testing on software that
uses XML messages. The example lists two books. The tag names
(“books,” “book,” “ISBN,” etc.) should be self descriptive and the XML
message forms an overall hierarchy.

Figure 9.8. Simple XML message for books.

XML documents can be constrained by grammar definitions written in
XML Schemas. Figure 9.9 shows a schema for books. The schema says
that a books XML message can contain an unbounded number of book
tags. The book tags contain six pieces of information. Three, title, author,
and publisher, are simple strings. One, price, is of type decimal (numeric),
has two digits after the decimal point and the lowest value is 0. Two data
elements, ISBN and year, are types that are defined later in the schema.
The type yearType is an integer with four digits, and “isbnType” can have
up to 10 numeric characters. Each book must have a title, author,
publisher, price, and year, and ISBN is optional.

Figure 9.9. XML schema for books.

Given an XML schema, the criteria defined in Section 9.1.1 can be used
to derive XML messages that serve as test inputs. Following the
production coverage criteria would result in two XML messages for this
simple schema, one that includes an ISBN and one that does not.

9.5.2 Mutating Input Grammars

It is quite common to require a program to reject malformed inputs, and
this property should definitely be tested as a form of stress testing. It is the
kind of thing that slips past the attention of programmers who are focused
on happy paths, that is, making a program do what it is supposed to do.

Do invalid inputs really matter? From the perspective of program
correctness, invalid inputs are simply those outside the precondition of a
specified function. Formally speaking, a software implementation of that
function can exhibit any behavior on inputs that do not satisfy the
precondition. This includes failure to terminate, runtime exceptions, and
“bus error, core dump.”

However, the correctness of the intended functionality is only part of the
story. From a practical perspective, invalid inputs sometimes matter a great
deal because they hold the key to unintended functionality. For example,
unhandled invalid inputs often represent security vulnerabilities, allowing
a malicious party to break the software. Invalid inputs often cause the
software to behave in surprising ways, which malicious parties can use to
their advantage. This is how the classic “buffer overflow attack” works.
The key step in a buffer overflow attack is to provide an input that is too
long to fit into the available buffer. Similarly, a key step in certain web
browser attacks is to provide a string input that contains malicious HTML,
JavaScript, or SQL. Software should behave “reasonably” with invalid
inputs. “Reasonable” behavior may not always be defined, but the test
engineer is obliged to consider it anyway.

To support security as well as to evaluate the software’s behavior, it is
useful to produce test cases that contain invalid inputs. A common way to
do this is to mutate a grammar. When mutating grammars, the mutants are
the tests and we create valid and invalid strings. No ground string is used,
so the notion of killing mutants does not apply to mutating grammars. Four
mutation operators for grammars are defined below.

1. Nonterminal Replacement:

Replace every nonterminal symbol in a production by other nonterminal
symbols.

This is a very broad mutation operator that could result in many strings
that are not only invalid, they are so far away from valid strings that they
are useless for testing. If the grammar provides specific rules or syntactic
restrictions, some nonterminal replacements can be avoided. This is
analogous to avoiding compiler errors in program-based mutation. For
example, some strings represent type structures and only nonterminals of
the same or compatible type should be replaced.

The production dep ::= "deposit" account amount can be
mutated to create the following productions:

Which can result in the following tests:

2. Terminal Replacement:

Replace every terminal symbol in a production by other terminal
symbols.

Just as with nonterminal replacement, some terminal replacements may
not be appropriate. Recognizing them depends on the particular grammar
that is being mutated. For example, the production amount ::= "$"
digit+ "." digit2 can be mutated to create the following three
productions:

Which can result in the corresponding tests:

3. Terminal and Nonterminal Deletion:

Delete every terminal and nonterminal symbol in a production.

For example, the production dep ::= "deposit" account
amount can be mutated to create the following three productions:

Which can result in the corresponding tests:

4. Terminal and Nonterminal Duplication:

Duplicate every terminal and nonterminal symbol in a production.

This is sometimes called the “stutter” operator. For example, the
production dep ::= "deposit" account amount can be mutated
to create the following three mutated productions:

Which can result in the corresponding tests:

We have significantly more experience with program-based mutation
operators than grammar-based operators, so this list should be treated as
being much less definitive.

These mutation operators can be applied in either of two ways. One is to
mutate the grammar and then generate inputs. The other is to use the
correct grammar, but one time during each derivation apply a mutation
operator to the production being used. The operators are typically applied
during production, because the resulting inputs are usually “closer” to
valid inputs than if the entire grammar is corrupted. This approach is used
in the previous examples.

Just as with program-based mutation, some inputs from a mutated
grammar rule are still in the grammar. The example above of changing the
rule

to be

yields an “equivalent” mutant. The resulting input, debit 739
$12.35, is a valid input, although the effects are (sadly) quite different

for the customer. If the idea is to generate invalid inputs exclusively, some
way must be found to screen out mutant inputs that are valid. Although
this sounds much like the equivalence problem for programs, the
difference is small but significant. Here the problem is solvable and can be
solved by creating a recognizer from the grammar, and checking each
string as it is produced.

Many programs are supposed to accept some, but not all, inputs from a
larger language. Consider the example of a web application that allows
users to provide reviews. For security reasons the application should
restrict its inputs to a subset of HTML; otherwise a malicious reviewer can
enter a “review” that also uses HTML to implement an attack such as
redirecting a user to a different website. From a testing perspective, we
have two grammars: the full HTML grammar, and a grammar for the
subset. Invalid tests that are in the first grammar, but not the subset, are
good tests because they can represent an attack.

XML Example
Section 9.5.1 showed examples of generating tests in the form of XML
messages from a schema grammar definition. It is also convenient to apply
mutation to XML schemas to produce invalid messages. Some programs
will use XML parsers that validate the messages against the grammar. If
they do, it is likely that the software will usually behave correctly on
invalid messages, but testers still need to verify this. If a validating parser
is not used, this can be a rich source for programming mistakes. It is also
fairly common for programs to use XML messages without having an
explicit schema definition. In this case, it is very helpful for the test
engineer to develop the schema as a first step to developing tests.

XML schemas have a rich collection of built-in datatypes, which come
with a large number of constraining facets. In XML, constraining facets
are used to restrict further the range of values. The example in Figure 9.9
uses several constraining facets, including fractionDigits, minInclusive,
and minOccurs. This suggests further mutation operators for XML
schemas that modify the values of facets. This can often result in a rich
collection of tests for software that use inputs described with XML.

Given the following four lines in the books schema in Figure 9.9:

we might construct the mutants:

EXERCISES
Section 9.5.

1. Generate tests to satisfy TSC for the bank example grammar based on
the BNF in Section 9.5.1. Try not to satisfy PDC.

2. Generate tests to satisfy PDC for the bank example grammar.
3. Consider the following BNF with start symbol A:

and the following six possible test cases:

For each of the six tests, state whether the test sequence is either (1)
“in” the BNF, and give a derivation, or (2) sequence as “out” of the
BNF, and give a mutant derivation that results in that test. (Use only
one mutation per test, and use it only one time per test.)

4. Provide a BNF description of the inputs to the cal() method in the
homework set for Section 9.2.2. Succinctly describe any requirements
or constraints on the inputs that are hard to model with the BNF.

5. Answer questions (a) through (c) for the following grammar.

Also consider the following mutated version, which adds an
additional rule to the grammar:
 
(a) Which of the following strings can be generated by the

(unmutated) grammar?

(b) Find a string that is generated by the mutated grammar, but not
by the original grammar.

(c) (Challenging) Find a string whose generation uses the new rule
in the mutant grammar, but is also in the original grammar.
Demonstrate your answer by giving the two relevant
derivations.

6. Answer questions (a) and (b) for the following grammar.

(a) Classify the following as either phoneNumbers (in the
grammar). For numbers not in the grammar, state why not.

 123-4567
 012-3456
 109-1212
 246-9900
 113-1111

(b) Consider the following mutation of the grammar:
 

If possible, give a string that appears in the mutated grammar

but not in the original grammar, another string that is in the
original but not the mutated, and a third string that is in both.

7. Use the web application program calculate to answer the
following questions. calculate is on the second author’s website (at
https://cs.gmu.edu:8443/offutt/servlet/calculate as of this writing).
(a) Analyze the inputs for calculate and determine and write the

grammar for the inputs. You can express the grammar in BNF,
an XML schema, or another form if you think it’s appropriate.
Submit your grammar.

(b) Use the mutation ideas in this chapter to generate tests for
calculate. Submit all tests; be sure to include expected
outputs.

(c) Automate your tests using a web testing framework such as
HttpUnit or Selenium. Submit screen printouts of any
anomalous behavior.

8. Java provides a package, java.util.regex, to manipulate
regular expressions. Write a regular expression for URLs and then
evaluate a set of URLs against your regular expression. This
assignment involves programming, since input structure testing
without automation is pointless.
(a) Write (or find) a regular expression for a URL. Your regular

expression does not need to be so general that it accounts for
every possible URL, but give your best effort (for example "*"
will not be considered a good effort). You are strongly
encouraged to do some web surfing to find some candidate
regular expressions. One suggestion is to visit the Regular
Expression Library.

(b) Collect at least 20 URLs from a small website (such as course
web pages). Use the java.util.regex package to validate
each URL against your regular expression.

(c) Construct a valid URL that is not valid with respect to your
regular expression (and show this with the appropriate
java.util.regex call). If you have done an outstanding
job in part 1, explain why your regular expression does not have
any such URLs.

9. Why is the equivalent mutant problem solvable for BNF grammars
but not for program-based mutation? (Hint: The answer to this
question is based on some fairly subtle theory.)

https://cs.gmu.edu:8443/offutt/servlet/calculate

9.6 BIBLIOGRAPHIC NOTES

We trace the use of grammars for testing compilers back to Hanford in
1972 [Hanford, 1970], who motivated subsequent related work [Bauer and
Finger, 1979, Duncan and Hutchison, 1981, Ince, 1987, Payne, 1978,
Purdom, 1972]. Maurer’s Data Generation Language (DGL) tool [Maurer,
1990] showed the applicability of grammar-based generation to many
types of software, a theme echoed in detail by Beizer [Beizer, 1990]. A
recent paper was published by Guo and Qiu [Guo and Qiu, 2013].

Legend has it that the first ideas of mutation analysis were postulated in
1971 in a class term paper by Richard Lipton. The first research papers
were published by Budd and Sayward [Budd and Sayward, 1977], Hamlet
[Hamlet, 1977], and DeMillo, Lipton, and Sayward [DeMillo et al., 1978]
in the late 1970s; DeMillo, Lipton, and Sayward’s paper [DeMillo et al.,
1978] is generally cited as the seminal reference. Mutation has primarily
been applied to software by creating mutant versions of the source, but has
also been applied to other languages, including formal software
specifications.

The original analysis of the number of mutants was by Budd [Budd,
1980], who analyzed the number of mutants generated for a program and
found it to be roughly proportional to the product of the number of
variable references times the number of data objects (O(Refs*V ars)). A
later analysis [Acree et al., 1979] claimed that the number of mutants is
O(Lines*Refs)–assuming that the number of data objects in a program is
proportional to the number of lines. This was reduced to O(Lines * Lines)
for most programs; this figure appears in most of the literature.

A statistical regression analysis of actual programs by Offutt et al.
[Offutt et al., 1996a] showed that the number of lines did not contribute to
the number of mutants, but that Budd’s figure is accurate. The selective
mutation approach mentioned below under “Designing Mutation
Operators” eliminates the number of data objects so that the number of
mutants is proportional to the number of variable references (O(Refs)).

Weak mutation has been widely discussed [Girgis and Woodward,
1985, Howden, 1982, Offutt and Lee, 1994, Woodward and Halewood,
1988], and experimentation has shown that the difference is very small
[Horgan and Mathur, 1990, Marick, 1991, Offutt and Lee, 1994]. Mutation
operators have been designed for various programming languages,
including Fortran IV [Andre, 1979, Budd et al., 1979], COBOL [Hanks,

1980], Fortran 77 [DeMillo and Offutt, 1993, King and Offutt, 1991], C
[Delamaro and Maldonado, 1996], C integration testing [Delamaro et al.,
2001], Lisp [Budd and Lipton, 1978], Ada [Bowser, 1988, Offutt et al.,
1996c], Java [Kim et al., 2000], and Java class relationships [Ma et al.,
2002, Ma et al., 2005].

Research proof-of-concept tools have been built for Fortran IV and 77,
COBOL, C, Java, and Java class relationships. One of the most widely
used tools was Mothra [DeMillo et al., 1988, DeMillo and Offutt, 1993], a
mutation system for Fortran 77 that was built in the mid-80s at Georgia
Tech. Mothra was built under the leadership of Rich DeMillo, with most of
the design done by DeMillo and Offutt, and most of the implementation by
Offutt and King, with help from Krauser and Spafford. In its heyday in the
early ’90s, Mothra was installed at well over a hundred sites and the
research that was done to build Mothra and that later used Mothra as a
laboratory resulted in around half a dozen PhD dissertations and many
dozens of papers. A more recent tool for Java is muJava [Ma et al., 2005,
Offutt et al., 2005], which supports both statement level and object-
oriented mutation operators, and accepts tests written in JUnit. muJava has
been used to support hundreds of testing research projects. As far as we
know, the only commercial tool that supports mutation is by the company
Certess [Hampton and Petithomme, 2007], in the chip design industry.

The coupling effect says that complex faults are coupled to simple faults
in such a way that test data that detects all simple faults will detect most
complex faults [DeMillo et al., 1978]. The coupling effect was supported
empirically for programs in 1992 [Offutt, 1992], and has shown to hold
probabilistically for large classes of programs in 1995 [Wah, 1995]. Budd
[Budd and Angluin, 1982] discussed the concept of program
neighborhoods. The neighborhood concept was used to present the
competent programmer hypothesis [DeMillo et al., 1978]. The
fundamental premise of mutation testing, as coined by Geist et al. [Geist et
al., 1992], is: In practice, if the software contains a fault, there will
usually be a set of mutants that can be killed only by a test case that
also detects that fault.

The operation of replacing each statement with a “bomb” was called
Statement ANalysis (SAN) in Mothra [King and Offutt, 1991]. Mothra’s
Relational Operator Replacement (ROR) operator replaces each
occurrence of a relational operator (<, >, ≤, ≥, =, ≠) with each other
operator and the expression with true and false. The subsumption proofs in

Section 9.2.2 used only the latter operators. Mothra’s Logical Connector
Replacement (LCR) operator replaces each occurrence of one of the
logical operators (∧, ∨, ≡, ≠) with each other operator and the entire
expression with true, false, leftop and rightop. leftop and rightop are
special mutation operators that return the left side and the right side,
respectively, of a relational expression. The mutation operator that
removes each statement in the program was called Statement DeLetion
(SDL) in Mothra [King and Offutt, 1991] and muJava.

Several authors [Ammann and Black, 2000, Ammann et al., 1998, Black
et al., 2000], [Rayadurgam and Heimdahl, 2001, Wijesekera et al., 2007]
have used traces from model checkers to generate tests, including
mutation-based tests. The text from Huth and Ryan [Huth and Ryan, 2000]
provides an easily accessible introduction to model checking and discusses
use of the SMV system.

Jia and Harman published a thorough review of the mutation testing
literature in 2011 [Jia and Harman, 2011].

One of the key technologies being used to transmit data among
heterogeneous software components on the Web is the eXtensible Markup
Language (XML) [Bray et al., 1998, Consortium, 2000]. Data-based
mutation defines generic classes of mutation operators. These mutation
operator classes are intended to work with different grammars. The current
literature [Lee and Offutt, 2001] cites operator classes that modify the
length of value strings and determine whether or not a value is in a
predefined set of values.

1 There is no relationship between this use of mutation and genetic algorithms,
except that both make an analogy to biological mutation. Mutation for testing
predated genetic algorithms by decades.

2 Of course, since mutant detection is undecidable, a heuristic is the best option
possible.

3 This goal is in some sense equivalent to the goal of forcing each clause in each
predicate to make a difference.

PART III

Testing in Practice

10

Managing the Test Process

If you ignore quality, everything else is easy.

Part I of this book laid down the foundations for modern software testing,
and part II went into great detail about technical methods to design
effective test case values from criteria. Eventually, of course, the concepts
must be put into practice. This brings in many additional pragmatic
concerns. Part III of this book provides a summary overview of the major
aspects of putting the Model-Driven Test Design process into practice. The
most obvious audience for these chapters are test team managers. We start
with overall process concerns in this chapter, then discuss aspects of
practical testing such as test plans, integration testing, regression testing,
and the design and implementation of test oracles.

10.1 OVERVIEW

Many organizations postpone all software testing activities to the end of
development, after the implementation has started, or even after
implementation has ended. By waiting until late in the process, testing
ends up compromised. Not enough resources (time or budget) remain,
problems with previous stages have been solved by taking time and dollars
from testing, and we do not have enough time to plan for testing. Instead
of planning and designing tests, the developers have time only to run tests,
usually in an ad hoc manner. The key point is that the goal is to create
high-quality software, and the old adage that “quality cannot be tested in”
is still very relevant. A tester cannot show up at the last minute and make a
bad product good; high quality has to be part of the process from the
beginning.

This section discusses how to integrate testing with development, where
testing activities begin as soon as development activities begin, and are
carried out in parallel with the development stages. Specific activities,
including planning, active testing, and development-influencing activities,
can be associated with each of the traditional lifecycle phases. These
activities can be carried out by the developers or by separate test
engineers, and can be associated with development stages within the
confines of any specific development process. These testing activities
allow the tester to detect and prevent faults throughout the software
development process.

Projects that begin test activities after implementation is complete often
produce very unreliable software. Wise testers (and testing level 4
organizations) incorporate a chain of test plans and procedures that begin
in the first steps of software development, and proceed through all
subsequent steps. By integrating software testing activities into all parts of
the software development process, we can make dramatic improvements in
the effectiveness and efficiency of testing, and impact software
development in such a way that high quality software is more.

Other textbooks and the research literature contain dozens of software
processes (waterfall, spiral, evolutionary-prototyping, extreme
programming, etc.). This chapter uses the following distinct stages without
assuming any order or mapping them onto a specific process. Thus, the
suggestions in this chapter can be adapted to whatever process is being
used.

1. Requirements analysis and specification
2. System and software design
3. Intermediate design
4. Detailed design
5. Implementation
6. Integration
7. System deployment
8. Operation and maintenance

Any development process involves communication, comprehension, and
transition of information among stages. Mistakes can be made at any time,
in the information handling, or in the transfer of the information from one
stage to another. Integrating testing is about trying to find errors at each
stage as well as preventing these errors from propagating to other stages.

Also, the integration of testing throughout the lifecycle provides a way to
verify and trace consistencies among the stages. Testing should not be
isolated into separate stages, but rather be on a parallel track that affects all
stages. To facilitate this, testing should be embedded within every aspects
of software development, and testers should be embedded within all teams.

Testing has different objectives during each stage, and these objectives
are achieved in different ways. These sub-objectives of testing at each
stage will then help achieve the overall objective of ensuring high-quality
software. For most stages, the testing activities can be broken into three
broad categories: test actions –testing the product or artifacts created at
that stage; test design –using the development artifacts of that stage or
testing artifacts from a previous stage to prepare to test the final software;
and test influence –using development or test artifacts to influence future
development stages.

10.2 REQUIREMENTS ANALYSIS AND
SPECIFICATION

A software requirements and specifications document contains a
description of the external behavior of the software system. It provides a
way to communicate with the other stages of the development, and defines
the contents and boundary of the software system.

The major test action goal is to evaluate the requirements themselves.
Each requirement should be evaluated to ensure it is correct, testable, and
that the requirements together are complete. Many methods have been
presented to do this, most commonly inspections and prototyping. These
topics are well described elsewhere and are explicitly not covered in this
book. A key point is that the requirements should be evaluated before
design starts.

The major test design goal is to prepare for system testing and
verification activities. Test requirements should be written to state testing
criteria for the software system and high level test plans should be
developed to outline the testing strategy. The test plan should also include
the scope and objectives for testing at each stage. This high level test plan
will be referenced in the later detailed test plans. The testing requirements
should describe support software needed for testing at each stage. Testing
requirements must be satisfied by later testing.

The major test influence goal is to influence the software architectural
design. Project test plans and representative system test scenarios should
be built to show that the system meets the requirements. The process of
developing the test scenarios will often help detect ambiguous and
inconsistent requirements specifications. The test scenarios will also
provide feedback to the software architectural designers and help them
develop a design that is easily testable.

Table 10.1. Testing objectives and activities during requirements analysis and
specification.

Objectives Activities
Ensure requirements are testable Set up testing requirements
Ensure requirements are correct ■ choose testing criteria
Ensure requirements are complete ■ obtain or build support software
Influence the software
architecture ■ define testing plans at each level

■ build test prototypes
Clarify requirement items and test
criteria
Develop project test plan

10.3 SYSTEM AND SOFTWARE DESIGN

System and software design partitions the requirements into hardware or
software systems and builds the overall system architecture. The software
design should represent the software system functions so that they can be
transformed into executable programs or program components.

The major test action goal is to verify the mapping between the
requirements specification and the design. Any changes to the
requirements specification should be reflected in the corresponding design
changes. Testing at this stage should help validate the design and interface.

The major test design goal is to prepare for acceptance and usability
testing. An acceptance test plan is created that includes acceptance test
requirements, test criteria, and a testing method. Also, requirements
specifications and system design specifications should be kept traceable
and testable for references and changes for the later stages. Testing at the
system and software design stage also prepares for unit testing and

integration testing by choosing coverage criteria from the previous
chapters.

The major test influence goal is to influence the design of the user
interface. Usability tests or an interface prototype should be designed to
clarify the customer’s interface desires. Usability testing is especially
important when the user interface is an integral part of the system.

Table 10.2. Testing objectives and activities during system and software design.

Objectives Activities
Verify mapping between requirements Validate design and interface
specification and system design Design system tests
Ensure traceability and testability Develop coverage criteria
Influence interface design Design acceptance test plan

Design usability test (if necessary)

10.4 INTERMEDIATE DESIGN

In intermediate design, the software system is broken into components,
and then classes are associated with each component. Design
specifications are written for each component and class. Many problems in
large software systems arise from component interface mismatches. The
major test action goal is to avoid mismatches of interfaces.

The major test design goal is to prepare for unit testing, integration
testing, and system testing by writing the test plans. The unit and
integration test plans are refined at this level with information about
interfaces and design decisions. To prepare for testing at the later stages,
test support tools such as test drivers, stubs, and test measurement tools
should be acquired or built.

The major test influence goal is to influence detailed design. An
important question to address during intermediate design is the order in
which components will eventually be integrated and tested. The decisions
have a major affect on detailed design, so are best made early. The class
integration test order problem is the subject of in Chapter 12.

Table 10.3. Testing objectives and activities during intermediate design.

Objectives Activities

Avoid mismatches of interfaces Specify system test cases
Prepare for unit testing Develop integration and unit test plans

Build or collect test support tools
Suggest ordering of class integration

10.5 DETAILED DESIGN

At the detailed design stage, testers write subsystem specifications and
pseudo-code for modules. The major test action goal at the detailed design
stage is to make sure that all test materials are ready for testing when the
modules are written. Testers should prepare for both unit and integration
testing. Testers must refine detailed test plans, generate test cases for unit
testing, and write detailed test specifications for integration testing. The
major test influence goal is to influence the implementation and unit and
integration testing.

Table 10.4. Testing objectives and activities during detailed design.

Objectives Activities
Be ready to test when modules are ready Create test cases

(if unit)
Build test specifications
(if integration)

10.6 IMPLEMENTATION

Eventually, the “rubber hits the road” and the programmers start writing
and compiling classes and methods.

The major test action goal is to perform effective and efficient unit
testing. The effectiveness of unit testing is largely based on the coverage
criterion used and test data generated. Unit testing performed at this stage
is as specified by the unit test plan, test criteria, test cases, and test support
tools that were made ready at the earlier stages. Unit test results and
problems should be saved and reported properly for further processing.
Designers and developers whose duties are becoming lighter at this point
could be made available to help testers.

The major test design goal is to prepare for integration and system

testing. The major test influence goal is that efficient unit testing can help
ensure early integration and system testing. As we saw in Chapter 1, it is
much cheaper and easier to find and fix bugs during unit testing.

Table 10.5. Testing objectives and activities during implementation.

Objectives Activities
Efficient unit testing Create test case values
Automatic test data generation Conduct unit testing

Report problems properly

10.7 INTEGRATION

The major test action goal is to perform integration testing. Integration
and integration testing begin as soon as the needed components of an
integrated subsystem pass unit testing. A simple way to decide what order
to integrate and test classes is to integrate them as soon as they are
delivered from unit testing. Although a convenient default, this can lead to
significantly more work during integration testing—similar to maintenance
debt. A better approach is to decide ahead of time what order classes
should be delivered for the most efficient integration, and encourage the
developers to complete in that order. Integration testing itself is concerned
with finding errors that result from unexpected interactions among
components.

Table 10.6. Testing objectives and activities during integration.

Objectives Activities
Efficient integration testing Perform integration testing

10.8 SYSTEM DEPLOYMENT

The major test action goal is to perform system testing, acceptance testing
and usability testing. System testing compares the software system to its
original objectives, in particular, validating whether the software meets the
functional and non-functional requirements. System test cases are
developed from the system and project test plan from the requirements

specification and software design phase according to criteria covered in
part II of this book. Acceptance testing can be started as soon as system
testing is completed. Acceptance testing ensures that the complete system
satisfies the customers’ needs, and should be done with their involvement.
Test cases are derived from acceptance test plans and test data set up
previously. Usability testing evaluates the user interface of the software. It
should also be done with user involvement. This book does not discuss
usability testing, but many resources are available.

Table 10.7. Testing objectives and activities during system deployment.

Objectives Activities
Efficient system testing Perform system testing
Efficient acceptance testing Perform acceptance testing
Efficient usability testing Perform usability testing

10.9 OPERATION AND MAINTENANCE

After the software is deployed, users will find new problems and request
new features. When the software is changed, it must be regression tested.
Regression testing helps ensure that the updated software still possesses
the functionality it had before the updates, as well as the new or modified
functionality. Technical aspects of implementing regression testing are
covered in Chapter 13.

Table 10.8. Testing objectives and activities during operation and maintenance.

Objectives Activities
Efficient regression testing Capture user problems

Perform regression testing

10.10 IMPLEMENTING THE TEST PROCESS

A key factor to instilling quality into a development process is based on
individual professional ethics. Developers and testers alike can choose to
put quality first. If the process is such that the tester does not know how
to test it, then don’t build it. It is important that developers begin test

activities early. This will sometimes result in conflicts with time-driven
management, but it also helps to take a stand against taking shortcuts.
Almost all projects will eventually be faced with taking shortcuts that will
ultimately reduce the quality of the software. Fight it! If you lose the
argument you will gain respect: document your objections, and consider
“voting with your feet” (that is, leaving). Most importantly, don’t be afraid
to be right!

It is also essential that test artifacts be managed. A lack of organization
is a sure recipe for failure. Put test artifacts under version control, make
them easily available, and update them regularly. These artifacts include
test design documents, tests, test results, and automated support. It is
important to keep track of the criteria-based source of the tests, so when
the source changes, it is possible to track which tests need to change.

10.11 BIBLIOGRAPHIC NOTES

Some good sources for details about test process and accepted definitions
of terms are IEEE standards [IEEE, 2008], BCS standards [British
Computer Society, 2001], books by Hetzel [Hetzel, 1988], DeMillo et al.
[DeMillo et al., 1987], Kaner, Falk and Nguyen [Kaner et al., 1999],
Dustin, Rashka and Paul [Dustin et al., 1999], and Copeland [Copeland,
2003]. General software engineering texts such as Sommerville
[Sommerville, 1992] explain the standard software development process.

11

Writing Test Plans

Young people think quick thoughts. Old people think deep thoughts. Leaders
think long thoughts.

A major emphasis for many organizations is documentation, including test
plans and test plan reporting. Unfortunately, putting too much of a focus
on documentation can lead to an environment where lots of meaningless
reports are produced but nothing useful is done. That is why this book
largely focuses on content, not form. The contents of a test plan include
how the tests were created, why the tests were created, and how they will
be run.

Producing test plans, however, is an essential requirement for many
organizations. Companies and customers often impose templates or
outlines. Rather than surveying many different types of test plans, we look
at the IEEE standard definition. The original version was defined in 1983
(829-1983), with updates in 1990 and 1998, with the most recent being
829-2008, the “IEEE Standard for Software and System Test
Documentation.” A quick search on the Web will supply you with more
test plans and test plan outlines than you could ever use. The 829-2008
standard defines a test plan as:

“(A) A document describing the scope, approach, resources, and
schedule of intended test activities. It identifies test items, the features to
be tested, the testing tasks, who will do each task, and any risks requiring
contingency planning. (B) A document that describes the technical and
management approach to be followed for testing a system or component.
Typical contents identify the items to be tested, tasks to be performed,
responsibilities, schedules, and required resources for the testing activity.”

The two major types of test plans in the current standard are:

1. A Master Test Plan (MTP) provides an overall test planning and test
management document for multiple levels of test. An MTP can either
apply to one project, or apply to multiple projects within the same
organization.

2. A Level Test Plan (LTP) describes testing at a particular level, where
the levels are as described in Chapter 1. Each LTP must describe the
scope, approach, resources, and schedule of the testing activities for
its level of testing. The LTP then defines the items being tested, the
features to be tested, the testing tasks to be performed, who is
responsible for each task, and any risks associated with that testing.

Below is an outline for a sample level test plan, provided as example
only. The plan was derived from numerous samples that have been posted
on the Web, so does not exactly represent a single organization. It is based
on the IEEE 829 standard.

11.1 LEVEL TEST PLAN EXAMPLE TEMPLATE

1. Introduction: The introduction puts the test activities described in
the document in the context of the overall project and test effort for
the project.
1.1. Document identifier: Each document must have a unique name,

encoding information such as the document’s date, the author,
etc.

1.2. Scope: The scope should describe what is being tested for this
document level. Details about the portion of the software being
tested may be included.

1.3. References: Related documents should be referenced here.
External and internal documents should be identified and listed
separately.

1.4. Level in the overall sequence: This should be a figure that shows
how the testing described in this document fits into the overall
project development and test structure.

1.5. Test classes and overall test conditions: This section should
describe what is unique about the testing activity being
documented. This may describe how testing should proceed for
components, integration testing, or the system. Generally what
should be tested, or test criteria to be used, should be described

here.
2. Details For This Level Of Test Plan: The following subsections

should be introduced here. The general test approach should be
described here, along with criteria for test completion.
2.1. Test items and their identifiers: This section should identify the

system under test (or component or integrated subsystem). This
will also document details about the software component under
test, including how to install it, run it, and any environmental
needs it has.

2.2. Test traceability matrix : This section should document the origin
of each test. This may be requirements, test coverage
requirements, or design elements. Testers and test managers
should be able to look up each test and understand why it was
included and what it tests.

2.3. Features to be tested: All features to be tested should be
explicitly listed, using names that are referenced in other
software documentation (such as the user manual, requirements
document, or design document).

2.4. Features not to be tested: Everything that will not be tested
should be listed. This section should also explain why not.

2.5. Approach: This section should describe how this testing should
be carried out, including test criteria, level of automation, etc.

2.6. Item pass/fail criteria: For each item to be tested, when can it be
deemed to have passed testing? This may be stated in terms of
remaining issues, or percentage of tests that pass. This can also
be weighted by severity of the issues.

2.7. Suspension criteria and resumption requirements: Some failures
are severe enough that it makes no sense to continue testing. The
criteria for when to suspend testing and wait for the development
team to correct the problem should be clarified.

2.8. Test deliverables: This section should list all documents and data
that are to be delivered during testing.

3. Test Management: This section describes what will be done when
and who will do them.
3.1. Planned activities and tasks; test progression:

This section should describe the tasks that must be done to plan
for testing and carry out testing. Any inter-task dependencies and
constraints should be identified.

3.2. Environment and infrastructure: This sections should described
the test environment, including anything that the testers need
before running tests. This should address facilities needed,
hardware, software, database, support tools, results capturing
tools, privacy issues to be address, and security issues to be
address.

3.3. Responsibilities and authority: This section should identify who
is responsible for managing, designing, preparing, executing,
checking results, and resolving problems found during this
testing. This section should also identify anybody else who may
be needed during testing.

3.4. Interfaces among the parties involved: This section should
describe how the people should communicate. Each person
involved with testing should be able to look at this section and
know who to contact when needs arise.

3.5. Resources and their allocation: This section should describe any
needed resources that are not identified previously in the LTP.

3.6. Training: This section should identify what knowledge, skills,
and training the test personnel need. It should also include how
that knowledge can be obtained.

3.7. Schedules, estimates, and costs: This section should provide the
schedule for testing, including preparation, design, and execution
of tests. The major test milestones should be highlighted.

3.8. Risks and contingencies: This section should identify any risks
that can be foreseen, and provide suggestions for how to avoid
the risks, how to mitigate the risks, and how to recover if
something happens.

4. General: This section contains general information that is needed for
testing, including QA procedures, metrics, glossary, etc. The
subsequent sections should be described here.
4.1. Quality assurance procedures: This section should describe the

plan for quality assurance of the testing effort. If the project has a
separate quality assurance plan, it can simply be referenced here.

4.2. Metrics : This section should describe how testing will be
measured and reported.

4.3. Test coverage: This section should describe how coverage is
measured and how much coverage is required.

4.4. Glossary: This section should provide a list of terms and their

definition, including acronyms.
4.5. Document change procedures and history: This section should

document changes to the LTP document.

11.2 BIBLIOGRAPHIC NOTES

The primary source for test plans is IEEE’s 829 document [IEEE, 2008].
The current version is 829-2008, which replaced 829-1998. The original
was 829-1983. If the IEEE standards document is behind a paywall,
Wikipedia has a reasonable introduction [Wikipedia, 2009]. A useful
related document is BS 7925-2, the British Computer Society’s Standard
for Software Component Testing [British Computer Society, 1997].

12

Test Implementation

Theory is usually further from practice than we wish.

Like other software, tests can be designed in an abstract way. However, as
discussed at length in Chapter 4, developers want tests to become “real” as
soon as possible so that they can benefit from the immediate feedback of
any failed tests. To do so, all the code must compile, tests must not cause
collateral damage, the process must be repeatable, and it must complete in
a timely manner. Unit testing normally doesn’t pose a serious challenge
with respect to these constraints, but other test phases certainly do. This
section discusses technical problems that arise during the implementation
of test cases. We do not catalog the problems from a process point of view.
Instead, we focus on the technical strategies used to solve these problems.
Many of the problems arise naturally during software integration, but
integration is not the only source of difficulty; the testing of fully
integrated systems also requires the techniques discussed here.

Software programs are composed of many pieces of software of varying
sizes. Individual programmers are often responsible for testing the lowest
level components (classes, modules, and methods). After that, testing must
be carried out in collaboration with software integration. Software can be
integrated in many ways.

Integration testing is the testing of incompatibilities and interfaces
between otherwise correctly working components. That is, it is the testing
needed to assure correct integration of subcomponents into a bigger
working component. This is emphatically not the same as testing an
already integrated component.

Integration testing is often done with an incomplete system. The tester
may be evaluating how only two of many components in the system work
together, may be testing integration aspects before the full system is

complete, or may be putting the system together piece by piece and
evaluating how each new component fits with the previously integrated
components.

This chapter uses the term software “component” in a very broad sense:
A component is a piece of a program that can be tested independently of
the complete program or system. Thus, classes, modules, methods,
packages, and even code fragments can be considered to be components.
Also, non-executable software artifacts such as XML files, XML schemas,
and databases can be considered to be components.

12.1 INTEGRATION ORDER

When integrating multiple components, it is important to decide in which
order the classes or subsystems should be integrated and tested.
Components depend on each other in various ways. One class may use
methods or variables defined in another, a class may inherit from another,
or one class may aggregate objects of another class inside its data objects.
If class A uses methods defined in class B, and B is not available, then we
need test doubles for those methods to test A. Therefore, it makes sense to
test B first, then when A is tested we can use actual objects of B instead of
test doubles.

In the literature, this is called the class integration test order problem
(CITO), although it applies to components more general than classes. For
example, the output of an agile sprint might be a number of new features
added to a system. The implementations of these features often depend on
each other, and hence the order in which features are added can affect the
amount of work required.

In CITO, the general goal is to integrate and test classes in the order that
requires the least scaffolding, or additional software, as creating test
doubles is considered to be a major cost of integration testing. If the
dependencies among the classes have no cycles, the order of their
integration is fairly simple. The classes that do not depend on any other
classes are tested first. Then they are integrated with classes that depend
only on them, and the new classes are tested. If the classes are represented
as nodes in a “dependency graph,” with edges representing dependencies,
this approach follows a topological sorting of the graph.

The problem gets more complicated when the dependency graph has

cycles, because we will eventually get to a class that depends on another
class that has not yet been integrated and tested. This is when some sort of
stubbing is required. For example, assume that class A uses methods in
class B, B uses methods in class C, and C aggregates an object of class A.
When this happens, the integration tester must “break the cycle” by
choosing one class in the cycle to test first. The hope is to choose the class
that results in the least extra work (primarily that of creating stubs).

Software designers may observe that class diagrams often have few if
any cycles and in fact most design textbooks strongly recommend against
including cycles in designs. However, it is common to add classes and
relationships as design progresses, for example, to improve performance or
maintainability. As a result, class diagrams may well contain cycles by the
end of low-level design or implementation, and practical testers have to
solve the CITO problem.

The research literature proposes numerous solutions to the CITO
problem. This is still an activeresearch area and these solutions have not
yet made it into commercial tools. In practice, developers typically address
the CITO problem in an ad hoc manner and simply choose which
component to integrate next. In the agile sprint example above, developers
choose some feature to add, and then must address the fact that necessary
functionality may be missing to make the system “run.” This missing
functionality is, in general, addressed with test doubles, the topic of the
remainder of this chapter.

12.2 TEST DOUBLES

In the movies, doubles sometimes stand in for actors for specific scenes.
Sometimes they perform dangerous stunts, sometimes they perform skills
the lead actors do not have, and sometimes they show body parts the lead
actors prefer to keep private. Similarly, test doubles sometimes replace
software components that cannot be used during testing. Sometimes the
components have not yet been written, and sometimes they do something
that we can’t afford to happen during testing. A test double is a software
component (method, class, or collection of classes) that implements partial
functionality and is used in place of the “real” software component during
testing. Test doubles often help solve problems of controllability or
testability. Four common reasons for using test doubles are:

1. During development, some components have not yet been
implemented. This creates problems for testing if the components’
functionality is needed to test other parts of the system. This problem
occurs frequently during integration testing.

2. Some components implement unrecoverable actions. Such actions are
necessary in practice, but must be avoided during test. Examples
include exploding a bomb, carrying out a trade in a financial system,
or sending an email in a messaging system. Imagine the chaos if
every test run incurred an external financial consequence or spammed
your customers!

3. Many systems interact with unreliable or unpredictable resources
such as network connections. If the test uses the resource incidentally,
rather than specifically testing the resource, using a double can avoid
problems that occur if the resource fails or behaves
nondeterministically.

4. Some tests run very slowly. For example, a test that accesses an
external database may be significantly slower than tests that run in
local memory. Test doubles can be used to speed up the test
execution, which is especially important when tests are run
frequently.

Writing test doubles takes effort, and, of course, test doubles can also be
incorrect. Tools are used to help test engineers implement and use test
doubles. First, the test double must be built, and tools can make it possible
for the test engineer to quickly and easily generate the needed
functionality. Testing with doubles also may require a qualitatively
different approach to testing called interaction-based testing, which is
covered in section 12.2.1.

Test doubles must be integrated into the software under test with as little
change to the software as possible. Most importantly, we must break any
dependencies between the component being doubled and other software
components. The ability to break dependencies has a direct effect on
testability, and is covered in section 12.2.2.

12.2.1 Stubs and Mocks: Variations of Test Doubles

When testing incomplete portions of software, developers and testers often
need extra software components, generally called scaffolding. The most

common two types of scaffolding are known as test drivers and test
doubles. A test driver is a software component or test tool that takes care
of the control and/or the calling of a software component. Test drivers, and
in particular the JUnit framework, were discussed extensively in Chapter
3.

The traditional way to implement a test double is to create a test stub by
hand. A test stub is a skeletal or special purpose implementation of a
software component, used to develop or test a component that calls the
stub or otherwise depends on it. It replaces a called component. Some
IDEs typically generate very basic stubs with essentially no functionality
automatically. These stubs can provide a convenient starting point for the
test engineer to develop more complex stubs.

One responsibility of a test stub is to return values to the calling
component. Returned values from stubs are usually not the same that the
actual component would return, or else we would not need the stub.
Sometimes, however, they must satisfy certain constraints.

The most basic action for a stub is to assign constant values to the
outputs. For example, a stub for a method that returns an object might
always send back null. More sophisticated approaches may be to return
hand-crafted constants, values from a table lookup, random values, or to
let the user enter return values during execution (which is not possible in
JUnit tests). Test tools have included automated stubbing capabilities since
the 1980s. Some of the more sophisticated tools find methods that need to
be stubbed, and ask the tester what kind of behavior the stub should have.
Some tools collect instances of objects that have the correct return type
and make these available as potential stub returns. As a default, this is a
powerful starting point that test engineers can build on. Programmers also
generate their own stubs when carrying out their own unit or module
testing.

In recent years, the traditional concept of a stub has evolved into the
idea of a mock, which led to the generic term test double1. A mock is a
special purpose class that includes behavior verification to check that a
class under test made the correct calls to the mock. Java mocking tools
generate mocks from an object or interface using Java reflection. The tools
allow the test engineer to specify, rather than program, limited behavior,
including return values–a key enabler for interaction-based testing.
Interaction-based testing defines success by how objects communicate
with each other as opposed to what the objects do. That is, interaction-

based testing does not ask whether an object did the job right, but whether
it was asked to do its job2.

Consider the example of a messaging system that sends email messages
to customers. With some software, we only need to look at the values of
certain variables after the test finishes (state-based testing). In the
messaging system example, however, we need to verify that the mailer
actually sent out a specific message. This makes sense if we use the actual
software component, but when we use the test mock, the idea is to not
send the message. Instead, we would like to verify that a call was made to
the messaging system to send a particular message (interaction-based
testing). Hence, the verification step of “Did the expected message get
sent?” is replaced with “Did the messaging system make a send call,
perhaps with specific arguments, to the mailer?” Extending this example a
bit further, we might wish to verify that a particular set of calls was made
in a particular sequence.

This need to verify communication patterns is at the heart of interaction-
based testing, and is why mock objects need a rich interface for specifying
behavior. The model for using interaction-based testing in unit tests is:

1. Obtain the necessary test doubles, possibly with a mocking tool.
2. Specify the expected sequence of interactions with the test doubles.
3. Carry out the action under test.
4. Verify that the expected interactions did, in fact, occur.

12.2.2 Using Test Doubles to Replace Components

Testers sometimes need to replace part of the system with a double by
removing the real component and replace it with a corresponding test
double. The question is how to do this without creating a configuration
management nightmare.

Figure 12.1 illustrates this important aspect of test automation. In the
figure, we use a JUnit test to test a software component, which in turn uses
another software component (“Dependency Component”), which makes a
call to a method that performs an unrecoverable action, here illustrated
with the explosion of a bomb. To test the component under test without
blowing up any bombs, we double the dependency component, as shown
in the dashed-line box.

Figure 12.1. Test double example: Replacing a component.

This subsection discusses specifically how to break dependencies, again
in the context of the JUnit framework. One approach builds a separate
version of the system where test doubles replace dependency components
as necessary. This approach suffers from two problems. First it does not
scale very well, since many test doubles may be needed and hand-crafting
them is expensive and error-prone. Second the test engineer now must
synchronize multiple versions of the system. If the developers update the
real system, the test engineer must update the test system. Managing
replication is prone to error, and it is likely that, at some point, the real
system and the test system will diverge. At this point the test system’s
results no longer represent the behavior of the real system. Instead, what is
needed is a way to efficiently change the behavior of the system from
operational mode to test mode.

A safer and cheaper approach to this problem uses the notion of seams.
A seam is a variable that is defined in such a way that a JUnit test can
change the program behavior without changing the software component
that contains the variable. To be useful, a seam needs an enabling point,
which is a place where it is possible to set the variable to a different value
(sometimes called “controlling the behavior at the seam”). That is, it must
be possible to change the value of the variable from outside of the software
component under test, in particular, from the JUnit test. A key challenge
when designing test doubles is placing test seams and enabling points at
appropriate locations in the code. To do this, it is necessary, of course, to
understand which components need to be replaced with test doubles.

At the most basic level, a seam is a variable and an enabling point is a
way to set that variable from outside the class. Seams come in a broad
variety of programming structures. A very simple seam is a global boolean
variable such as TEST_MODE:

With this example, an enabling point is any place where the variable
TEST_MODE is given a value. This simple approach, while appealing,
does not scale very well. A more complex example helps illustrate the
power of seams.

Suppose the test engineer analyzes a system that manages a dependency
component through the ResourceManager interface:

Further suppose that resource management is used in another part of the
system. In other words, another part of the system depends on the resource
manager:

In the context of Figure 12.1,
SomeResourceManagerUsingClass is the software component
under test, and ResourceManager is the dependency component.

During testing the test engineer does not want the system to obtain or
release real resources. In other words, the test engineer needs to:

1. Replace the resource manager with a test double. The test engineer
can do this with a simple stub, a mocking tool, or anything in
between.

2. Make the rest of the system under test use the double instead of the
real resource manager. To do so, the test engineer needs to break the
dependency of the rest of the system on the component being
doubled. That is, the test engineer needs a seam and an enabling
point.

Next we explore different ways to create or link to the resource
manager. Suppose the constructor of
SomeResourceManagerUsingClass sets the resource manager by
calling a method in a utility class Resources:

While this method of connecting to the resource manager is quite
common, it has a problem from the testing perspective. We would like to
use the variable resourceManager as a seam, but the method
getManager() is static, so we cannot change its behavior dynamically.
In other words, the assignment to Resources.getManager() is not
an enabling point because the connection is too tight.

One way to provide the seam with an enabling point is to include a
setter method3. The example below calls the setter method
setResourceManager(), and the setter method is an enabling point
for the seam resourceManager.

To exploit the enabling point, the JUnit test simply calls the setter
setResourceManager with a test double as an argument. In other
words, the JUnit test injects a dependency into the
SomeResourceManagerUsingClass. Before the injection, the class
has a dependency component, namely, the “real” resource manager. After
the injection, the class depends instead on a test double, namely new

FakeResourceManager().

This example helps explain why we need interaction-based testing. If
we were testing with the real ResourceManager, the full set of
functionality would be present, and we could verify that the resource
manager provided the requested services. But since the real
ResourceManager has been replaced by a fake, all we can really check
is that SomeResourceManagerUsingClass has made the
appropriate calls in an appropriate order to the ResourceManager
interface. In other words, because test doubles are fakes, there are fewer
opportunities to verify “real” behavior. Interaction-based testing can be
thought of as a technique to weaken the assertion, “The dependent
resource provided specific services to the system under test ” to “The
system under test requested specific services from the dependent
resource.”

The example also shows a subtle, but important point. The JUnit test
requires access to the setter method in the
SomeResourceManagingClass. In the example, we have shown this
as public access. Making the seam variable public creates both
maintenance debt and a potential security hole. While disturbing, this
should not be surprising. From a broader perspective, we are trying to
solve a problem with controllability. It is well understood that information
hiding reduces controllability by making variables and methods harder to
access. Information hiding is good for design, modularity, and
maintenance, but it also makes testing, in particular test automation, more
difficult. In this example, if the JUnit tests are located in the same package
as SomeResourceManagerUsingClass, then the access could (and
should!) be restricted to “package friendly,” which effectively addresses
the potential security problem.

12.3 BIBLIOGRAPHIC NOTES

The notions of stubs and drivers have been around for decades. They were
discussed in books as far back as the 1970s [Constantine and Yourdon,

1979, Deutsch, 1982, Howden, 1976, Myers, 1979]. Beizer pointed out
that the creation of stubs can be error prone and costly [Beizer, 1990].
Fowler [Fowler, 2007] is a good resource for understanding the
philosophical differences between mocks and stubs.

The CITO problem has been discussed widely in the research literature
[Abdurazik and Offutt, 2006, Abdurazik and Offutt, 2007, Briand et al.,
2002, Briand et al., 2003, Kung et al., 1995, Malloy et al., 2003, Tai and
Daniels, 1997, Traon et al., 2000]. As far as we know, these algorithms
have not been put into widely available tools. For more reading on
interaction-based testing, usually implemented with mocking tools, we
suggest a text such as Koskela [Koskela, 2008]. Feathers [Feathers, 2004]
discusses seams and enabling points extensively.

1 There is some controversy over whether stubs and mocks are the same things.
This is not relevant for this book.

2 Note that this use of interaction is different from testing how different
components or programs in families of systems interact, which is commonly
called interaction testing.

3 It is also common for test engineers to use inheritance instead of setters to
provide enabling points. Because this approach uses inheritance simply for
implementation convenience, the authors are less than enthusiastic about the
approach. Hence we left it out of the text.

13

Regression Testing for Evolving Software

Show me a person who is perfect and I’ll show you a person with no goals.

Regression testing is the process of re-testing software that has been
modified. Regression testing constitutes the vast majority of testing effort
in commercial software development and is an essential part of any viable
software development process. Large components or systems tend to have
large regression test sets. Even though many developers do not want to
believe it, (even when faced with indisputable evidence!), small changes to
one part of a system often cause problems in distant parts of the system.
Regression testing is used to find this kind of problem. In practice,
regression testing is often incorporated into a continuous integration
service, as discussed in Chapter 4.

It is worth emphasizing that regression tests must be automated. Indeed,
it could be said that unautomated regression testing is equivalent to no
regression testing. A wide variety of commercially available tools are
available. The current most common are JUnit and its derivative cousins
(HTMLUnit, Selenium, SUnit, CUnit, TestNG, NUnit, CPPUnit, PHPUnit,
etc.).

Capture/replay tools automate testing of programs that use graphical
user interfaces. Version control software, already in use to manage
different versions of a given system, effectively manages the test sets
associated with each version. Scripting software manages the process of
obtaining test inputs, executing the software, marshaling the outputs,
comparing the actual and expected outputs, and generating test reports.

The aim of this section is to explain what kinds of tests should be in a
regression test set, which regression tests to run, and how to respond to
regression tests that fail. We treat each of these issues in turn. We direct
the reader interested in detail on any of these topics to the bibliographic

notes.
The test engineer faces a Goldilocks problem1 in determining which

tests to include in a regression test set. Including every test set possible
results in a regression test set that is too large to manage. The result is that
the test set cannot be run as often as changes are made to the software. For
traditional development processes, this period often amounts to a day;
regression tests run at night to evaluate software changed that day, with
developers reviewing the results the following morning. For agile
development processes the period is significantly shorter, for reasons
discussed in Chapter 4.

If the regression tests do not finish in a timely manner, the development
process is disrupted. It is well worth throwing money at this problem in
terms of additional computational resources to execute the tests, but, at
some point, the marginal advantage of adding a given test is not worth the
marginal expenditure of the resources needed to execute it. On the other
side, a set that is too small will not cover the functionality of the software
sufficiently well, and too many faults will be passed on to the users. It is
also possible is to restructure tests with an eye to efficient execution.
Chapter 12 discusses test doubles, which, among other uses, can
dramatically speed up the execution of certain slow test cases.

The prior paragraph does not actually say which tests are in the
regression test set, just that the set has to be the right size. Some
organizations have a policy that for each problem report that has come in
from the field, a regression test must exist that, in principle, detects the
problem. The idea is that customers are more willing to be saddled with
new problems than with the same problem over and over. The above
approach supports traceability, because each test chosen in this way has a
concrete rationale.

The coverage criteria that form the heart of this book provide an
excellent basis for evaluating regression test sets. For example, if node
coverage in the form of method call coverage shows that some methods
are never invoked, then it is a good idea to either decide that the method is
dead code with respect that particular application, or include a test that
results in a call to the method.

If one or more regression tests fail, the first step is to determine if the
change to the software is faulty, or if the regression test set itself is broken.
In either case, additional work is required. If no regression tests fail, there
is still work to do. The reason is that a regression test set that is

satisfactory for a given version of the software is not necessarily
satisfactory for a subsequent version. Changes to software are often
classified as corrective (a defect is corrected), perfective (some quality
aspect of the software is improved without changing its behavior),
adaptive (the software is changed to work in a different environment), and
preventive (the software is changed to avoid future problems without
changing its behavior). All of these changes require regression testing.
Even when the (desired) external functionality of the software does not
change, the regression test set still needs to be reanalyzed to see if it is
adequate. For example, preventive maintenance may result in wholesale
internal restructuring of some components. If the criteria used to select the
original regression tests were derived from the structure of the
implementation, then it is unlikely that the test set will adequately cover
the new implementation.

Evolving a regression test set as the associated software changes is a
challenge. Changes to the external interface are particularly painful, since
such a change can cause all tests to fail. For example, suppose that a
particular input moves from one drop-down menu to another. The result is
that the capture/replay aspect of executing each test case needs an update.
Or suppose that the new version of the software generates an additional
output. All of the expected results are now out of date, and need to be
augmented. Clearly, automated support for maintaining test sets is just as
crucial as automated support for generating and executing the tests.

Adding a (small) number of tests to a regression test set is usually
simple. The marginal cost of each additional test is typically quite small.
Cumulatively, however, the test set can become unwieldy. Removing tests
from a regression test set creates problems. Invariably, a fault will show up
in the field that one of the removed tests would have found. Fortunately,
the same criteria that guide the construction of a regression test set apply
when deciding how to update the regression test set.

A different approach to limiting the amount of time needed to execute
regression tests, and a focus of attention in the research literature, is
selecting only a subset of the regression tests. For example, if the
execution of a given test case does not visit anything modified, then the
test case has to perform the same both before and after the modification,
and hence can be safely omitted. Selection techniques include linear
equations, symbolic execution, path analysis, data flow analysis, program
dependence graphs, system dependence graphs, modification analysis,

firewall definition, cluster identification, slicing, graph walks, and
modified entity analysis. For example as a reader of Chapter 2 might
guess, data flow selection techniques choose tests only if they touch new,
modified, or deleted du pairs; other tests are omitted.

A selection technique is inclusive to the degree that it includes tests that
are “modification-revealing.” Unsafe techniques have inclusiveness of less
than 100%. A technique is precise to the extent that it omits regression
tests that are not modification-revealing. A technique is efficient to the
degree that determine the appropriate subset of the regression test set is
less computationally intensive than simply executing the omitted tests.
Finally, a technique is general to the degree that applies to a wide variety
of practical situations. To continue the example, the data flow approach to
selecting regression tests is not necessarily either safe or precise, of
polynomial complexity in certain program attributes, and requires,
obviously, data flow information and program instrumentation at the data
flow graph level. The bibliographic notes section contains pointers to
further details on this work, including empirical evaluations.

13.1 BIBLIOGRAPHIC NOTES

Binder [Binder, 2000] has an excellent and detailed practical description of
regression testing, in which he claimed that unautomated regression testing
is equivalent to no regression testing. Rothermel and Harrold published the
regression testing framework of inclusiveness, precision, efficiency, and
generality [Rothermel and Harrold, 1996] and evaluated a safe technique
empirically [Harrold and Rothermel, 1998]. Later papers by Li, Harman,
and Hierons [Li et al., 2007] and Xie and Notkin [Xie and Notkin, 2005]
are good places to start studying the regression testing research literature.

1 A Goldilocks problem is solved with values that are in neither extreme. The term
refers to The Three Bears story in which a little girl looks for food that is neither
too hot nor too cold.

14

Writing Effective Test Oracles

The only true failure in life is not trying.

Chapter 3 covered the foundations for how to automate tests. A key
requirement of an automated test is that the test must encode the expected
results, commonly known as the test oracle. When tests are run by hand,
the expected results could be explicitly written in the textual test script or
simply left up to the human tester to decide at run time. But an automated
test must have that knowledge encoded as an explicit check such as with a
JUnit assertion.

Most of this book is concerned with designing effective test input
values, but it turns out that many mistakes can and are made with test
oracles. Test oracles must also exhibit effective revealability by striking a
balance between checking too much (unnecessary cost) and checking too
little (perhaps not revealing failures). Test oracles must solve problems
with observability to obtain values that may not be readily available to the
test script.

This chapter first addresses the revealability problem by presenting
knowledge on what values should be checked by an oracle in section 14.1.
Then section 14.2 presents ideas on how to determine what the correct
results are.

14.1 WHAT SHOULD BE CHECKED?

When tests used to be run by hand, the human tester sat at the computer
and could immediately observe the results. The tester would use his or her
judgment to directly decide whether the software behaved correctly, based
on a well-informed understanding of the software requirements. If the

tester could not see not enough outputs to make a confident decision about
whether the software’s behavior was correct, a tester with modest
programming skills could improve observability by adding additional print
statements, much like debugging. Naturally, testers sometimes missed
failures, and this became one of the motivations for test automation. The
idea is that an automated test does not blink, so is less likely to miss a
failure when it occurs.

Although a clear win for software quality, automation also meant that
the test designer had to decide correct behavior for each test before the test
was run, and then encode this correct behavior into the automated test.
Chapter 3 introduced JUnit. It and its “xUnit” cousins are widely used in
both academia and industry, thus we will use its oracle mechanism as a
model. A JUnit test encodes the oracle as a Java assertion. For example
assertEquals (lastName, “Burdell”) returns true if the object lastName is
equal to “Burdell,” and false otherwise. That is, the test fails if lastName is
not “Burdell.”

This level of automation brings up a challenging question to practical
testers: “What should I check?” In general, the output state is everything
that is produced by the software under test, including outputs to the screen,
file, databases, messages, and signals. At the unit testing level, outputs
include everything above, plus explicit return statements, parameters that
are modified during execution, and non-local variables that are modified.
How much of the output state should an automated test check?

Not surprisingly, this is yet another cost vs. benefits tradeoff question.
The concept of revealability from Chapter 2 applies to this question.
Specifically, the more state we look at, the more is revealed. Generally, if
the output state has an erroneous value, we must look at the erroneous part
of the output state to see it, otherwise, the failure is not revealed. Luckily,
we have some very sound knowledge from researchers on this question.

A test oracle strategy is a rule or a set of rules that specify which
program states to check. An oracle strategy features two general
characteristics, precision and frequency. Precision refers to how much of
the output state should be checked; checking more of the output state
increases the precision. Frequency refers to when and how often the output
state should be checked. A low frequency means checking the output state
only after execution ends, checking the output state early and often would
be a high frequency. The papers listed in the Bibliographic Notes section
of this chapter give far more details, but they can be summarized with a

few general guidelines.
First, it is important to check some outputs. Some software

organizations only check to see whether the software produces a runtime
exception, or crashes. This has been called the null oracle strategy. This is
very inexpensive, since the testers do not have to write those troublesome
test oracles. But researchers have found this to be extremely wasteful. In
fact, only between 25% to 56% of software failures result in a crash. Thus,
if a tester only checks for a crash, the other 44% to 75% of the tests are
wasted. This has been likened to buying a dozen eggs, then cooking six
and throwing the rest away: cheap, but ineffective.

Second, it is important to check the right outputs. In our teaching we
have observed that programmers, including both inexperienced
undergraduate and experienced professionals who are also part-time
graduate students, create JUnit assertions that range from excellent to poor.
Poor assertions check outputs that are not likely to be affected by the test,
whereas excellent assertions check outputs that are directlyaffected by the
test. As has been stated repeatedly throughout this book, each test should
have a goal, a reason for existing. It may be there to take a branch in the
method under test, to reach a state in a statechart, or to cover a specific
requirement. Whether that branch was taken, or the state reached, or the
requirement checked, is always reflected in the output state, sometimes
directly and sometimes indirectly. Good testers pay attention to why the
test exists, and write an assertion that checks what the test is trying to
check, but that does not check anything else. Poor testers check only part
of the relevant output state, such as the first element in a collection instead
of the entire collection, an output value instead of which state was reached,
or something only peripherally related to the requirement.

Which parts of the output state are affected by the test, of course,
depends heavily on the testing level. At the unit testing level, checking the
return values of the methods and returned parameter values are almost
always enough. It is usually not necessary to check variables or non-local
variables. At the system level, it is usually sufficient to check the directly
visible output such as to the screen. This is encouraging, because outputs
to files, databases, and sensors are less observable, meaning assertions that
check them are more difficult and expensive to write. This is not to say
that they never need to be checked—if the primary test purpose of the test
is to evaluate something that only shows up in a database, that portion of
the database must be checked as part of the test oracle.

Third, it is not necessary to check a lot of outputs. That is, low
precision is okay. Researchers have found that not only is checking the
right outputs necessary, checking additional inputs increases revealability
very little. This is good for practical testers, because this is a rare time
when the advice from the academic research community is to not use more
resources.

Fourth, it is not necessary to check the output state multiple times.
That is, low frequency is okay. It turns out that the vast majority of failures
are revealed if the final output state is checked once, and checking
multiple times during execution increases revealability very little. Again,
this is a rare time when the academic research community advises practical
testers to not use more resources.

14.2 DETERMINING CORRECT VALUES

The previous section discussed which parts of the output state of the
software under test should be checked as part of our test oracle strategy.
This section explores a different, and often very difficult, challenge: How
do we know what the correct behavior or output should be? Sometimes the
answer to this question is very simple. For example, if the software under
test is supposed to find the smallest element in a list, the test is typically a
list and the tester knows exactly which one is smallest. However, what if
we don’t know the correct answer? The following subsections explores
situations where knowing the correct result is challenging, and sometimes
impossible.

14.2.1 Specification-Based Direct Verification of Outputs

If you are very lucky, your program will come with a specification, and the
specification will be clear as to what output accompanies a given input.
For example, a sort program should produce a permutation of its input in a
specified order.

Having a human evaluate the correctness of a given output is often
effective, but is also expensive. Naturally, it is cheaper to automate this
process. Automating direct verification of the output, when possible, is one
of the best methods of checking program behavior. Below is an outline of

a checker for sorting. Notice that the checking algorithm is not another
sorting algorithm. It is not only different, it is not particularly simple. That
is, writing output checkers can be hard.

Unfortunately, direct verification is often impossible. First, we need a
specification. Specifications are notoriously hard to write, hard to get
correct, and not surprisingly, rarely used in industry. Second, sometimes
we use software to find answers that we cannot find ourselves, so we do
not know the correct answer. Consider a program that analyzes Petri nets,
which are useful for modeling processes with state. One output of such
analysis is the probability of being in any given state. It is difficult to look
at a given probability and assert that it is correct–after all, it is just a
number. How do you know if all of the digits are, in fact, the right ones?
For Petri Nets, the final probabilities cannot easily be related back to the
input Petri Net.

14.2.2 Redundant Computations

When direct verification is not applicable, redundant computations are a
useful alternative. For example, to evaluate automatically the correctness
of a min program, one could use another implementation of min–
preferably a trustworthy or “gold” version. This initially appears to be a
circularity; why should one trust one implementation more than another?

Let us formalize the process. Suppose that the program under test is
labeled P, and P(t) is the output of P on test t. A specification S of P also
specifies an output S(t), and we usually demand that S(t) = P(t)1. Suppose
that S is, itself, executable, thereby allowing us to automate the output
checking process. If S itself contains one or more faults, a common
occurrence, S(t) may very well be incorrect. If P(t) is incorrect in exactly
the same way, the failure of P goes undetected. If P fails in some way that

is different from S on some test t, then the discrepancy will be
investigated, with at least the possibility that the faults in both S and P will
be discovered.

A potential problem is when P and S have faults that result in incorrect
and identical outputs. Some authors have suggested that the oracle S
should be developed independently of P to reduce this possibility. From a
practical standpoint, such independent development is difficult to achieve.
Another problem is the cost of developing multiple versions. This is
impractical in many software development environments.

Further, independent development is very unlikely to lead to
independent failures. Both experimental evidence and theoretical
arguments suggest that common failures, at a rate substantially above what
would be expected given an assumption of independence, are a fact of life.
The basic reason for this is that some inputs are “harder” than others to get
right, and it is precisely these inputs that are the most likely to trigger
common failures across multiple implementations.

Still, testing one implementation against another is an effective,
practical technique for the oracle problem. In industry, the technique is
implemented most often in regression testing, where the executable
version of a specification S is simply the previous release of the software.
Regression testing is extremely effective at identifying problems in
software, and should be a standard part of any serious commercial
software development activity.

Sometimes a problem might have different algorithms to solve it, and
implementations of the different algorithms are excellent candidates for
checking against each other, even though the common failure problem still
remains. For example, consider searching algorithms. A binary search
routine could easily be tested by comparing the result with a linear search.

14.2.3 Consistency Checks

An alternative to direct verification or redundant computations is
consistency analysis. Consistency analysis is typically incomplete.
Consider the Petri Net example again. Given a putative probability, one
can certainly say that if it is negative or larger than unity, then it is wrong.
Consistency analysis can also be internal. Recall the RIPR (reachability,
infection, propagation, revealability) model for failures from Chapter 2.

External checks can only examine the outputs, so the infection must
propagate for the error to be detected.

Internal checks raise the possibility of identifying faulty behavior with
only the first two (RI) properties. It is quite common for programmers to
require certain relations to hold on internal structures. For example, an
object representation might require that a given container never holds
duplicate objects. Checking these “invariant” relations is an extremely
effective way of finding faults. Programmers trained in developing
software under the contract model can produce the code for such checking
in the course of normal development. For object-oriented software, such
checks are typically organized around object invariants—both on the
abstraction of the object and on its representation—as well as object
method preconditions and postconditions. Tools such as assertion facilities
can efficiently turn on such checks during testing and turn them back off,
if necessary for performance, during operation.

14.2.4 Metamorphic Testing

An extremely powerful method of evaluating correctness on a particular
input is to consider how the program behaves on other inputs. Students
sometimes find this approach wildly counter-intuitive at first: If we are
trying to judge the behavior of a program on input x, how could it possibly
help to look at the behavior of that program on some other input y?

To see how other inputs might help, let’s consider a computation of the
sine function. Given a computation sin(x) for some input x, it is quite
difficult to decide if the output is exactly right. Fortunately, identities can
help: If sine is available, it is likely that cosine is as well, and a useful
trigonometry identify is sin(x)2+cos(x)2 = 1, for all values of x.

The identity is certainly valid, but it doesn’t address the case where both
sin(x) and cos(x) happen to be wrong in compensating ways. It turns out
this is quite likely. For example, cos(x) might be implemented with a call
to sin(π⁄2 - x), which means the cos() function is just as broken as the sin()
function.

To address this shortcoming, consider identities that use the same
program, but on different inputs. Consider sin(x) again. Another identity is
sin(a + b) = sin(a)cos(b) + cos(a)sin(b). If we wish, we can also rewrite
the cos(x) calls to sin(π⁄2 -x) calls. We have a relation on the inputs

(namely a + b = x) and a corresponding relation on the outputs (sin(x) is a
simple expression in terms of sine applied to a and b). Such checks can be
repeated as often as desired with different random choices for the value of
a. It turns out that even the most malicious implementer of a sine function
has a vanishingly small chance of fooling such a checker. This is a truly
powerful program checker!

Such powerful program checkers are only available for certain well-
behaved mathematical problems, namely those where the necessary
identities allow a computation on a given input to be related to the same
computation on a random input. Even so, weaker identities are still
extremely useful. Further, they often work with the types of object-
oriented classes common in programming. For example, adding an
element to a container and then removing the element from the container
often has a well defined effect on the container. For some containers, such
as bags, the result is no change at all. For other containers, such as sets, the
result might be no change, or the set might have one fewer element if it
was in the set before the latest addition.

A key observation of metamorphic testing is that the relationship
between various outputs doesn’t have to be so strong that detection of a
failure is guaranteed. In other words, it is enough if the relationship
sometimes detects a failure. Consider an implementation of the Traffic
Collision and Avoidance System (TCAS) deployed on commercial
aircraft. TCAS’s function is to help pilots find the best way to avoid a
potential collision. In the “vertical resolution” mode, the outputs of TCAS,
or “resolution advisories,” are either to stay level, to climb, or to descend.

TCAS is a complex system that considers many factors, including
multiple recent positions of the various aircraft, the existence of
complementary TCAS processing on other aircraft, proximity to the
ground, and so on. To apply the technique of metamorphic testing, suppose
we rerun the TCAS software with slightly different positions for some or
all of the aircraft. We would expect, in most cases, that the resolution
advisory would not change. In other words, the metamorphic relation is
that similar configurations of aircraft result in similar resolution advisories.
This metamorphic relation does not hold, of course, for those boundary
cases where the resolution advisory changes from one value to another. If
the resolution advisory appeared to be unstable for some closely related
inputs, we would have a strong indication that the pilot might not wish to
place much confidence in the resolution advisory. Back in the laboratory,

the TCAS engineers might want to pay special attention to such inputs–
perhaps even regarding the corresponding outputs as failures.

The technique illustrated with the TCAS software can be applied to
many systems where the input space has some notion of continuity. In
such systems, it may be appropriate to speak of “nearby” inputs. If so, then
there may be metamorphic relations that corresponding outputs can also be
expected to be “nearby.”

14.3 BIBLIOGRAPHIC NOTES

Weyuker [Weyuker, 1980] wrote an early essay identifying the oracle
problem and various approaches to addressing it. Both Meyer [Meyer,
1997] and Liskov [Liskov and Guttag, 2001] talk about how to articulate
checkable assertions in the context of the contract model. Several
commercial tools support assertion checking.

Kaner et al. [Kaner et al., 1999] provide lots of details for how to
properly create effective test oracles. His website (kaner.com/?p=190) is a
living document with updated ideas.

The test oracle problem was first defined by Howden [Howden, 1978].
Barr et al. summarized the test oracle problem in a survey in four broad
categories: specified oracles, derived oracles, implicit oracles, and no test
oracle [Barr et al., 2015a]. Barr et al. [Barr et al., 2015b] created a
repository of scientific publications on the test oracle problem. Briand et
al. [Briand et al., 2004] first defined the term test oracle strategy and
described an oracle strategy that looked at a large portion of the state as
“very precise.”

Xie and Memon [Xie and Memon, 2007] considered precision and
frequency when designing oracle strategies for GUIs. Staats et al. [Staats
et al., 2011] also studied the prevision question, finding that checking the
internal state variables sometimes reveals more failures, but were not able
to provide guidance on which internal variables to check. Shrestha and
Rutherford [Shrestha and Rutherford, 2011] studied the null oracle
strategy, finding it to be very ineffective. Other researchers have also have
looked this problem [Burdy et al., 2005, Halbwachs, 1998, Shrestha and
Rutherford, 2011, Sprenkle et al., 2007, Staats et al., 2012, Yu et al.,
2013].

Li and Offutt [Li and Offutt, 2016, Li and Offutt, 2014] published the

http://kaner.com/?p=190

most comprehensive studies. They were the first to articulate revealability
as an important component of the fault and failure model, extending RIP to
RIPR. After defining 10 different test oracle strategies, they found the null
oracle strategy to be very ineffective, high precision to be relatively
unhelpful, and high frequency also to be relatively unhelpful.

The notion of building multiple versions was championed in the fault-
tolerance context by a number of authors, most vocally by Avizienis
[Avizienis, 1985]. Limits on reliability for multiversion software were first
explored experimentally by Knight and Leveson [Knight and Leveson,
1986], then theoretically by Eckhardt and Lee [Eckhardt Jr. and Lee, 1988]
and Littlewood and Miller [Littlewood and Miller, 1989] and in a different
context by Geist et al. [Geist et al., 1992]. Multiversion software actually
works better for testing than for fault tolerance. If two versions of the
program behave differently on the same inputs, then we know we have
found a good test, and at least one of the versions is wrong. In particular, it
is helpful to view regression testing as a multiversion testing arrangement.

Metamorphic testing has roots in the program checking work of Blum
and Kannan [Blum and Kannan, 1989] and Lipton [Lipton, 1991], where
the key idea was to adapt random algorithms [Mitzenmacher and Upfal,
2005] to the oracle problem for certain mathematically well-defined
problems. In the context of fault tolerance, Ammann and Knight [Ammann
and Knight, 1988] independently defined data diversity, which ranges
from the arbitrarily-good reliability of the sine computation used as an
example in this chapter to less powerful, but more widely applicable,
approaches to computing with multiple inputs. Much later, Chen coined
the term “metamorphic testing” [Chen et al., 2011, Chen et al., 2001, Zhou
et al., 2015], which is widely used in the literature, and so we use it here.
The key difference between the techniques is that program checking
requires properties between outputs strong enough to guarantee probable
correctness, while data diversity and metamorphic testing are also useful
for cases where the relationship between outputs is weaker.

1 If S is under-determined, then the requirement S(t) = P(t) is not correct. Instead, S
should be viewed as allowing a set of possible outputs, and the correctness
constraint is that P produces one of them, namely P(t) ∈ S(t).

Criteria

Criterion Name Acronym Page Defined
Chapter 6 (ISP)

All Combinations Coverage ACoC 155
Each Choice Coverage ECC 156
Pair-Wise Coverage PWC 156
T-Wise Coverage TWC 157
Base Choice Coverage BCC 157
Multiple Base Choice Coverage MBCC 158

Chapter 7 (Graph)
Node Coverage NC 208
Edge Coverage EC 208
Edge-Pair Coverage EPC 212
Prime Path Coverage PPC 115
Simple Round Trip Coverage SRTC 212
Complete Round Trip Coverage CRTC 212
Complete Path Coverage CPC 213
Specified Path Coverage SPC 213
All-Defs Coverage ADC 242
All-Uses Coverage AUC 242
All-du-Paths Coverage ADUPC 243

Chapter 8 (Logic)
Predicate Coverage PC 382
Clause Coverage CC 382
Combinatorial Coverage CoC 383
General Active Clause Coverage GACC 385
Correlated Active Clause Coverage CACC 385
Restricted Active Clause Coverage RACC 386
General Inactive Clause Coverage GICC 388

Restricted Inactive Clause Coverage RICC 388
Implicant Coverage IC 406
Multiple Unique True Points Coverage MUTP 202
Corresponding Unique True Points and CUTPNFP 416
Near False Point Pair Coverage
Multiple Near False Point Coverage MNFP 416
MUMCUT MUMCUT 417

Chapter 9 (Syntax)
Terminal Symbol Coverage TSC 478
Production Coverage PDC 478

Chapter 9 (Syntax)
Derivation Coverage DC 478
Mutation Coverage MC 482
Mutation Operator Coverage MOC 482
Mutation Production Coverage MPC 240
Strong Mutation Coverage SMC 489
Weak Mutation Coverage WMC 489

Bibliography

[Abdurazik and Offutt, 2000] Abdurazik, A. and Offutt, J. (2000). Using
UML collaboration diagrams for static checking and test generation.
In Proceedings of the Third International Conference on the Unified
Modeling Language (UML ’00), pages 383–395, York, UK.

[Abdurazik and Offutt, 2006] Abdurazik, A. and Offutt, J. (2006).
Coupling-based class integration and test order. In Workshop on
Automation of Software Test (AST 2006), pages 50–56, Shanghai,
China.

[Abdurazik and Offutt, 2007] Abdurazik, A. and Offutt, J. (2007). Using
coupling-based weights for the class integration and test order
problem. The Computer Journal, pages 1–14. DOI:
10.1093/comjnl/bxm054.

[Acree et al., 1979] Acree, A. T., Budd, T. A., DeMillo, R. A., Lipton, R.
J., and Sayward, F. G. (1979). Mutation analysis. Technical report
GIT-ICS-79/08, School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA.

[Akers, 1959] Akers, S. B. (1959). On a theory of boolean functions.
Journal Society Industrial Applied Mathematics, 7(4):487–498.

[Alexander and Offutt, 2000] Alexander, R. T. and Offutt, J. (1999).
Analysis techniques for testing polymorphic relationships. In
Proceedings of the Thirtieth IEEE International Conference on
Technology of Object-Oriented Languages and Systems (TOOLS USA
’99), pages 104–114, Santa Barbara, CA.

[Alexander and Offutt, 2004] Alexander, R. T. and Offutt, J. (2000).
Criteria for testing polymorphic relationships. In Proceedings of the
11th IEEE International Symposium on Software Reliability
Engineering, pages 15–23, San Jose, CA.

[Alexander and Offutt, 1999] Alexander, R. T. and Offutt, J. (2004).
Coupling-based testing of O-O programs. Journal of Universal
Computer Science, 10(4):391–427.

[Allen and Cocke, 1976] Allen, F. E. and Cocke, J. (1976). A program data

flow analysis procedure. Communications of the ACM, 19(3):137–
146.

[Ambler and Associates, 2004] Ambler, S. and Associates (2004).
Examining the agile cost of change curve. Agile modeling online
blog. www.agilemodeling.com/essays/costOfChange.htm, last access:
February 2016.

[Ammann and Black, 2000] Ammann, P. and Black, P. E. (2000). A
specification-based coverage metric to evaluate test sets.
International Journal of Quality, Reliability, and Safety Engineering,
8(4):1–26.

[Ammann and Knight, 1988] Ammann, P. E. and Knight, J. C. (1988).
Data diversity: An approach to software fault tolerance. IEEE
Transactions on Computers, 37(4):418–425.

[Ammann and Offutt, 1994] Ammann, P. and Offutt, J. (1994). Using
formal methods to derive test frames in category-partition testing. In
Proceedings of the Ninth Annual Conference on Computer Assurance
(COMPASS 94), pages 69–80, Gaithersburg, MD.

[Ammann et al., 1998] Ammann, P. E., Black, P. E., and Majurski, W.
(1998). Using model checking to generate tests from specifications.
In Second IEEE International Conference on Formal Engineering
Methods (ICFEM’98), pages 46–54, Brisbane, Australia.

[Ammann et al., 2003] Ammann, P., Offutt, J., and Huang, H. (2003).
Coverage criteria for logical expressions. In Proceedings of the 14th
IEEE International Symposium on Software Reliability Engineering,
pages 99–107, Denver, CO.

[Ammann et al., 2012a] Ammann, P., Frazer, G., and Franz Wotawa, e.
(2012a). Special issue on model-based testing volume 1: Foundations
and applications of model-based testing. Software Testing,
Verification, and Reliability, 22(5).

[Ammann et al., 2012b] Ammann, P., Frazer, G., and Franz Wotawa, e.
(2012b). Special issue on model-based testing volume 2: Formal
approaches to model-based testing. Software Testing, Verification,
and Reliability, 22(6).

[Ammann et al., 2012c] Ammann, P., Frazer, G., and Franz Wotawa, e.
(2012c). Special issue on model-based testing volume 3: Beyond
conformance testing. Software Testing, Verification, and Reliability,
22(7).

[Anand et al., 2013] Anand, S., Burke, E. K., Chen, T. Y., Clark, J.,

http://www.agilemodeling.com/essays/costOfChange.htm

Cohen, M. B., Grieskamp, W., Harman, M., Harrold, M. J., and
McMinn, P. (2013). An orchestrated survey of methodologies for
automated software test case generation. Journal of Systems and
Software, 86(8):1978–2001.

[Andre, 1979] Andre, D. M. S. (1979). Pilot mutation system (PIMS)
user’s manual. Technical report GIT-ICS-79/04, Georgia Institute of
Technology.

[Andrews et al., 2006] Andrews, J. H., Briand, L. C., Labiche, Y., and
Namin, A. S. (2006). Using mutation analysis for assessing and
comparing testing coverage criteria. IEEE Transactions on Software
Engineering, 32(8):608.

[Ardis et al., 2015] Ardis, M., Budgen, D., Hislop, G. W., Offutt, J.,
Sebern, M., and Visser, W. (2015). SE2014: Curriculum guidelines
for undergraduate degree programs in software engineering. IEEE
Computer, 48(11):106–109. Full report:
www.acm.org/education/se2014.pdf, last access: July 2016.

[Atlee, 1994] Atlee, J. M. (1994). Native model-checking of SCR
requirements. In Fourth International SCR Workshop.

[Atlee and Gannon, 1993] Atlee, J. M. and Gannon, J. (1993). State-based
model checking of event-driven system requirements. IEEE
Transactions on Software Engineering, 19(1):24–40.

[Avizienis, 1985] Avizienis, A. (1985). The N-version approach to fault-
tolerant software. IEEE Transactions on Software Engineering, SE-
11(12):1491–1501.

[Balcer et al., 1989] Balcer, M., Hasling, W., and Ostrand, T. (1989).
Automatic generation of test scripts from formal test specifications. In
Proceedings of the Third IEEE Symposium on Software Testing,
Analysis, and Verification, pages 210–218, Key West, FL. ACM
SIGSOFT 89.

[Barr et al., 2015a] Barr, E., Harman, M., McMinn, P., Shahbaz, M., and
Yoo, S. (2015a). The oracle problem in software testing: A survey.
IEEE Transactions on Software Engineering, 41(5):507–525.

[Barr et al., 2015b] Barr, E., Harman, M., McMinn, P., Shahbaz, M., and
Yoo, S. (2015b). Repository of publications on the test oracle
problem. Online.
http://crestweb.cs.ucl.ac.uk/resources/oracle_repository, last access:
February 2016.

[Bauer and Finger, 1979] Bauer, J. A. and Finger, A. B. (1979). Test plan

http://www.acm.org/education/se2014.pdf
http://crestweb.cs.ucl.ac.uk/resources/oracle_repository

generation using formal grammars. In Fourth International
Conference on Software Engineering, pages 425–432, Munich,
Germany.

[Beck et al., 2001] Beck, K., Beedle, M., van Bennekum, A., Cockburn,
A., Cunningham, W., Fowler, M., Grenning, J., Highsmith, J., Hunt,
A., Jeffries, R., Kern, J., Marick, B., Martin, R. C., Mellor, S.,
Schwaber, K., Sutherland, J., and Thomas, D. (2001). The agile
manifesto. Online Report. http://agilemanifesto.org, last access: July
2016.

[Beizer, 1984] Beizer, B. (1984). Software System Testing and Quality
Assurance. Van Nostrand, New York, NY.

[Beizer, 1990] Beizer, B. (1990). Software Testing Techniques. Van
Nostrand Reinhold, Inc, New York, NY, 2nd edition.

[Beust and Suleiman, 2008] Beust, C. and Suleiman, H. (2008). Next
Generation Java Testing : TestNG and Advanced Concepts. Addison-
Wesley, Upper Saddle River, NJ.

[Binder, 1994] Binder, R. V. (1994). Design for testability in object-
oriented systems. Communications of the ACM, 37(9):87–101.

[Binder, 2000] Binder, R. (2000). Testing Object-oriented Systems.
Addison-Wesley Publishing Company Inc., New York, NY.

[Bird and Munoz, 1983] Bird, D. L. and Munoz, C. U. (1983). Automatic
generation of random self-checking test cases. IBM Systems Journal,
22(3):229–345.

[Black et al., 2000] Black, P., Okun, V., and Yesha, Y. (2000). Mutation
operators for specifications. In Fifteenth IEEE International
Conference on Automated Software Engineering, pages 81–88.

[Bloch, 2008] Bloch, J. (2008). Effective Java: Second Edition. Addison-
Wesley Publishing Company Inc, Boston, MA.

[Blum and Kannan, 1989] Blum, M. and Kannan, S. (1989). Designing
programs that check their work. In Twenty-first ACM Symposium on
the Theory of Computing, pages 86–97.

[Blumenstyk, 2006] Blumenstyk, M. (2006). Web application
development - Bridging the gap between QA and development.
StickyMinds.com. www.stickyminds.com/s.asp?F=S3658_ART_2,
last access: February 2016.

[Borzovs et al., 1991] Borzovs, J., Kalniņš, A., and Medvedis, I. (1991).
Automatic construction of test sets: Practical approach. In Lecture
Notes in Computer Science, Vol 502, pages 360–432. Springer-

http://agilemanifesto.org
http://www.stickyminds.com/s.asp?F=S3658_ART_2

Verlag.
[Bowser, 1988] Bowser, J. H. (1988). Reference manual for Ada mutant

operators. Technical report GIT-SERC-88/02, Georgia Institute of
Technology.

[Boyer et al., 1975] Boyer, R. S., Elpas, B., and Levitt, K. N. (1975).
Select-A formal system for testing and debugging programs by
symbolic execution. In Proceedings of the International Conference
on Reliable Software. SIGPLAN Notices, vol. 10, no. 6.

[Bray et al., 1998] Bray, T., Paoli, J., and Sperberg-McQueen, C. M.
(1998). Extensible markup language (XML) 1.0. W3C
recommendation. www.w3.org/TR/REC-xml, last access: July 2016.

[Briand and Labiche, 2001] Briand, L. and Labiche, Y. (2001). A UML-
based approach to system testing. In Proceedings of the Fourth
International Conference on the Unified Modeling Language (UML
’01), pages 194–208, Toronto, Canada.

[Briand et al., 2002] Briand, L., Feng, J., and Labiche, Y. (2002). Using
genetic algorithms and coupling measures to devise optimal
integration test orders. In Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engineering,
pages 43–50, Ischia, Italy.

[Briand et al., 2003] Briand, L., Labiche, Y., and Wang, Y. (2003). An
investigation of graph-based class integration test order strategies.
IEEE Transactions on Software Engineering, 29(7):594–607.

[Briand et al., 2004] Briand, L. C., Penta, M. D., and Labiche, Y. (2004).
Assessing and improving state-based class testing: A series of
experiments. IEEE Transaction on Software Engineering,
30(11):770–793.

[British Computer Society, 1997] Standard for Software Component
Testing (BS 7925-2). British Standards Institute.
www.ruleworks.co.uk/testguide/BS7925-2.htm, last access: February
2016.

[British Computer Society, 2001] British Computer Society, S. I. G. i. S.
T. (2001). Standard for Software Component Testing, Working Draft
3.4. British Computer Society.
www.testingstandards.co.uk/ComponentTesting.pdf, last access: July
2016.

[Brownlie et al., 1992] Brownlie, R., Prowse, J., and Phadke, M. S. (1992).
Robust testing of AT&T PMX/StarMAIL using OATS. AT&T

http://www.w3.org/TR/REC-xml
http://www.ruleworks.co.uk/testguide/BS7925-2.htm
http://www.testingstandards.co.uk/ComponentTesting.pdf

Technical Journal, 71(3):41–47.
[Brun et al., 2011] Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D.

(2011). Proactive detection of collaboration conflicts. In Proceedings
of the 13th European Software Engineering Conference and the 19th
ACM SIGSOFT Symposium on Foundations of Software Engineering,
pages 168–178, Szeged, Hungary.

[Budd, 1980] Budd, T. A. (1980). Mutation Analysis of Program Test
Data. PhD thesis, Yale University, New Haven, CT.

[Budd and Angluin, 1982] Budd, T. A. and Angluin, D. (1982). Two
notions of correctness and their relation to testing. Acta Informatica,
18(1):31–45.

[Budd and Lipton, 1978] Budd, T. A. and Lipton, R. J. (1978). Proving
LISP programs using test data. In Digest for the Workshop on
Software Testing and Test Documentation, pages 374–403, Ft.
Lauderdale, FL.

[Budd and Sayward, 1977] Budd, T. and Sayward, F. (1977). Users guide
to the Pilot mutation system. Technical report 114, Department of
Computer Science, Yale University.

[Budd et al., 1979] Budd, T. A., Lipton, R. J., DeMillo, R. A., and
Sayward, F. G. (1979). Mutation analysis. Technical report GIT-ICS-
79/08, School of Information and Computer Science, Georgia
Institute of Technology, Atlanta, GA.

[Burdy et al., 2005] Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D.,
Kiniry, J. R., Leavens, G. T., Leino, K. R. M., and Poll, E. (2005). An
overview of JML tools and applications. International Journal on
Software Tools for Technology Transfer, 7:212–232.

[Burr and Young, 1998] Burr, K. and Young, W. (1998). Combinatorial
test techniques: Table-based automation, test generation and code
coverage. In Proceedings of the International Conference on
Software Testing, Analysis, and Review (STAR’98), San Diego, CA.

[Burroughs et al., 1994] Burroughs, K., Jain, A., and Erickson, R. L.
(1994). Improved quality of protocol testing through techniques of
experimental design. In Proceedings of the IEEE International
Conference on Communications (Supercomm/ICC’94), pages 745–
752, New Orleans, LA.

[Buy et al., 2000] Buy, U., Orso, A., and Pezze, M. (2000). Automated
testing of classes. In Proceedings of the 2000 International
Symposium on Software Testing, and Analysis (ISSTA ’00), pages 39–

48, Portland, OR. IEEE Computer Society Press.
[Cheatham et al., 1979] Cheatham, T. E., Holloway, G. H., and Townley,

J. A. (1979). Symbolic evaluation and the analysis of programs. IEEE
Transactions on Software Engineering, 5(4).

[Chen and Lau, 2001] Chen, T. Y. and Lau, M. F. (2001). Test case
selection strategies based on boolean specifications. Software Testing,
Verification, and Reliability, 11(3):165–180, Wiley.

[Chen et al., 2004] Chen, T. Y., Poon, P. L., Tang, S. F., and Tse, T. H.
(2004). On the identification of categories and choices for
specification-based test case generation. Information and Software
Technology, 46(13):887–898.

[Chen et al., 2005] Chen, T. Y., Tang, S. F., Poon, P. L., and Tse, T. H.
(2005). Identification of categories and choices in activity diagrams.
In Fifth International Conference on Quality Software (QSIC 2005),
pages 55–63, Melbourne, Australia.

[Chen et al., 2011] Chen, T. Y., Tse, T. H., and Zhou, Z. Q. (2001). Fault-
based testing in the absence of an oracle. In Proceedings of the 25th
Annual International Computer Software and Applications
Conference (COMPSAC 2001), pages 172–178.

[Chen et al., 2001] Chen, T. Y., Tse, T. H., and Zhou, Z. Q. (2011). Semi-
proving: An integrated method for program proving, testing, and
debugging. IEEE Transactions on Software Engineering, 37(1):109–
125.

[Cherniavsky, 1979] Cherniavsky, J. C. (1979). On finding test data sets
for loop free programs. Information Processing Letters, 8(2):106–
107.

[Cherniavsky and Smith, 1986] Cherniavsky, J. C. and Smith, C. H.
(1986). A theory of program testing with applications. Proceedings of
the Workshop on Software Testing, pages 110–121.

[Chilenski and Richey, 1997] Chilenski, J. and Richey, L. A. (1997).
Definition for a masking form of modified condition decision
coverage (MCDC). Technical report, Boeing, Seattle, WA.

[Chilenski, 2003] Chilenski, J. J. (2003). Personal communication.
[Chilenski and Miller, 1994] Chilenski, J. J. and Miller, S. P. (1994).

Applicability of modified condition/decision coverage to software
testing. Software Engineering Journal, 9(5):193–200.

[Chow, 1978] Chow, T. (1978). Testing software designs modeled by
finite-state machines. IEEE Transactions on Software Engineering,

SE-4(3):178–187.
[Clarke, 1976] Clarke, L. A. (1976). A system to generate test data and

symbolically execute programs. IEEE Transactions on Software
Engineering, 2(3): 215–222.

[Clarke and Richardson, 1985] Clarke, L. A. and Richardson, D. J. (1985).
Applications of symbolic evaluation. Journal of Systems and
Software, 5(1):15–35.

[Clarke et al., 1985] Clarke, L. A., Podgurski, A., Richardson, D. J., and
Zeil, S. J. (1985). A comparison of data flow path selection criteria.
In Proceedings of the Eighth International Conference on Software
Engineering, pages 244–251, London, UK. IEEE Computer Society
Press.

[Clarke et al., 1989] Clarke, L. A., Podgurski, A., Richardson, D. J., and
Zeil, S. J. (1989). A formal evaluation of data flow path selection
criteria. IEEE Transactions on Software Engineering, 15:1318–1332.

[Cohen et al., 1997] Cohen, D. M., Dalal, S. R., Fredman, M. L., and
Patton, G. C. (1997). The AETG system: An approach to testing
based on combinatorial design. IEEE Transactions on Software
Engineering, 23(7):437–444.

[Cohen et al., 1996] Cohen, D. M., Dalal, S. R., Kajla, A., and Patton, G.
C. (1994). The automatic efficient test generator (AETG) system. In
Proceedings of Fifth International Symposium on Software Reliability
Engineering (ISSRE’94), pages 303–309, Los Alamitos, CA.

[Cohen et al., 1994] Cohen, D. M., Dalal, S. R., Parelius, J., and Patton, G.
C. (1996). The combinatorial design approach to automatic test
generation. IEEE Software, pages 83–88.

[Cohen et al., 2003] Cohen, M. B., Gibbons, P. B., Mugridge, W. B., and
Colburn, C. J. (2003). Constructing test cases for interaction testing.
In Proceedings of the 25th International Conference on Software
Engineering, (ICSE’03), pages 38–48. IEEE Computer Society Press.

[Consortium, 2000] Extensible markup language (XML) 1.0 (second
edition)-W3C recommendation. www.w3.org/XML/#9802xml10, last
access: July 2016.

[Constantine and Yourdon, 1979] Constantine, L. L. and Yourdon, E.
(1979). Structured Design. Prentice-Hall, Englewood Cliffs, NJ.

[Cooper, 1995] Cooper, A. (1995). About Face: The Essentials of User
Interface Design. Hungry Minds, New York, NY.

[Copeland, 2003] Copeland, L. (2003). A Practitioner’s Guide to Software

http://www.w3.org/XML/#9802xml10

Test Design. Artech House Publishers, Norwood, MA.
[Dalal et al., 1999] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M.,

and Lott, C. M. (1998). Model-based testing of a highly
programmable system. In Proceedings of 9th International
Symposium in Software Engineering (ISSRE’98), pages 174–178,
Paderborn, Germany.

[Dalal et al., 1998] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M.,
Lott, C. M., Patton, G. C., and Horowitz, B. M. (1999). Model-based
testing in practice. In Proceedings of 21st International Conference
on Software Engineering (ICSE’99), pages 285–294, Los Angeles,
CA. ACM Press.

[Daran and Thévenod-Fosse, 1996] Daran, M. and Thévenod-Fosse, P.
(1996). Software error analysis: A real case study involving real
faults and mutations. ACM SIGSOFT Software Engineering Notes,
21(3):158–177.

[Darringer and King, 1978] Darringer, J. A. and King, J. C. (1978).
Applications of symbolic execution to program testing. IEEE
Computer, 11(4).

[Delamaro et al., 2001] Delamaro, M., Maldonado, J. C., and Mathur, A.
P. (2001). Interface mutation: An approach for integration testing.
IEEE Transactions on Software Engineering, 27(3):228–247.

[Delamaro and Maldonado, 1996] Delamaro, M. E. and Maldonado, J. C.
(1996). Proteum-A tool for the assessment of test adequacy for C
programs. In Proceedings of the Conference on Performability in
Computing Systems (PCS 96), pages 79–95, New Brunswick, NJ.

[DeMillo and Offutt, 1991] DeMillo, R. A. and Offutt, J. (1993).
Experimental results from an automatic test case generator. ACM
Transactions on Software Engineering Methodology, 2(2):109–127.

[DeMillo and Offutt, 1993] DeMillo, R. A. and Offutt, J. (1991).
Constraint-based automatic test data generation. IEEE Transactions
on Software Engineering, 17(9):900–910.

[DeMillo et al., 1988] DeMillo, R. A., Guindi, D. S., King, K. N.,
McCracken, W. M., and Offutt, J. (1988). An extended overview of
the Mothra software testing environment. In Proceedings of the IEEE
Second Workshop on Software Testing, Verification, and Analysis,
pages 142–151, Banff, Alberta.

[DeMillo et al., 1979] DeMillo, R. A., Lipton, R. J., and Perlis, A. J.
(1979). Social processes and proofs of theorems and programs.

Communications of the ACM, 22(5).
[DeMillo et al., 1978] DeMillo, R. A., Lipton, R. J., and Sayward, F. G.

(1978). Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41.

[DeMillo et al., 1987] DeMillo, R. A., McCracken, W. M., Martin, R. J.,
and Passafiume, J. F. (1987). Software Testing and Evaluation.
Benjamin/Cummings, Menlo Park, CA.

[Department of Defense, 1994] MIL-STD-498: Software Development and
Documentation. Department of Defense.

[Department of Defense, 1988] DOD-STD-2167A: Defense System
Software Development. Department of Defense.

[Deutsch, 1982] Deutsch, M. S. (1982). Software Verification and
Validation Realistic Project Approaches. Prentice-Hall, Englewood
Cliffs, New Jersey, NJ.

[Duncan and Hutchison, 1981] Duncan, A. G. and Hutchison, J. S. (1981).
Using attributed grammars to test designs and implementations. In
Proceedings of the 5th International Conference on Software
Engineering (ICSE 5), pages 170–177, San Diego, CA. IEEE
Computer Society Press.

[Dupuy and Leveson, 2000] Dupuy, A. and Leveson, N. (2000). An
empirical evaluation of the MC/DC coverage criterion on the HETE-2
satellite software. In Proceedings of the Digital Aviations Systems
Conference (DASC).

[Durelli et al., 2016] Durelli, V. H., Offutt, J., Li, N., and Delamaro, M.
(2016). What to expect of predicates: An empirical analysis of
predicates in real world programs.

[Dustin et al., 1999] Dustin, E., Rashka, J., and Paul, J. (1999). Automated
Software Testing: Introduction, Management, and Performance.
Addison-Wesley Professional, New York, NY.

[Eckhardt Jr. and Lee, 1988] Eckhardt Jr., D. E. and Lee, L. D. (1988).
Fundamental differences in the reliability of N-modular redundancy
and N-version programming. The Journal of Systems and Software,
8(4):313–318.

[Edelman, 1997] Edelman, A. (1997). The mathematics of the Pentium
division bug. SIAM Review, 39:54–67.
www.siam.org/journals/sirev/39-1/29395.html, July 2016.

[Fairley, 1975] Fairley, R. E. (1975). An experimental program testing
facility. IEEE Transactions on Software Engineering, SE-1:350–

http://www.siam.org/journals/sirev/39-1/29395.html

3571.
[Feathers, 2004] Feathers, M. (2004). Working Effectively with Legacy

Code. Prentice-Hall, Upper Saddle River, NJ.
[Ferguson and Korel, 1996] Ferguson, R. and Korel, B. (1996). The

chaining approach for software test data generation. ACM
Transactions on Software Engineering Methodology, 5(1):63–86.

[Forman, 1984] Forman, I. R. (1984). An algebra for data flow anomaly
detection. In Proceedings of the Seventh International Conference on
Software Engineering, pages 278–286. IEEE Computer Society Press.

[Fosdick and Osterweil, 1976] Fosdick, L. D. and Osterweil, L. J. (1976).
Data flow analysis in software reliability. ACM Computing Surveys,
8(3):305–330.

[Fowler, 2004] Fowler, M. (2004). Is design dead? Online blog.
http://martinfowler.com/articles/designDead.html, last access:
February 2016.

[Fowler, 2005] Fowler, M. (2005). The new methodology. Online blog.
www.martinfowler.com/articles/newMethodology.html, last access:
February 2016.

[Fowler, 2007] Fowler, M. (2007). Mocks aren’t stubs. Online blog.
www.martinfowler.com/articles/mocksArentStubs.html, last access:
February 2016.

[Fowler et al., 1999] Fowler, M., Beck, K., Brant, J., Opdyke, W., and
Roberts, D. (1999). Refactoring: Improving the Design of Existing
Code. Addison-Wesley Longman, Westford, MA.

[Frankl and Deng, 2000] Frankl, P. G. and Deng, Y. (2000). Comparison
of delivered reliability of branch, data flow and operational testing: A
case study. In Proceedings of the 2000 International Symposium on
Software Testing, and Analysis (ISSTA ’00), pages 124–134, Portland,
OR. IEEE Computer Society Press.

[Frankl and Weiss, 1993] Frankl, P. G. and Weiss, S. N. (1993). An
experimental comparison of the effectiveness of branch testing and
data flow testing. IEEE Transactions on Software Engineering,
19(8):774–787.

[Frankl and Weyuker, 1986] Frankl, P. G. and Weyuker, E. J. (1986). Data
flow testing in the presence of unexecutable paths. In Proceedings of
the Workshop on Software Testing, pages 4–13, Banff, Alberta. IEEE
Computer Society Press.

[Frankl and Weyuker, 1988] Frankl, P. G. and Weyuker, E. J. (1988). An

http://martinfowler.com/articles/designDead.html
http://www.martinfowler.com/articles/newMethodology.html
http://www.martinfowler.com/articles/mocksArentStubs.html

applicable family of data flow testing criteria. IEEE Transactions on
Software Engineering, 14(10):1483–1498.

[Frankl et al., 1997] Frankl, P. G., Weiss, S. N., and Hu, C. (1997). All-
uses versus mutation testing: An experimental comparison of
effectiveness. Journal of Systems and Software, 38(3):235–253.

[Frankl et al., 1985] Frankl, P. G., Weiss, S. N., and Weyuker, E. J. (1985).
ASSET: A system to select and evaluate tests. In Proceedings of the
Conference on Software Tools, New York, NY. IEEE Computer
Society Press.

[Freedman, 1991] Freedman, R. S. (1991). Testability of software
components. IEEE Transactions on Software Engineering,
17(6):553–564.

[Fujiwara et al., 1991] Fujiwara, S., Bochman, G., Khendek, F., Amalou,
M., and Ghedasmi, A. (1991). Test selection based on finite state
models. IEEE Transactions on Software Engineering, 17(6):591–603.

[Gallagher et al., 2007] Gallagher, L., Offutt, J., and Cincotta, T. (2007).
Integration testing of object-oriented components using finite state
machines. Software Testing, Verification, and Reliability, Wiley,
17(1):215–266.

[Gargantini and Fraser, 2010] Gargantini, A. and Fraser, G. (2010).
Generating minimal fault detecting test suites for boolean
expressions. In AMOST 2010 - 6th Workshop on Advances in Model
Based Testing, pages 37–45, Paris, France.

[Geist et al., 1992] Geist, R., Offutt, J., and Harris, F. (1992). Estimation
and enhancement of real-time software reliability through mutation
analysis. IEEE Transactions on Computers, 41(5):550–558. Special
Issue on Fault-Tolerant Computing.

[Girgis and Woodward, 1985] Girgis, M. R. and Woodward, M. R. (1985).
An integrated system for program testing using weak mutation and
data flow analysis. In Proceedings of the Eighth International
Conference on Software Engineering, pages 313–319, London, UK.
IEEE Computer Society Press.

[Godefroid et al., 2005] Godefroid, P., Klarlund, N., and Sen, K. (2005).
DART: Directed automated random testing. In 2005 ACM SIGPLAN
conference on Programming Language Design and Implementation,
pages 213–223, Chicago, IL.

[Goldberg et al., 1994] Goldberg, A., Wang, T. C., and Zimmerman, D.
(1994). Applications of feasible path analysis to program testing. In

Proceedings of the 1994 IEEE International Symposium on Software
Testing, and Analysis, pages 80–94, Seattle, WA. ACM Press.

[Gonenc, 1970] Gonenc, G. (1970). A method for the design of fault-
detection experiments. IEEE Transactions on Computers, C-19:155–
558.

[Goodenough and Gerhart, 1975] Goodenough, J. B. and Gerhart, S. L.
(1975). Toward a theory of test data selection. IEEE Transactions on
Software Engineering, 1(2).

[Gourlay, 1983] Gourlay, J. S. (1983). A mathematical framework for the
investigation of testing. IEEE Transactions on Software Engineering,
9(6):686–709.

[Grindal, 2007] Grindal, M. (2007). Evaluation of Combination Strategies
for Practical Testing. PhD thesis, Skövde University / Linkoping
University, Skövde, Sweden.

[Grindal and Offutt, 2007] Grindal, M. and Offutt, J. (2007). Input
parameter modeling for combination strategies. In IASTED
International Conference on Software Engineering (SE 2007),
Innsbruck, Austria. ACTA Press.

[Grindal et al., 2005] Grindal, M., Offutt, J., and Andler, S. F. (2005).
Combination testing strategies: A survey. Software Testing,
Verification, and Reliability, 15(2):97–133, Wiley.

[Grindal et al., 2006] Grindal, M., Lindström, B., Offutt, J., and Andler, S.
F. (2006). An evaluation of combination testing strategies. Empirical
Software Engineering, 11(4):583–611.

[Grindal et al., 2007] Grindal, M., Offutt, J., and Mellin, J. (2007).
Conflict management when using combination strategies for software
testing. In Australian Software Engineering Conference (ASWEC
2007), pages 255–264, Melbourne, Australia.

[Grochtmann and Grimm, 1993] Grochtmann, M. and Grimm, K. (1993).
Classification trees for partition testing. Software Testing,
Verification, and Reliability, 3(2):63–82, Wiley.

[Grochtmann et al., 1993] Grochtmann, M., Grimm, K., and Wegener, J.
(1993). Tool-supported test case design for black-box testing by
means of the classification-tree editor. In Proceedings of the 1st
European International Conference on Software Testing Analysis &
Review (EuroSTAR 1993), pages 169–176, London, UK.

[Guo and Qiu, 2013] Guo, H.-F. and Qiu, Z. (2013). Automatic grammar-
based test generation. In Testing Software and Systems, volume

LNCS 8254, pages 17–32. Springer-Verlag.
[Halbwachs, 1998] Halbwachs, N. (1998). Synchronous programming of

reactive systems - A tutorial and commented bibliography, LNCS
1427. In Tenth International Conference on Computer-Aided
Verification, pages 1–16. Springer-Verlag.

[Hamlet, 1981] Hamlet, R. (1981). Reliability theory of program testing.
Acta Informatica, Springer-Verlag, pages 31–43.

[Hamlet, 1977] Hamlet, R. G. (1977). Testing programs with the aid of a
compiler. IEEE Transactions on Software Engineering, 3(4):279–
290.

[Hampton and Petithomme, 2007] Hampton, M. and Petithomme, S.
(2007). Leveraging a commercial mutation analysis tool for research.
In Third IEEE Workshop on Mutation Analysis (Mutation 2007),
pages 203–209, Windsor, UK.

[Hanford, 1970] Hanford, K. V. (1970). Automatic generation of test
cases. IBM Systems Journal, 4:242–257.

[Hanks, 1980] Hanks, J. M. (1980). Testing COBOL programs by
mutation: Volume I-introduction to the CMS.1 system, volume II -
CMS.1 system documentation. Technical report GIT-ICS-80/04,
Georgia Institute of Technology.

[Harman et al., 2010] Harman, M., Jia, Y., and Langdon, W. B. (2010).
How higher order mutation helps mutation testing (keynote). In 5th
International Workshop on Mutation Analysis (Mutation 2010), Paris,
France.

[Harrold and Rothermel, 1994] Harrold, M. J. and Rothermel, G. (1994).
Performing data flow testing on classes. In Symposium on
Foundations of Software Engineering, pages 154–163, New Orleans,
LA. ACM SIGSOFT.

[Harrold and Rothermel, 1998] Harrold, M. J. and Rothermel, G. (1998).
Empirical studies of a safe regression test selection technque. IEEE
Transactions on Software Engineering, 24(6):401–419.

[Harrold and Soffa, 1991] Harrold, M. J. and Soffa, M. L. (1991).
Selecting and using data for integration testing. IEEE Software,
8(2):58–65.

[Heller, 1995] Heller, E. (1995). Using design of experiment structures to
generate software test cases. In Proceedings of the 12th International
Conference on Testing Computer Software, pages 33–41, New York,
NY. ACM.

[Henninger, 1980] Henninger, K. (1980). Specifiying software
requirements for complex systems: New techniques and their
applications. IEEE Transactions on Software Engineering, SE-
6(1):2–12.

[Herman, 1976] Herman, P. (1976). A data flow analysis approach to
program testing. Australian Computer Journal, 8(3):92–96.

[Hetzel, 1988] Hetzel, B. (1988). The Complete Guide to Software Testing.
Wiley-QED, second edition.

[Horgan and London, 1991] Horgan, J. R. and London, S. (1991). Data
flow coverage and the C languages. In Proceedings of the Fourth
IEEE Symposium on Software Testing, Analysis, and Verification,
pages 87–97, Victoria, British Columbia, Canada.

[Horgan and London, 1992] Horgan, J. R. and London, S. (1992). ATAC:
A data flow coverage testing tool for C. In Proceedings of the
Symposium of Quality Software Development Tools, pages 2–10, New
Orleans, LA. IEEE Computer Society Press.

[Horgan and Mathur, 1990] Horgan, J. R. and Mathur, A. P. (1990). Weak
mutation is probably strong mutation. Technical report SERC-TR-83-
P, Software Engineering Research Center, Purdue University, West
Lafayette, IN.

[Howden, 1975] Howden, W. E. (1975). Methodology for the generation
of program test data. IEEE Transactions on Software Engineering,
SE-24.

[Howden, 1976] Howden, W. E. (1976). Reliability of the path analysis
testing strategy. IEEE Transactions on Software Engineering,
2(3):208–215.

[Howden, 1977] Howden, W. E. (1977). Symbolic testing and the
DISSECT symbolic evaluation system. IEEE Transactions on
Software Engineering, 3(4).

[Howden, 1978] Howden, W. E. (1978). Theoretical and empirical studies
of program testing. IEEE Transactions on Software Engineering,
4(4):293–298.

[Howden, 1982] Howden, W. E. (1982). Weak mutation testing and
completeness of test sets. IEEE Transactions on Software
Engineering, 8(4):371–379.

[Howden, 1985] Howden, W. E. (1985). The theory and practice of
function testing. IEEE Software, 2(5).

[Howden, 1987] Howden, W. E. (1987). Functional Program Testing and

Analysis. McGraw-Hill Book Company, New York, NY.
[Huang, 1975] Huang, J. C. (1975). An approach to program testing. ACM

Computing Surveys, 7(3):113–128.
[Huller, 2000] Huller, J. (2000). Reducing time to market with

combinatorial design method testing. In Proceedings of the 10th
Annual International Council on Systems Engineering (INCOSE’00),
Minneapolis, MN.

[Hutchins et al., 1994] Hutchins, M., Foster, H., Goradia, T., and Ostrand,
T. (1994). Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proceedings of the
Sixteenth International Conference on Software Engineering, pages
191–200, Sorrento, Italy. IEEE Computer Society Press.

[Huth and Ryan, 2000] Huth, M. and Ryan, M. D. (2000). Logic in
Computer Science: Modelling and Reasoning About Systems.
Cambridge University Press, Cambridge, UK.

[IEEE, 2008] IEEE Standard for Software and System Test
Documentation. Institute of Electrical and Electronic Engineers, New
York. IEEE Std 829-2008.

[Ince, 1987] Ince, D. C. (1987). The automatic generation of test data. The
Computer Journal, 30(1):63–69.

[Jasper et al., 1994] Jasper, R., Brennan, M., Williamson, K., Currier, B.,
and Zimmerman, D. (1994). Test data generation and feasible path
analysis. In Proceedings of the 1994 IEEE International Symposium
on Software Testing, and Analysis, pages 95–107, Seattle, WA. ACM
Press.

[Jazequel and Meyer, 1997] Jazequel and Meyer, B. (1997). Design by
contract: The lessons of Ariane. Computer, 30(1):129–130.

[Jia and Harman, 2008] Jia, Y. and Harman, M. (2008). Constructing
subtle faults using higher order mutation testing. In Eighth IEEE
International Working Conference on Source Code Analysis and
Manipulation (SCAM 2008), pages 249–258, Beijing, China.

[Jia and Harman, 2011] Jia, Y. and Harman, M. (2011). An analysis and
survey of the development of mutation testing. IEEE Transactions of
Software Engineering, 37(5):649–678.

[Jin and Offutt, 1998] Jin, Z. and Offutt, J. (1998). Coupling-based criteria
for integration testing. Software Testing, Verification, and Reliability,
8(3):133–154, Wiley.

[Jones and Harrold, 2003] Jones, J. A. and Harrold, M. J. (2003). Test-

suite reduction and prioritizaion for modified condition / decision
coverage. IEEE Transactions on Software Engineering, 29(3):195–
209.

[Jones et al., 1998] Jones, B. F., Eyres, D. E., and Sthamer, H. H. (1998).
A strategy for using genetic algorithms to automate branch and fault-
based testing. The Computer Journal, 41(2):98–107.

[Just et al., 2014] Just, R., Jalali, D., Inozemtseva, L., Ernst, M. D.,
Holmes, R., and Fraser, G. (2014). Are mutants a valid substitute for
real faults in software testing? In Proceedings of the Symposium on
the Foundations of Software Engineering (FSE), pages 654–665,
Hong Kong.

[Kaminski, 2012] Kaminski, G. (2012). Applications of Logic Coverage
Criteria and Logic Mutation to Software Testing. PhD thesis, George
Mason University, Fairfax, VA.

[Kaminski and Ammann, 2009] Kaminski, G. and Ammann, P. (2009).
Using logic criterion feasibility to reduce test set size while
guaranteeing fault detection. In 2nd IEEE International Conference
on Software Testing, Verification and Validation (ICST 2009), pages
356–365, Denver, CO.

[Kaminski and Ammann, 2010] Kaminski, G. and Ammann, P. (2010).
Applications of optimization to logic testing. In CSTVA 2010 - 2nd
Workshop on Constraints in Software Testing, Verification and
Analysis, pages 331–336, Paris, France.

[Kaminski and Ammann, 2011] Kaminski, G. and Ammann, P. (2011).
Reducing logic test set size while preserving fault detection. Journal
of Software Testing, Verification and Reliability, 21(3):155–193,
Wiley. Special issue from the 2009 International Conference on
Software Testing, Verification and Validation.

[Kaminski et al., 2013] Kaminski, G., Ammann, P., and Offutt, J. (2013).
Improving logic-based testing. Journal of Systems and Software,
86:2002–2012.

[Kaner et al., 1999] Kaner, C., Falk, J., and Nguyen, H. Q. (1999). Testing
Computer Software. John Wiley and Sons, New York, NY, second
edition.

[Kim et al., 2000] Kim, S., Clark, J. A., and McDermid, J. A. (2000).
Investigating the effectiveness of object-oriented strategies with the
mutation method. In Proceedings of Mutation 2000: Mutation Testing
in the Twentieth and the Twenty First Centuries, pages 4–100, San

Jose, CA. Wiley’s Software Testing, Verification, and Reliability,
December 2001.

[Kim et al., 1999] Kim, Y. G., Hong, H. S., Cho, S. M., Bae, D. H., and
Cha, S. D. (1999). Test cases generation from UML state diagrams.
IEE Proceedings-Software, 146(4):187–192.

[King and Offutt, 1991] King, K. N. and Offutt, J. (1991). A Fortran
language system for mutation-based software testing. Software-
Practice and Experience, 21(7): 685–718.

[Knight and Leveson, 1986] Knight, J. C. and Leveson, N. G. (1986). An
experimental evaluation of the assumption of independence in
multiversion programming. IEEE Transactions on Software
Engineering, SE-12(1):86–109.

[Knutson and Carmichael, 2000] Knutson, C. and Carmichael, S. (2000).
Safety first: Avoiding software mishaps.
www.embedded.com/design/safety-and-security/4399493/Safety-
First–Avoiding-Software-Mishaps, last access: February 2016.

[Korea Times, 2011] Errors in education info system cause massive
confusion. Online.
www.koreatimes.co.kr/www/news/nation/2011/07/117_91459.html,
last access: February 2016.

[Korel, 1990a] Korel, B. (1990a). Automated software test data generation.
IEEE Transactions on Software Engineering, 16(8):870–879.

[Korel, 1990b] Korel, B. (1990b). A dynamic approach of test data
generation. In Conference on Software Maintenance-1990, pages
311–317, San Diego, CA.

[Korel, 1992] Korel, B. (1992). Dynamic method for software test data
generation. Software Testing, Verification, and Reliability, 2(4):203–
213, Wiley.

[Koskela, 2008] Koskela, L. (2008). Test Driven: Practical TDD and
Acceptance TDD for Java Developers. Manning Publications
Company, Greenwich, CT.

[Krug, 2000] Krug, S. (2000). Don’t Make Me Think! A Common Sense
Approach to Web Usability. New Riders Publishing, San Francisco,
CA.

[Kuhn, 1999] Kuhn, D. R. (1999). Fault classes and error detection
capability of specification-based testing. ACM Transactions on
Software Engineering Methodology, 8(4):411–424.

[Kuhn and Reilly, 2002] Kuhn, D. R. and Reilly, M. J. (2002). An

http://www.embedded.com/design/safety-and-security/4399493/Safety-First--Avoiding-Software-Mishaps
http://www.koreatimes.co.kr/www/news/nation/2011/07/117_91459.html

investigation of the applicability of design of experiments to software
testing. In Proceedings of the 27th NASA/IEE Software Engineering
Workshop, NASA Goodard Space Flight Center, MD, USA.
NASA/IEEE.

[Kuhn et al., 2004] Kuhn, D. R., Wallace, D. R., and Jr., A. M. G. (2004).
Software fault interactions and implications for software testing.
IEEE Transactions on Software Engineering, 30(6):418–421.

[Kung et al., 1995] Kung, D., Gao, J., Hsia, P., Toyoshima, Y., and Chen,
C. (1995). A test strategy for object-oriented programs. In 19th
Computer Software and Applications Conference (COMPSAC 95),
pages 239 –244, Dallas, TX. IEEE Computer Society Press.

[Laski, 1990] Laski, J. (1990). Data flow testing in STAD. Journal of
Systems and Software, 12:3–14.

[Laski and Korel, 1983] Laski, J. and Korel, B. (1983). A data flow
oriented program testing strategy. IEEE Transactions on Software
Engineering, SE-9(3):347–354.

[Lau and Yu, 2005] Lau, M. F. and Yu, Y. T. (2005). An extended fault
class hierarchy for specification-based testing. ACM Transactions on
Software Engineering Methodology, 14(3):247–276.

[Lee and Offutt, 2001] Lee, S. C. and Offutt, J. (2001). Generating test
cases for XML-based Web component interactions using mutation
analysis. In Proceedings of the 12th IEEE International Symposium
on Software Reliability Engineering, pages 200–209, Hong Kong,
China.

[Legard and Marcotty, 1975] Legard, H. and Marcotty, M. (1975). A
genealogy of control structures. Communications of the ACM,
18:629–639.

[Lei and Tai, 2001] Lei, Y. and Tai, K. C. (1998). In-parameter-order: A
test generation strategy for pair-wise testing. In Proceedings of the
Third IEEE High Assurance Systems Engineering Symposium, pages
254–261. IEEE.

[Lei and Tai, 1998] Lei, Y. and Tai, K. C. (2001). A test generation
strategy for pairwise testing. Technical Report TR-2001-03,
Department of Computer Science, North Carolina State University,
Raleigh.

[Leveson and Turner, 1993] Leveson, N. and Turner, C. S. (1993). An
investigation of the Therac-25 accidents. IEEE Computer, 26(7):18–
41.

[Li and Offutt, 2016] Li, N. and Offutt, J. (2014). An empirical analysis of
test oracle strategies for model-based testing. In 7th IEEE
International Conference on Software Testing, Verification and
Validation (ICST 2014), Cleveland, Ohio.

[Li and Offutt, 2014] Li, N. and Offutt, J. (2016). Test oracle strategies for
model-based testing. Under minor revision.

[Li et al., 2009] Li, N., Praphamontripong, U., and Offutt, J. (2009). An
experimental comparison of four unit test criteria: Mutation, edge-
pair, all-uses and prime path coverage. In Fifth IEEE Workshop on
Mutation Analysis (Mutation 2009), Denver, CO.

[Li et al., 2007] Li, Z., Harman, M., and Hierons, R. M. (2007). Meta-
heuristic search algorithms for regression test case prioritization.
IEEE Transactions on Software Engineering, 33(4):225–237.

[Lions, 1996] Lions, J. L. (1996). Ariane 5 flight 501 failure: Report by the
inquiry board.
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html, last
access: February 2016.

[Lipton, 1991] Lipton, R. (1991). New directions in testing. In Distributed
Computing and Cryptography, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 2, pages
191–202, Providence, RI.

[Liskov and Guttag, 2001] Liskov, B. and Guttag, J. (2001). Program
Development in Java: Abstraction, Specification, and Object-
Oriented Design. Addison-Wesley Publishing Company Inc., New
York, NY.

[Littlewood and Miller, 1989] Littlewood, B. and Miller, D. R. (1989).
Conceptual modeling of coincident failures in multiversion software.
IEEE Transactions on Software Engineering, 15(12):1596–1614.

[Ma et al., 2002] Ma, Y.-S., Kwon, Y.-R., and Offutt, J. (2002). Inter-class
mutation operators for Java. In Proceedings of the 13th IEEE
International Symposium on Software Reliability Engineering, pages
352–363, Annapolis, MD.

[Ma et al., 2005] Ma, Y.-S., Offutt, J., and Kwon, Y.-R. (2005). MuJava:
An automated class mutation system. Software Testing, Verification,
and Reliability, 15(2):97–133, Wiley.

[Malaiya, 1995] Malaiya, Y. K. (1995). Antirandom testing: Getting the
most out of black-box testing. In International Symposium on
Software Reliability Engineering (ISSRE’95), pages 86–95, Toulouse,

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html

France.
[Malloy et al., 2003] Malloy, B. A., Clarke, P. J., and Lloyd, E. L. (2003).

A parameterized cost model to order classes for class-based testing of
C++ applications. In Proceedings of the 14th IEEE International
Symposium on Software Reliability Engineering, Denver, CO.

[Mandl, 1985] Mandl, R. (1985). Orthogonal latin squares: An application
of experiment design to compiler testing. Communications of the
ACM, 28(10):1054–1058.

[Marick, 1991] Marick, B. (1991). The weak mutation hypothesis. In
Proceedings of the Fourth IEEE Symposium on Software Testing,
Analysis, and Verification, pages 190–199, Victoria, British
Columbia, Canada.

[Marick, 1995] Marick, B. (1995). The Craft of Software Testing:
Subsystem Testing, Including Object-Based and Object-Oriented
Testing. Prentice-Hall, Englewood Cliffs, New Jersey, NJ.

[Mathur, 1991] Mathur, A. P. (1991). On the relative strengths of data
flow and mutation based test adequacy criteria. In Proceedings of the
Sixth Annual Pacific Northwest Software Quality Conference,
Portland, OR. Lawrence and Craig.

[Mathur, 2014] Mathur, A. P. (2014). Foundations of Software Testing.
Addison-Wesley Professional, Indianapolis, IN, second edition.

[Mathur and Wong, 1994] Mathur, A. P. and Wong, W. E. (1994). An
empirical comparison of data flow and mutation-based test adequacy
criteria. Software Testing, Verification, and Reliability, 4(1):9–31,
Wiley.

[Maurer, 1990] Maurer, P. M. (1990). Generating testing data with
enhanced context-free grammars. IEEE Software, 7(4):50–55.

[McCabe, 1976] McCabe, T. J. (1976). A complexity measure. IEEE
Transactions on Software Engineering, SE-2(4):308–320.

[Meyer, 1997] Meyer, B. (1997). Object-Oriented Software Construction.
Prentice Hall, Upper Saddle River, NJ, second edition.

[Miller and Melton, 1975] Miller, E. F. and Melton, R. A. (1975).
Automated generation of testcase datasets. In Proceedings of the
International Conference on Reliable Software, pages 51–58.

[Min-sang and Sang-soo, 2011] Min-sang, K. and Sang-soo, K. (2011).
Education info system miscalculated grades. Online.
http://joongangdaily.joins.com/article/view.asp?aid=2939367, last
access: February 2016.

http://joongangdaily.joins.com/article/view.asp?aid=2939367

[Minkel, 2008] Minkel, J. R. (2008). 2003 northeast blackout–five years
later. Scientific American.

[Mitzenmacher and Upfal, 2005] Mitzenmacher, M. and Upfal, E. (2005).
Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, Cambridge, UK.

[Moler, 1995] Moler, C. (1995). A tale of two numbers. SIAM News,
28(1).

[Morell, 1990] Morell, L. J. (1984). A Theory of Error-Based Testing. PhD
thesis, University of Maryland, College Park, MD. Technical Report
TR-1395.

[Morell, 1984] Morell, L. J. (1990). A theory of fault-based testing. IEEE
Transactions on Software Engineering, 16(8):844–857.

[Myers, 1979] Myers, G. (1979). The Art of Software Testing. John Wiley
and Sons, New York, NY.

[Naito and Tsunoyama, 1981] Naito, S. and Tsunoyama, M. (1981). Fault
detection for sequential machines by transition tours. In Proceedings
Fault Tolerant Computing Systems, pages 238–243. IEEE Computer
Society Press.

[Namin and Kakarla, 2011] Namin, A. S. and Kakarla, S. (2011). The use
of mutation in testing experiments and its sensitivity to external
threats. In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, pages 342–352, New York, NY.
ACM.

[Naur and Randell, 1968] Naur, P. and Randell, B., editors (1968).
Software Engineering: Report of a Conference Sponsored by the
NATO Science Committee. Scientific Affairs Division, NATO.

[Nuseibeh, 1997] Nuseibeh, B. (1997). Who dunnit? IEEE Software,
14:15–16.

[Offutt, 1988] Offutt, J. (1988). Automatic Test Data Generation. PhD
thesis, Georgia Institute of Technology, Atlanta, GA. Technical report
GIT-ICS 88/28.

[Offutt, 1992] Offutt, J. (1992). Investigations of the software testing
coupling effect. ACM Transactions on Software Engineering
Methodology, 1(1):3–18.

[Offutt and Abdurazik, 1999] Offutt, J. and Abdurazik, A. (1999).
Generating tests from UML specifications. In Proceedings of the
Second IEEE International Conference on the Unified Modeling
Language (UML99), pages 416–429, Fort Collins, CO. Springer-

Verlag Lecture Notes in Computer Science Volume 1723.
[Offutt and Alluri, 2014] Offutt, J. and Alluri, C. (2014). An industrial

study of applying input space partitioning to test financial calculation
engines. Empirical Software Engineering Journal, 19:558–581.

[Offutt and Lee, 1994] Offutt, J. and Lee, S. D. (1994). An empirical
evaluation of weak mutation. IEEE Transactions on Software
Engineering, 20(5):337–344.

[Offutt and Pan, 1997] Offutt, J. and Pan, J. (1997). Detecting equivalent
mutants and the feasible path problem. Software Testing, Verification,
and Reliability, 7(3):165–192, Wiley.

[Offutt et al., 1996a] Offutt, J., Lee, A., Rothermel, G., Untch, R., and
Zapf, C. (1996a). An experimental determination of sufficient
mutation operators. ACM Transactions on Software Engineering
Methodology, 5(2):99–118.

[Offutt et al., 1996b] Offutt, J., Pan, J., Tewary, K., and Zhang, T. (1996b).
An experimental evaluation of data flow and mutation testing.
Software-Practice and Experience, 26(2):165–176.

[Offutt et al., 1996c] Offutt, J., Payne, J., and Voas, J. M. (1996c).
Mutation operators for Ada. Technical report ISSE-TR-96-09,
Department of Information and Software Engineering, George Mason
University, Fairfax, VA. http://cs.gmu.edu/~tr-admin/, last access:
July 2016.

[Offutt et al., 1999] Offutt, J., Jin, Z., and Pan, J. (1999). The dynamic
domain reduction approach to test data generation. Software-Practice
and Experience, 29(2): 167–193.

[Offutt et al., 2000] Offutt, J., Abdurazik, A., and Alexander, R. T. (2000).
An analysis tool for coupling-based integration testing. In The Sixth
IEEE International Conference on Engineering of Complex Computer
Systems (ICECCS ’00), pages 172–178, Tokyo, Japan. IEEE
Computer Society Press.

[Offutt et al., 2003] Offutt, J., Liu, S., Abdurazik, A., and Ammann, P.
(2003). Generating test data from state-based specifications. Software
Testing, Verification, and Reliability, 13(1):25–53, Wiley.

[Offutt et al., 2005] Offutt, J., Ma, Y.-S., and Kwon, Y.-R. (2005). muJava
home page. Online. https://cs.gmu.edu/~offutt/mujava/, last access:
February 2016.

[Olender and Osterweil, 1989] Olender, K. M. and Osterweil, L. J. (1986).
Specification and static evaluation of sequencing constraints in

http://cs.gmu.edu/~tr-admin/
https://cs.gmu.edu/~offutt/mujava/

software. In Proceedings of the Workshop on Software Testing, pages
2–9, Banff, Alberta. IEEE Computer Society Press.

[Olender and Osterweil, 1986] Olender, K. M. and Osterweil, L. J. (1989).
Cesar: A static sequencing constraint analyzer. In Proceedings of the
Third Workshop on Software Testing, Verification and Analysis,
pages 66–74, Key West, FL. ACM SIGSOFT.

[Orso and Pezze, 1999] Orso, A. and Pezze, M. (1999). Integration testing
of procedural object oriented programs with polymorphism. In
Proceedings of the Sixteenth International Conference on Testing
Computer Software, pages 103–114, Washington DC. ACM
SIGSOFT.

[Osterweil and Fosdick, 1974] Osterweil, L. J. and Fosdick, L. D. (1974).
Data flow analysis as an aid in documentation, assertion generation,
validation, and error detection. Technical report cu-cs-055-74,
Department of Computer Science, University of Colorado, Boulder,
CO.

[Ostrand and Balcer, 1988] Ostrand, T. J. and Balcer, M. J. (1988). The
category-partition method for specifying and generating functional
tests. Communications of the ACM, 31(6):676–686.

[Paulk et al., 1995] Paulk, M. C., Weber, C. V., Curtis, B., and Chrissis,
M. B. (1995). The Capability Maturity Model: Guidelines for
Improving the Software Process. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA.

[Payne, 1978] Payne, A. J. (1978). A formalised technique for expressing
compiler exercisers. ACM SIGPLAN Notices, 13(1):59–69.

[Peterson, 1997] Peterson, I. (1997). Pentium bug revisited.
http://mtarchive.blogspot.com/2016/08/pentium-bug-revisited.htm,
last access: August 2016.

[Pezze and Young, 2008] Pezze, M. and Young, M. (2008). Software
Testing and Analysis: Process, Principles, and Techniques. Wiley,
Hoboken, NJ.

[Pimont and Rault, 1976] Pimont, S. and Rault, J. C. (1976). A software
reliability assessment based on a structural behavioral analysis of
programs. In Proceedings of the Second International Conference on
Software Engineering, pages 486–491, San Francisco, CA.

[PITAC, 1999] Information technology research: Investing in our future.
Technical report, National Coordination Office Computing,
Information, and Communications. www.nitrd.gov/pitac/report/, last

http://mtarchive.blogspot.com/2016/08/pentium-bug-revisited.htm
http://www.nitrd.gov/pitac/report/

access: July 2016.
[Piwowarski et al., 1993] Piwowarski, P., Ohba, M., and Caruso, J. (1993).

Coverage measure experience during function test. In Proceedings of
14th International Conference on Software Engineering (ICSE’93),
pages 287–301, Los Alamitos, CA. ACM.

[Prather, 1983] Prather, R. E. (1983). Theory of program testing-an
overview. The Bell System Technical Journal, 62(10).

[Purdom, 1972] Purdom, P. (1972). A sentence generator for testing
parsers. BIT, 12:366–375.

[Ramamoorthy et al., 1976] Ramamoorthy, C. V., Ho, S. F., and Chen, W.
T. (1976). On the automated generation of program test data. IEEE
Transactions on Software Engineering, 2(4):293–300.

[Rapps and Weyuker, 1985] Rapps, S. and Weyuker, E. J. (1985).
Selecting software test data using data flow information. IEEE
Transactions on Software Engineering, 11(4):367–375.

[Rayadurgam and Heimdahl, 2001] Rayadurgam, S. and Heimdahl, M. P.
E. (2001). Coverage based test-case generation using model checkers.
In 8th IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, pages 83–91.

[Rice, 2008] Rice, D. (2008). Geekonomics, The Real Cost of Insecure
Software. Pearson Education, Upper Saddle River, NJ.

[Roper, 1994] Roper, M. (1994). Software Testing. International Software
Quality Assurance Series. McGraw-Hill, Hightstown, NJ.

[Rothermel and Harrold, 1996] Rothermel, G. and Harrold, M. J. (1996).
Analyzing regression test selection techniques. IEEE Transactions on
Software Engineering, 22(8):529–551.

[RTCA-DO-178B, 1992] RTCA-DO-178B (1992). Software
considerations in airborne systems and equipment certification.

[RTI, 2002] RTI (2002). The economic impacts of inadequate
infrastructure for software testing. Technical report 7007.011, NIST.
www.nist.gov/director/prog- ofc/report02-3.pdf, last access: July
2016.

[Sabnani and Dahbura, 1988] Sabnani, K. and Dahbura, A. (1988). A
protocol testing procedure. Computer Networks and ISDN Systems,
14(4):285–297.

[Schneider, 1999] Schneider, F. B. (1999). Trust in Cyberspace. National
Academy Press, Washington, DC.

[Sen et al., 2005] Sen, K., Marinov, D., and Agha, G. (2005). Cute: A

http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://www.nist.gov/director/prog-ofc/report02-3.pdf

concolic unit testing engine for C. In ACM 10th European Software
Engineering Conference, pages 263–272, Lisbon, Portugal.

[Sherwood, 1994] Sherwood, G. (1994). Effective testing of factor
combinations. In Proceedings of the Third International Conference
on Software Testing, Analysis, and Review (STAR94), Washington
DC. Software Quality Engineering.

[Shiba et al., 2004] Shiba, T., Tsuchiya, T., and Kikuno, T. (2004). Using
artificial life techniques to generate test cases for combinatorial
testing. In Proceedings of 28th Annual International Computer
Software and Applications Conference (COMPSAC’04), pages 72–77,
Hong Kong, China. IEEE Computer Society Press.

[Shrestha and Rutherford, 2011] Shrestha, K. and Rutherford, M. (2011).
An empirical evaluation of assertions as oracles. In Proceedings of
the Fourth IEEE International Conference on Software Testing,
Verification and Validation, pages 110–119, Berlin, Germany. IEEE
Computer Society.

[Sommerville, 1992] Sommerville, I. (1992). Software Engineering.
Addison-Wesley Publishing Company Inc., 9th edition.

[Sprenkle et al., 2007] Sprenkle, S., Pollock, L., Esquivel, H., Hazelwood,
B., and Ecott, S. (2007). Automated oracle comparators for testing
web applications. In The 18th IEEE International Symposium on
Software Reliability Engineering, pages 117–126, Trollhattan,
Sweden.

[Staats et al., 2012] Staats, M., Gay, G., and Heimdahl, M. P. E. (2012).
Automated oracle creation support, or: How I learned to stop
worrying about fault propagation and love mutation testing. In
Proceedings of the International Conference on Software
Engineering, ICSE, pages 870–880, Piscataway, NJ. IEEE Press.

[Staats et al., 2011] Staats, M., Whalen, M. W., and Heimdahl, M. P. E.
(2011). Better testing through oracle selection. In Proceedings of the
33rd International Conference on Software Engineering (NIER
Track), ICSE 2011, pages 892–895, Waikiki, Honolulu, HI. ACM.

[Stevens et al., 1974] Stevens, W. P., Myers, G. J., and Constantine, L. L.
(1974). Structured design. IBM Systems Journal, 13(2):115–139.

[Stocks and Carrington, 1993] Stocks, P. and Carrington, D. (1993). Test
Templates: A Specification-Based Testing Framework. In
Proceedings of the Fifteenth International Conference on Software
Engineering, pages 405–414, Baltimore, MD.

[Stocks and Carrington, 1996] Stocks, P. and Carrington, D. (1996). A
framework for specification-based testing. IEEE Transactions on
Software Engineering, 22(11):777–793.

[Symantec, 2007] Symantec (2007). Symantec internet security threat
report, volume XII. Online:
http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-
whitepaper_internet_security_threat_report_xii_09_2007.en-us.pdf,
last access: July 2016.

[Tai and Daniels, 1997] Tai, K.-C. and Daniels, F. J. (1997). Test order for
inter-class integration testing of object-oriented software. In The
Twenty-First Annual International Computer Software and
Applications Conference (COMPSAC ’97), pages 602–607, Santa
Barbara, CA. IEEE Computer Society Press.

[Tai and Lei, 2002] Tai, K. C. and Lei, Y. (2002). A test generation
strategy for pairwise testing. IEEE Transactions on Software
Engineering, 28(1):109–111.

[Tillmann and de Halleux, 2008] Tillmann, N. and de Halleux, J. (2008).
Pex–white box test generation for. NET. In LNCS 4966: Second
International Conference on Tests and Proofs, pages 134–153, Prato,
Italy.

[Tillmann and Schulte, 2005] Tillmann, N. and Schulte, W. (2005).
Parameterized unit tests. In Proceedings of the 10th ACM European
Software Engineering Conference held jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pages 253–262, Lisbon, Portugal.

[Tip, 1994] Tip, F. (1994). A survey of program slicing techniques.
Technical report CS-R-9438, Computer Science/Department of
Software Technology, Centrum voor Wiskunde en Informatica.

[Traon et al., 2000] Traon, Y. L., Jéron, T., Jézéquel, J.-M., and Morel, P.
(2000). Efficient object-oriented integration and regression testing.
IEEE Transactions on Reliability, 49(1):12–25.

[Utting and Legeard, 2006] Utting, M. and Legeard, B. (2006). Practical
Model-Based Testing: A Tools Approach. Morgan Kaufman,
Burlington, MA.

[Vilkomir and Bowen, 2002] Vilkomir, S. A. and Bowen, J. P. (2002).
Reinforced condition/decision coverage (RC/DC): A new criterion for
software testing. In Proceedings of ZB2002: 2nd International
Conference of Z and B Users, pages 295–313, Grenoble, France.

http://eval.symantec.com/mktginfo/enterprise/white_papers/ent-whitepaper_internet_security_threat_report_xii_09_2007.en-us.pdf

Springer-Verlag, LNCS 2272.
[Voas, 1992] Voas, J. M. (1992). PIE: A dynamic failure-based technique.

IEEE Transactions on Software Engineering, 18(8).
[Voas and Miller, 1995] Voas, J. M. and Miller, K. W. (1995). Software

testability: The new verification. IEEE Software, 12(3):553–563.
[Wah, 1995] Wah, K. S. H. T. (1995). Fault coupling in finite bijective

functions. Software Testing, Verification, and Reliability, 5(1):3–47,
Wiley.

[Wah, 2000] Wah, K. S. H. T. (2000). A theoretical study of fault
coupling. Software Testing, Verification, and Reliability, 10(1):3–46,
Wiley.

[Weiser, 1984] Weiser, M. (1984). Program slicing. IEEE Transactions on
Software Engineering, SE-10(4):352–357.

[Weiss, 1989] Weiss, S. N. (1989). What to compare when comparing test
data adequacy criteria. ACM SIGSOFT Notes, 14(6):42–49.

[Weyuker, 1980] Weyuker, E. (1980). The oracle assumption of program
testing. In Thirteenth International Conference on System Sciences,
pages 44–49, Honolulu, HI.

[Weyuker and Ostrand, 1980] Weyuker, E. J. and Ostrand, T. J. (1980).
Theories of program testing and the application of revealing
subdomains. IEEE Transactions on Software Engineering, 6(3):236–
246.

[Weyuker et al., 1994] Weyuker, E., Goradia, T., and Singh, A. (1994).
Automatically generating test data from a boolean specification. IEEE
Transactions on Software Engineering, 20(5):353–363.

[Weyuker et al., 1991] Weyuker, E. J., Weiss, S. N., and Hamlet, R. G.
(1991). Data flow-based adequacy analysis for languages with
pointers. In Proceedings of the Fourth IEEE Symposium on Software
Testing, Analysis, and Verification, pages 74–86, Victoria, British
Columbia, Canada.

[White, 1987] White, L. J. (1987). Software testing and verification. In
Yovits, M. C., editor, Advances in Computers, volume 26, pages 335–
390. Academic Press, Inc, Boston, MA.

[White and Wiszniewski, 1991] White, L. and Wiszniewski, B. (1991).
Path testing of computer programs with loops using a tool for simple
loop patterns. Software-Practice and Experience, 21(10):1075–1102.

[Wijesekera et al., 2007] Wijesekera, D., Sun, L., Ammann, P., and Fraser,
G. (2007). Relating counterexamples to test cases in CTL model

checking specifications. In A-MOST ’07: Third ACM Workshop on
the Advances in Model-Based Testing, co-located with ISSTA 2007,
London, UK.

[Wikipedia, 2009] Wikipedia (2009). Software test documentation. Online.
http://en.wiki.org/wiki/Software_test_documentation, last access:
February 2016.

[Wikipedia, 2015] Wikipedia (2015). Sieve of Eratosthenes. Online.
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes, last access:
February 2016.

[Williams, 2000] Williams, A. W. (2000). Determination of test
configurations for pair-wise interaction coverage. In Proceedings of
the 13th International Conference on the Testing of Communicating
Systems (TestCom 2000), pages 59–74, Ottawa, Canada.

[Williams and Probert, 1996] Williams, A. W. and Probert, R. L. (1996). A
practical strategy for testing pair-wise coverage of network interfaces.
In Proceedings of the 7th International Symposium on Software
Reliability Engineering (ISSRE96), White Plains, NY.

[Williams and Probert, 2001] Williams, A. W. and Probert, R. L. (2001). A
measure for component interaction test coverage. In Proceedings of
the ACSI/IEEE International Conference on Computer Systems and
Applications (AICCSA 2001), pages 304–311, Beirut, Lebanon.

[Wong and Mathur, 1995] Wong, W. E. and Mathur, A. P. (1995). Fault
detection effectiveness of mutation and data flow testing. Software
Quality Journal, 4(1):69–83.

[Woodward and Halewood, 1988] Woodward, M. R. and Halewood, K.
(1988). From weak to strong, dead or alive? An analysis of some
mutation testing issues. In Proceedings of the IEEE Second Workshop
on Software Testing, Verification, and Analysis, pages 152–158,
Banff, Alberta.

[Xie and Memon, 2007] Xie, Q. and Memon, A. (2007). Designing and
comparing automated test oracles for GUI-based software
applications. ACM Transaction on Software Engineering and
Methodology, 16(1).

[Xie and Notkin, 2005] Xie, T. and Notkin, D. (2005). Checking inside the
black box: Regression testing by comparing value spectra. IEEE
Transactions on Software Engineering, 31(10):869–883.

[Yilmaz et al., 2004] Yilmaz, C., Cohen, M. B., and Porter, A. (2004).
Covering arrays for efficient fault characterization in complex

http://en.wikipedia.org/wiki/Software_test_documentation
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

configuration spaces. In Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA
2004), pages 45–54, Boston, MA. ACM Software Engineering Notes.

[Yin et al., 1997] Yin, H., Lebne-Dengel, Z., and Malaiya, Y. K. (1997).
Automatic test generation using checkpoint encoding and antirandom
testing. Technical Report CS-97-116, Colorado State University.

[Yu et al., 2013] Yu, T., Srisa-an, W., and Rothermel, G. (2013). An
empirical comparison of the fault-detection capabilities of internal
oracles. In The 24th IEEE International Symposium on Software
Reliability Engineering, ISSRE ’13, Pasadena, CA.

[Zhou et al., 2015] Zhou, Z. Q., Xiang, S., and Chen, T. Y. (2015).
Metamorphic testing for software quality assessment: A study of
search engines. IEEE Transactions on Software Engineering,
published online, September 2015.

[Zhu, 1996] Zhu, H. (1996). A formal analysis of the subsume relation
between software test adequacy criteria. IEEE Transactions on
Software Engineering, 22(4):248–255.

[Zhu et al., 1997] Zhu, H., Hall, P. A. V., and May, J. H. R. (1997).
Software unit test coverage and adequacy. ACM Computing Surveys,
29(4):366–427.

Index

abstract test, 31, 79, 197, 230
abstraction, 4, 19, 21, 26, 29–32, 59, 106, 111, 134, 260, 262, 312
acceptance testing, see testing, acceptance
active clause coverage (ACC), 178–197, 254

ambiguity, 182
cost, 182, 232
definition, 182

actual results, 35
actual type, 261, 264
ad hoc testing, 104
AETG, 103–105
agile, 3, 54, 56–58, 61, 297, 305
algebraic specifications, 266
alias, 80, 137
all combinations coverage, see criteria, ACoC
all object call, 148
all-coupling-def coverage, 151
all-coupling-use coverage, 151
all-defs coverage, see criteria, ADC
all-du-paths coverage, see criteria, ADUPC
all-uses coverage, see criteria, AUC
ant colony algorithm, 103, 105
arc, 107
architectural design, 22, 23, 59, 287
Ariane rocket explosion, 7, 18, 60
assertion, 29, 40, 47, 98, 146, 244, 270, 303, 308–310, 312, 314
ASSET, 175
ATAC, 175
automated teller machine (ATM), 169, 170, 172

example, 78
automatic test data generation, 173, 209, 231, 289
avionics, 37, 177

base choice coverage, see criteria, BCC
basic block, 107, 132, 135, 138, 244, 252

definition, 132

basic block coverage, 135
best effort touring, see tour, best effort
black-box testing, 26

definition, 26
block, 76

definition, 78
block coverage, 105
BNF grammars, 271–273
Boolean algebra laws, 189–191

associativity, 191
commutativity, 190
distributive, 191
identity, 190
negation, 190
xor, 190

boundary value analysis, 102
branch coverage, 65, 67, 113, 135, 238
bug, 6–7, 18, 289

definition, 6

call coverage, 65, 147, 148
object-oriented, 148

call graph, 27, 28, 109, 147, 148, 156, 157
definition, 147
example, 147

call site, 137, 149–151, 156, 157, 162
actual parameter, 149
callee, 149, 150
caller, 149, 150
former parameter, 149

capture/replay, 304, 306
category partition, 102
CATS, 103
Certess, 282
CFG, see control flow graph
characteristic, 76, 78

examples, 76, 77, 81
functionality-based, 79–81, 83, 84
interface-based, 79–82

CITO, see class integration test order
class, 296
class integration test order, 288, 297

definition, 297
class testing, see testing, class

class variable, 152, 154, 262
classification trees, 102
clause

definition, 178
clause coverage, see criteria, CC
CNF, see conjunctive normal form
code coverage, 58, 61, 62, 104, 105
combination strategy, 86, 89, 93
combinatorial coverage, see criteria, CoC
complete path coverage, see criteria, CPC
complete round trip coverage, see criteria, CRTC
component, 8, 23, 146, 155, 239, 244, 259, 271, 282, 296–299

definition, 296
component-based software, 36
concrete test, 31, 97, 197
condition coverage, 180, 231, 252
configuration testing, 104
conjunctive normal form, 197
connector, 23
continuous integration, 58–62, 304
control flow, 112
control flow graph, 25–28, 31, 106, 109, 132–146, 150, 156, 159, 162, 173, 179,

212, 252
definition, 132
example, 31, 133–137

controllability, 29, 34, 36–37, 50, 53, 97, 98, 101, 208–209, 211, 220, 298, 303
definition, 36

CORBA, 155
correct, 4, 6–10, 14, 19, 20, 24, 29, 37, 38, 40, 53, 57, 61, 64, 99, 134, 201, 234,

239, 243, 298, 308–315
correlated active clause coverage, see criteria, CACC
corresponding unique true point and near false point pair coverage, see criteria,

CUTPNFP
coupling, 147, 149–152, 154, 156, 157, 175

coupling method, 154
coupling variable, 149
external device coupling, 149
full inter-procedural, 154
inter-procedural, 154
parameter coupling, 149
shared data coupling, 149

coupling effect, 282
coverage

definition, 65

coverage analysis tool, 67
coverage criteria

explanation, 25–27, 65–66
coverage criterion

definition, 65
coverage level

definition, 66
covering arrays, 103–105
criteria

ACC
definition, 182

ACoC, 86, 89
definition, 86

ADC, 132, 151, 162, 174, 175, 254
definition, 127

ADUPC, 128–129, 131–132, 151–152, 175
definition, 128

AUC, 127–129, 131–132, 151, 162, 174, 175
definition, 127

BCC, 88–92, 103, 105
definition, 88

CACC, 183–187, 189, 195–196, 215–220, 223–225, 230–233, 254
definition, 183

CC, 109, 180, 187, 193–194, 213–214, 223, 224, 253
definition, 179

CoC, 180–181, 187, 193–194, 253
definition, 180

CPC, 115, 132, 171
definition, 115

CRTC, 132
definition, 115

CUTPNFP, 187, 203, 207
definition, 203

DC
definition, 237

EC, 26, 30, 113–114, 122, 123, 130–132, 135, 145, 147, 157, 161, 168,
171–173, 236, 252

definition, 113
example, 114

ECC, 87, 89, 103
definition, 87

EPC, 26, 131, 132, 161
definition, 114

GACC, 187, 194–195, 224, 231, 233, 254

definition, 182
GICC, 185, 230

definition, 186
IC, 187, 198–199, 233

definition, 198
ICC, 185
MBCC, 89–90, 92, 103

definition, 89
MC

definition, 239
MNFP, 204, 207

definition, 204
MOC

definition, 239
MPC

definition, 240
MUMCUT, 204, 233

definition, 204
MUTP, 202–203, 207

definition, 202
NC, 26, 112–114, 122, 130–132, 135, 147–148, 161, 169, 171–173, 236, 243,

252, 254,305
definition, 112, 113

PC, 180–183, 185, 187, 192, 193, 195, 199, 208, 212–214, 218–220, 223, 224,
230

definition, 179
PDC, 236, 266, 272

definition, 236
PPC, 115, 118, 131–132

definition, 115
PWC, 87–91, 103, 104

definition, 87
RACC, 184–187, 189, 195–196, 204, 207, 224, 231–233, 254

definition, 183
RICC, 185, 187

definition, 186
SMC

definition, 244
SPC, 171–172

definition, 115
SRTC, 132

definition, 115
TSC, 236, 266, 272

definition, 236

TWC, 88–89, 103
definition, 88

WMC
definition, 244

criteria subsumption, see subsumption
cycle, 107, 115, 120, 297

definition, 107
cyclomatic complexity, 173

data flow, 112, 123–131, 136–146, 148–157, 161, 162, 171, 174–176, 254
all-defs, 127
all-du-paths, 128
all-uses, 127
coverage, 112, 123–130
def, 124–125, 127–129, 131, 137, 138, 151,154
def-clear, 125
def-pair set, 126
def-path set, 125
design, 148–157
du-pair, 124, 138–141, 150–152, 154–156, 171

interprocedural, 154–155
du-path, 125–127, 129, 131, 138–141, 151
first-use, 149, 150, 152, 154, 175

definition, 150
example, 150–152

including, 123–124
last-def, 149, 150, 152, 154, 157, 175

definition, 150
example, 150–152

local use, 138
location

definition, 125
p-uses, 129
reach, 124, 125, 127, 131, 138, 150–152, 162
source, 136–141
theory, 124–129
use, 124–129, 131, 137, 138, 150, 151, 154
use-clear, 150, 151

definition, 150
data processing, 173
data-driven testing, 45, 46, 49, 52, 53
date criterion

definition, 11
debugging, 9, 14, 20, 32, 308

definition, 20
decision, 27, 65, 124, 125, 132, 134, 208, 209, 213, 222, 232, 245
decision coverage, 104, 179, 231
declared type, 261, 264, 265
def, see data flow, def
def-use, see data flow, du-pair
definition, see data flow, def
definition-use, see data flow, du-pair
deployment, 8, 11, 54
derivation coverage, see criteria, DC
design abstraction level, 30
design element, 26, 146–157, 293
design-by-contract, 47, 98, 312, 314
detailed design, 23, 24, 164, 286, 288–289
determination, 183, 184, 190–192, 215, 231, 232

definition, 181
examples, 181–185, 193–196, 207, 215–217, 224
explanation, 181, 187–189

determinism, 105, 110, 162, 166, 271
detour, 116–118, 174

definition, 117
explanation, 117–118

developer testing, 24
direct definitional method, 187–191
disjunctive normal form, 197–208, 224, 233

definition, 197, 200
minimal, 199–200

distinguished sequence method, 173
distributed software, 8, 36, 155
DNF, see disjunctive normal form
domain knowledge, 9, 19, 23, 28, 79, 80, 88, 171, 172
domain testing, 78, 102
driver, 39, 48, 288, 299, 303

definition, 299
du-associations, see data flow, du-pair 124
du-pair, see data flow, du-pair 106
du-path, see data flow, du-path 106, 175
dynamic binding, 259–266

each choice coverage, see criteria, ECC
Eclipse, 40
edge, 70, 107–109, 117

definition, 107
edge coverage, see criteria, EC

edge-pair, 26, 31, 131
example, 31

edge-pair coverage, see criteria, EPC
Edison, 6
embedded software, 3, 8, 28, 29, 36, 160
encapsulation, 260
error, 4–8, 286, 290, 312

definition, 4
examples, 5–8
explanation, 4–5

example code, see Java programs
example Java, see Java programs
exceptional behavior, 40, 41, 44, 80, 94
excise task, 35, 53
executable test, see test script
executable test script, see test script
expected results, 79, 229, 306, 308
extreme programming (XP), 56, 286

failure, 4–8, 81, 204, 243, 244, 251, 274
definition, 4
examples, 5–8
explanation, 4–5

false negative, 52, 56
false positive, 52, 56
fault, 4–8, 81, 104, 105, 203, 242, 243, 247, 251, 259, 260, 265, 282

definition, 4
examples, 5–8
explanation, 4–5
specific types, 200–204

Federal Aviation Administration (FAA), 175, 177, 231, 232
finite automata, 160, 173
finite state machine (FSM), 26, 106, 109, 114, 124, 160, 162, 167, 173, 179,

226–231, 234, 240, 252, 266–270
definition, 161
deriving, 162–167

first-use, see data flow, first-use 106
functional testing, 104, 232

general active clause coverage, see criteria, GACC
general inactive clause coverage, see criteria, GICC
generator, 67, 71, 103, 175, 236

definition, 66
genetic algorithm, 103, 105, 237

goals of testing, 8, 9
Goldilocks problem, 305
grammar, 26, 70, 234–237

ground string, 238
definition, 238

nonterminal, 235
production, 236
rule, 236
start symbol, 235
terminal, 235

graph, 70, 106–176
case structure, 136
do while structure, 135
for structure, 134
if-else structure, 133
if structure, 133
try-catch structure, 137
while break structure, 136
while structure, 134

definition, 107
double-diamond, 109, 112, 113, 129
example, 109–119, 121, 123–129, 131–138, 141, 144, 147–151
self loop, 119
SESE, 109

graph coverage, 26, 70, 75, 179, 187, 208, 226, 234, 252
definition, 112

gray-box testing, 26
guards, 161, 162, 227, 252
GUI, 39, 104, 314

happy path, 44, 60, 61, 81, 96, 273
HTTP, 92, 155
HttpUnit, 39, 92
human-based test design, 29, 30

IDE, 40, 50, 70, 299
implicant

definition, 198
prime, 199
redundant, 200

implicant coverage, see criteria, IC
in-parameter-order (IPO), 103–105
inactive clause coverage (ICC), 185–197, 221, 231, 254

ambiguity, 185

definition, 185
examples, 185–186

infeasible, 71, 78, 92, 104, 109, 115, 116, 118–119, 131, 141, 160, 186–187, 197
CACC and RACC, 184
subsumption, 68
test requirement, 66–68, 94, 96, 118, 129, 131, 184–188, 196, 197, 203, 204, 242

infection, 20–21, 32, 33, 38, 70, 75, 177, 234, 243–245, 254–256, 312
definition, 20

information hiding, 53, 260, 262, 303
inheritance, 44, 50, 147–148, 176, 259–266, 302
inheritance hierarchy, 148, 261
injection, 303
input

invalid, 8, 237
valid, 237

input domain, 4, 26, 32, 70, 76, 78
definition, 75
model, 76, 78

input domain model (IDM), 78–84
constraints, 79, 80, 92

input space, 25, 64, 65, 69, 75, 314
instance context, 154
instance variable, 40, 46, 137, 152, 154, 209, 262, 266
integrated development environment, see IDE
integration mutation, 259
integration testing, see testing, integration
inter-class testing, 260

definition, 25
inter-method testing, 260

definition, 25
interaction criterion, 68
interaction testing, 299
interaction-based testing, 298–300, 303

definition, 40
interface mutation, 259
intermediate design, 288
internal variable, 168, 208, 211, 212, 229, 231, 314

solving for, 211
intra-class testing, 260
intra-method testing, 260

definition, 25
IPO, see in-parameter-order 75

Java

class constructors, 46, 152, 261, 262, 264, 266, 302
default, 152, 260, 261
generics, 41, 44, 48, 94, 95, 100
override, 52, 261–263
private, 261, 263
protected, 261
public, 259, 261
variable hiding, 261

Java example, see Java programs
Java programs
TriTyp, 88, 89
AllTests, 49
BoundedQueue2, 168
BoundedQueue, 50, 91
Calc, 41, 46
ColorPoint, 16
GoodFastCheapRefactored, 223
GoodFastCheap, 223
Iterator, 93
Min, 42
Point, 16
PrimeNumbers, 52
Quadratic, 152, 153
Regex, 280
Stutter, 156
Thermostat, 210, 213, 214, 220
TriTyp, 77–80, 82–84, 87, 88, 90, 222
Truck, 15
Vehicle, 15
Watch, 162–164
cal(), 226, 257
checkIt(), 220
countPositive(), 13
findElement(), 92
findLast(), 13
findVal(), 255
fmtRewrap, 145
indexOf(), 31
lastZero(), 13
numZero(), 5
oddOrPos(), 13
patternIndex(), 141

power(), 258
printPrimes(), 145
sum(), 255, 256
takeOut(), 157
trash(), 157
triang(), see TriTyp 77
twoPred(), 221
union(), 12

JavaDoc, 41, 93–101
jelly bean, 65–68
junction, 132
JUnit, 39–50, 52, 53, 92–94, 97, 98, 101, 102, 212, 216, 223, 258, 282, 299–301,

303, 304, 308, 309
parameterized, 45, 46, 52
test fixture, 40, 41, 97

Karnaugh maps, 200, 205–207, 233
Korean student data management failure, 7, 18

last-def, see data flow, last-def 106
legacy code, 61
lexical analyzers, 173
literal, 198, 201–204, 207, 208

definition, 197
logic coverage, 26, 70, 75, 91, 171, 177, 234, 252

semantic, 177–196
syntactic, 177, 178, 197–208

maintenance, 24, 30, 55, 286, 290, 303
maintenance changes, 305

adaptive, 305
corrective, 305
perfective, 305
preventive, 305

maintenance debt, 290, 303
major clause, 181–183, 185–189, 191, 193–195, 215–217, 231, 232

definition, 181
mapping problem

definition, 229
Mars lander crash, 6, 259
MBT, see model-based testing
MCDC, see modified condition decision coverage
MDTD, see Model-Driven Test Design
method, 296

method coverage, 147
metric, 66, 294
minimal test path

definition, 111
minimal test set, 65, 66, 130, 144, 145, 156, 157

definition, 66
minimum test set, 66, 232

definition, 66
minor clause, 181–189, 191, 193–195, 197, 215–217, 224, 231, 232

definition, 181
mock, 299–300, 302, 303

definition, 299
model checker, 269, 282
model checking, 176, 232, 269
model-based testing, 27, 31, 33, 34, 176, 266

definition, 27
Model-Driven Test Design, 19, 20, 27–28, 30, 31, 69, 285

examples, 31
modified condition decision coverage (MCDC), 182, 231, 232
module, 24, 33, 147, 288, 296
module testing, see testing, module
Mothra, 242, 248, 281, 282
muJava, 258, 282
multiple base choice coverage, see criteria, MBCC
multiple near false point coverage, see criteria, MNFP
multiple unique true points coverage, see criteria, MUTP
mutant, 238

definition, 238
equivalent, 242, 244–247, 252, 258, 269, 271, 277, 280

mutation
adequacy, 247
dead, 242, 246
effective operators, 248

definition, 248
kill, 239, 242, 246

definition, 242
operator, 247–251

AOR, 260
COR, 253
definition, 238
LCR, 282
LOR, 253
ROR, 252, 253, 282
SDL, 282

UOI, 260
score, 239
selective, 247
SMV, 267–270
specification, 267–270
stillborn, 242
strong, 243–246
strongly kill, 244

definition, 244
trivial, 242
weak, 243–246, 252
weakly kill, 244

definition, 244
XML, 273
yield, 252

mutation analysis, 75, 246, 254, 267, 281
mutation coverage, see criteria, MC
mutation operator coverage, see criteria, MOC
mutation production coverage, see criteria, MPC
mutation score, 247

n-switch, 173
near false point (NFP), 200–204
NIST report, 8, 18
node, 70, 107–109, 117

definition, 107
final, 107
initial, 107

node coverage, see criteria, NC
non-determinism, see determinism
Northeast blackout, 7, 18

observability, 20, 29, 34, 36–37, 50, 53, 95, 97, 308, 310
definition, 36

orthogonal arrays, 103–105
overloading, 260–266

pair-wise coverage, see criteria, PWC
partition, 75–78, 81–83, 85–88, 90, 94, 96

complete, 76–77, 80, 84
completeness, 75
disjoint, 76–77, 80, 84
example, 76, 82, 84, 85

partition testing, 102, 103

path, 30, 70, 107–131, 171, 173–175, 228, 246
definition, 107
du-path, see data flow, du-path 106
prime, 131

definition, 114
deriving, 119–121
examples, 116

simple, 114–116, 119, 131
test-path, 31, 109, 110, 112, 113, 115, 116, 118–121, 127, 131, 141, 144, 145,

157, 161
definition, 109

Pentium chip bug, 7
Petri nets, 27, 160, 311, 312
PITAC report, 8, 18
polymorphism, 147–148, 176, 259–266
post-state, 161, 226, 228, 229
postfix, see test case components, postfix values
pre-state, 161, 226, 228, 229
preconditions, 35, 47–49, 52, 80, 98, 99, 158, 161, 179, 223–224, 274, 312
predecessor, 107, 131, 161
predicate, 83, 110, 112, 113, 131, 146, 171, 178–208, 238, 252–254

definition, 178
examples, 178–179

predicate coverage, see criteria, PC
prefix, see test case components, prefix values
prime path, see path, prime
prime path coverage, see criteria, PPC
production coverage, see criteria, PDC
program counter, 6, 14, 20

definition, 5
program state, 14, 20, 32, 40, 70, 211, 243, 309

definition, 5
propagation, 6, 20–21, 32, 33, 38, 70, 75, 234, 243, 245, 252, 254–256, 312

definition, 20
proper subterm, 199, 200
protocol, 173

quality assurance, 291, 294

reach, 109, 112–115, 131, 135, 168
definition, 109
semantic, 109
syntactic, 109

reachability, 20–21, 32, 33, 38, 70, 75, 106, 109, 177, 208, 211–213, 222, 228,

230, 234, 243–245, 252, 254–256, 312
definition, 20

reachability, infection, propagation, and revealability, 20, 32, 33, 38, 50, 52, 70,
71, 75, 106, 177, 234, 243, 312, 314

definition, 20
real-time, 8, 29, 37, 173, 228
recognizer, 67, 71, 175, 236, 277

definition, 66
refactoring, 61, 62

definition, 61
regression test

inclusive, 306
modification-revealing, 306
precise, 306

regression testing, see testing, regression
regular expression, 234–235, 271–272, 280
remote method invocation (RMI), 155
requirements analysis, 21–23, 56, 57, 59, 61, 80, 286–287
restricted active clause coverage, see criteria, RACC
restricted inactive clause coverage, see criteria, RICC
revealability, 20, 21, 24, 25, 33, 70, 308–310, 312, 314

definition, 20
revenue task, 35, 53
RIPR, see reachability, infection, propagation, and revealability
round trip, 114, 115, 174

safety constraints, 227
scaffolding, 297, 299
SCR, 160, 161, 176, 228, 232
seam, see test double
security, 8, 18, 19, 61, 99, 224, 274, 303

buffer overflow attack, 274
sequencing constraints, 157–160, 176
SESE graph, see graph, SESE
setter, 209, 302, 303
sidetrip, 116–118, 131

definition, 117
explanation, 117–118

Sieve of Eratosthenes, 52
simple path, see path, simple
simple round trip coverage, see criteria, SRTC
simulated annealing, 103, 105
simulation, 36
SMV, 266–270

software under test, 29, 37, 38, 40, 69, 75, 298, 309, 310
artifact, 67, 106
class, 299
component, 36, 53, 293, 300, 301
function, 78
method, 41, 211, 309
predicate, 194
program, 67, 79, 87, 238, 246, 311
statement, 208
system, 78, 79, 293, 302, 303
unit, 40

spanning tree, 173
specification-based testing, 102, 157–169, 266–270
specified path coverage, see criteria, SPC
state, 146

definition, 161
state coverage, 161
state variable, 86, 91, 161, 162, 164, 166–168
statement coverage, 61, 67, 112, 113, 135
stress testing, 28, 80, 81, 88, 103, 273
strong mutation coverage, see criteria, SMC
structural graph coverage, 112
stub, 288, 299–300

definition, 299
subpath, 31, 107, 117, 254
subpath sets, 174
subsuming higher order mutants, 239, 269
subsumption, 67, 69–71, 89, 113, 119, 122, 129–132, 186–187, 202

clause and predicate coverage, 180–181
definition, 67
explanation, 67–68
graph, 201–204
infeasible, see infeasible, subsumption
mutation, 251–255
partitioning criteria, 89
predicate coverage and ACC, 182–183, 219–220
predicate coverage and IC, 199

subsystem design, 22, 23
successor, 107
switch cover, 26, 33, 173
Symantec, 8
syntax coverage, see grammar
system and software design, 287–288
system testing, see testing, system 3

t-wise coverage, see criteria, TWC
tabular shortcut, 187, 191–192
TDD, see test-driven development
telecommunication systems, 173
telephony, 173
term

definition, 197
terminal symbol coverage, see criteria, TSC
test action, 286–289
test automation, 19, 27, 29, 35–50, 53, 57, 58, 92, 211, 220, 300, 303, 308

definition, 29, 35
test case, 36–38

definition, 38
test case component

verification values, 228
test case components

exit values
definition, 37

expected results, 35–41, 46
definition, 37

postfix values, 37, 38, 40, 41, 228, 229, 260
definition, 37

prefix values, 37, 38, 40, 41, 97, 208, 228, 229, 260
definition, 37

verification values, 39, 97
definition, 37

test case values, 21, 66, 67, 82, 97, 229, 255, 285
definition, 37

test design, 19–32, 286–289
criteria-based, 19, 20, 28–30, 32, 50, 64–68
definition, 27
human-based, 19, 28, 32, 69

test double, 61, 297–303, 305
definition, 298
enabling point, 301, 302
seam, 301, 302

test-driven development, 56–63
test driver, see driver 35, 53, 299
test engineer

definition, 21
explanation, 21–22

test evaluation, 27
definition, 29

test execution, 19, 27, 36, 62, 298

definition, 29
test failure

definition, 20
test frame, see test requirements
test framework, 39–50, 216

CPPUnit, 304
CUnit, 304
definition, 39
HTMLUnit, 304
HttpUnit, 280
JUnit, see JUnit
NUnit, 304
PHPUnit, 304
Selenium, 280, 304
Smalltalk, 304
TestNG, 53, 304

test harness, 57–62
test influence, 286–289
test manager, 10, 22, 293
test oracle, 33, 37, 40, 97, 285, 308–315

consistency check, 312
definition, 37
direct verification, 310–311
metamorphic testing, 312–314
redundant computation, 311–312

test oracle strategy, 309–310, 314
frequency, 309, 310
null, 309, 314
precision, 309, 310

test path, see path, test-path 106
example, 110, 111

test paths
example, 31

test plan, 292–293
level, 292
master, 292

test process, 58, 81, 246, 285–286
test process maturity, 9
test requirement, 21, 25, 64–69, 83, 103

definition, 65
explanation, 65

test script, 21, 22, 29, 31, 35, 38, 79, 80, 216, 229, 235, 308
definition, 38

test set, 38, 39

definition, 38
test stub, see stub
test suite, see test set
testability, 36, 53, 288, 298

definition, 36
testing

acceptance, 22, 23, 59, 287, 288, 290, 291
class, 25, 75, 78, 260
definition, 20
deployment, 286, 290
integration, 22–25, 33, 39, 40, 54, 75, 146, 149, 175, 241, 247, 259, 281, 286,

288–290, 296
definition, 296

module, 23, 146, 299
regression, 25, 35, 69, 88, 232, 290, 304–306, 312

definition, 24, 304
state-based, 40, 157, 160, 161, 299
system, 7, 11, 22, 23, 40, 54, 59, 75, 78, 268, 288, 290, 310
unit, 23, 39, 40, 54, 75, 78, 146, 222, 241, 288–289, 299, 309, 310
usability, 287, 290

Therac-25, 7, 18
tour, 109–119, 121–123, 125–127, 129–131, 138, 141, 144, 145, 152, 173–175

best effort, 118, 119, 127, 129, 131, 175, 187
definition, 118

definition, 117
du tour, 127
explanation, 117–118

traceability, 25, 69, 288, 305
traceability matrix, 61, 293
Traffic Collision and Avoidance System (TCAS), 313–314
transaction flow graph, 171
transition, 107, 114, 160–162, 166–173, 179, 226, 228–229, 267–269
transition coverage, 161
transition-pair, 26, 33, 161, 173
triggering events, 161, 227
two-trip, 26, 161, 173

UML, 27, 30, 56, 176, 266
activity diagram, 102, 171
OCL, 266
state diagram, 175
statecharts, 27, 106, 160, 167
use case, 24, 59, 78, 106, 169–172

undecidable, 20, 33, 50, 66, 67, 71, 154, 159, 186, 208, 231, 245, 246

unique input-output method, 173
unique true point, 200–204
unit testing, see testing, unit
URL, 92, 280
use, see data flow, use
user story

definition, 59

V-model, 23
validation, 8, 9, 273

definition, 9
value masking, 88, 103
verification, 8, 9, 58, 62, 299, 300

definition, 8
version control, 62, 291, 304
vertex, 107
visit, 109–113, 116, 130, 145, 147, 161

definition, 109

W-method, 173
waterfall, 23, 286
weak mutation coverage, see criteria, WMC
web application

calculate, 280
web applications, 36, 37, 56, 155, 273, 277, 280
web services, 273
web software, 29
white-box testing, 26

definition, 26

XML
example, 274
facets

definition, 278
messages, 247, 273, 274, 277

definition, 273
schema, 273, 275, 277, 278, 280, 297

definition, 273
tags

definition, 273
well-formed

definition, 273
XML schema

example, 275

XP, see extreme programming 54

YAGNI, 57

Z, 266

	Half-title
	Title Page
	Copyright Page
	Contents
	List of Figures
	List of Tables
	Preface to the Second Edition
	Part 1 Foundations
	1 Why Do We Test Software?
	1.1 When Software Goes Bad
	1.2 Goals of Testing Software
	1.3 Bibliographic Notes

	2 Model-Driven Test Design
	2.1 Software Testing Foundations
	2.2 Software Testing Activities
	2.3 Testing Levels Based on Software Activity
	2.4 Coverage Criteria
	2.5 Model-Driven Test Design
	2.5.1 Test Design
	2.5.2 Test Automation
	2.5.3 Test Execution
	2.5.4 Test Evaluation
	2.5.5 Test Personnel and Abstraction

	2.6 Why MDTD Matters
	2.7 Bibliographic Notes

	3 Test Automation
	3.1 Software Testability
	3.2 Components of a Test Case
	3.3 A Test Automation Framework
	3.3.1 The JUnit Test Framework
	3.3.2 Data-Driven Tests
	3.3.3 Adding Parameters to Unit Tests
	3.3.4 JUnit from the Command Line

	3.4 Beyond Test Automation
	3.5 Bibliographic Notes

	4 Putting Testing First
	4.1 Taming the Cost-of-Change Curve
	4.1.1 Is the Curve Really Tamed?

	4.2 The Test Harness as Guardian
	4.2.1 Continuous Integration
	4.2.2 System Tests in Agile Methods
	4.2.3 Adding Tests to Legacy Systems
	4.2.4 Weaknesses in Agile Methods for Testing

	4.3 Bibliographic Notes

	5 Criteria-Based Test Design
	5.1 Coverage Criteria Defined
	5.2 Infeasibility and Subsumption
	5.3 Advantages of Using Coverage Criteria
	5.4 Next Up
	5.5 Bibliographic Notes

	Part 2 Coverage Criteria
	6 Input Space Partitioning
	6.1 Input Domain Modeling
	6.1.1 Interface-Based Input Domain Modeling
	6.1.2 Functionality-Based Input Domain Modeling
	6.1.3 Designing Characteristics
	6.1.4 Choosing Blocks and Values
	6.1.5 Checking the Input Domain Model

	6.2 Combination Strategies Criteria
	6.3 Handling Constraints Among Characteristics
	6.4 Extended Example: Deriving an IDM from JavaDoc
	6.4.1 Tasks in Designing IDM-Based Tests
	6.4.2 Designing IDM-Based Tests for Iterator

	6.5 Bibliographic Notes

	7 Graph Coverage
	7.1 Overview
	7.2 Graph Coverage Criteria
	7.2.1 Structural Coverage Criteria
	7.2.2 Touring, Sidetrips, and Detours
	7.2.3 Data Flow Criteria
	7.2.4 Subsumption Relationships Among Graph Coverage Criteria

	7.3 Graph Coverage for Source Code
	7.3.1 Structural Graph Coverage for Source Code
	7.3.2 Data Flow Graph Coverage for Source Code

	7.4 Graph Coverage for Design Elements
	7.4.1 Structural Graph Coverage for Design Elements
	7.4.2 Data Flow Graph Coverage for Design Elements

	7.5 Graph Coverage for Specifications
	7.5.1 Testing Sequencing Constraints
	7.5.2 Testing State Behavior of Software

	7.6 Graph Coverage for Use Cases
	7.6.1 Use Case Scenarios

	7.7 Bibliographic Notes

	8 Logic Coverage
	8.1 Semantic Logic Coverage Criteria (Active)
	8.1.1 Simple Logic Expression Coverage Criteria
	8.1.2 Active Clause Coverage
	8.1.3 Inactive Clause Coverage
	8.1.4 Infeasibility and Subsumption
	8.1.5 Making a Clause Determine a Predicate
	8.1.6 Finding Satisfying Values

	8.2 Syntactic Logic Coverage Criteria (DNF)
	8.2.1 Implicant Coverage
	8.2.2 Minimal DNF
	8.2.3 The MUMCUT Coverage Criterion
	8.2.4 Karnaugh Maps

	8.3 Structural Logic Coverage of Programs
	8.3.1 Satisfying Predicate Coverage
	8.3.2 Satisfying Clause Coverage
	8.3.3 Satisfying Active Clause Coverage
	8.3.4 Predicate Transformation Issues
	8.3.5 Side Effects in Predicates

	8.4 Specification-Based Logic Coverage
	8.5 Logic Coverage of Finite State Machines
	8.6 Bibliographic Notes

	9 Syntax-Based Testing
	9.1 Syntax-Based Coverage Criteria
	9.1.1 Grammar-Based Coverage Criteria
	9.1.2 Mutation Testing

	9.2 Program-Based Grammars
	9.2.1 BNF Grammars for Compilers
	9.2.2 Program-Based Mutation

	9.3 Integration and Object-Oriented Testing
	9.3.1 BNF Integration Testing
	9.3.2 Integration Mutation

	9.4 Specification-Based Grammars
	9.4.1 BNF Grammars
	9.4.2 Specification-Based Mutation

	9.5 Input Space Grammars
	9.5.1 BNF Grammars
	9.5.2 Mutating Input Grammars

	9.6 Bibliographic Notes

	Part 3 Testing in Practice
	10 Managing the Test Process
	10.1 Overview
	10.2 Requirements Analysis and Specification
	10.3 System and Software Design
	10.4 Intermediate Design
	10.5 Detailed Design
	10.6 Implementation
	10.7 Integration
	10.8 System Deployment
	10.9 Operation and Maintenance
	10.10 Implementing the Test Process
	10.11 Bibliographic Notes

	11 Writing Test Plans
	11.1 Level Test Plan Example Template
	11.2 Bibliographic Notes

	12 Test Implementation
	12.1 Integration Order
	12.2 Test Doubles
	12.2.1 Stubs and Mocks: Variations of Test Doubles
	12.2.2 Using Test Doubles to Replace Components

	12.3 Bibliographic Notes

	13 Regression Testing for Evolving Software
	13.1 Bibliographic Notes

	14 Writing Effective Test Oracles
	14.1 What Should Be Checked?
	14.2 Determining Correct Values
	14.2.1 Specification-Based Direct Verification of Outputs
	14.2.2 Redundant Computations
	14.2.3 Consistency Checks
	14.2.4 Metamorphic Testing

	14.3 Bibliographic Notes

	List of Criteria
	Bibliography
	Index

