
Tutorial 1 - Visualizing Linear Algebra

April 29, 2024

1 Introduction
While linear algebra is used in many fields and the geometric interpretation is not
always the preferred interpretation of linear algebra1, in this course we will be focus-
ing mostly on the geometric concepts. To get an intuition of the geometric nature
of linear algebra (and its limits), and to further practice working with Blender, in
the following assignments we will use Blender to visualize linear algebra exercises.
For this tutorial, we’ll be assuming that everything is in a 3-dimensional vectors
space. Of course, all concepts presented here generalize to any number of dimen-
sions (except for the cross product).

2 Geometry of Linear Algebra
2.1 Vectors
In the previous tutorial we learned how to create meshes from scripts. We can use
this to draw the geometric objects that are described by linear algebra. We’ll start
with the quintessential vector itself.

Exercise: Write a function draw_vec that takes a vector v as a parameter and
draws it as an object in the scene.

Make sure that the parameter v can accept any type of vector, be it a mathutils
vector, numpy or a python array. Make sure that the vector can be easily seen from
any angle. You can draw it in any style you like. Recall that a vector always starts
at the origin and points to the value given by v. You can use this function in the
remainder of the tutorial when drawing vectors.

Since the arrows require a thickness, you need to offset the geometry of the
arrow a little bit to be able to see it. You can start out by just adding a constant
value. To do this more beautifully, you should think about the properties of the cross
product between two vectors, e.g. what happens when you calculate v⃗ × (0, 0, 1)?

1other interpretations are; polynomials, abstract vector spaces and simple arithmetic
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What can you say for certain about the resulting vector? And what happens if you
take the cross product again?

To easily distinguish vectors from one another, it is helpful to draw the vectors
in a different color each call to the draw_vec function. To change the color of the
vector we can assign a material to the vector with the following code:
# Create a new material
material = bpy.data.materials.new(name="MyMaterial")

# Set the base color of the material
material.diffuse_color = (1, 0, 0, 1) # these are (R, G, B, Alpha)

obj.data.materials.append(material)

Note that materials are assigned to objects and not meshes, the whole object
shares the same material. You can change the color by settings its red, green,
blue values. The alpha value indicates its transparency, just leave that at 1. It is
convenient to assign colors in a particular order. An often used order is red, green,
blue, cyan, magenta, yellow, after which you can do arbitrary colors.

Exercise: You should now be able to visualize the vector cross product. Choose a
pair of arbitrary vectors v⃗ and u⃗, and draw them and their cross product v⃗ × u⃗ in
the scene. You can use the numpy.cross function for this.

Visualizing the dot product is slightly more difficult, as the dot product results
in a scalar and not a vector. The dot product is a measure of how “similar” two
vectors are. (It is the cosine of the angle between them, scaled by the product of the
lengths.) To still get a feel for what the dot product does, we plot it as a multiple
of one of the input vectors.

Exercise: Draw a few arbitrary pairs of vectors v⃗ and u⃗ in your scene, together
with the vector d · v⃗ where d is the dot product v⃗ · u⃗. Try to get a feel for how the
dot product behaves.

Another important operation on vectors is the vector sum. It can be helpful to
visualize what a vector sum actually does.

Exercise: Write a function draw_vadd that takes a list of vectors vi as parameter
and draws each vector connected head to tail.

Do not draw the resulting vector of the addition in the draw_vadd function, if
you want to display it, just make an extra call to draw_vec.

It can be useful to automatically delete all objects in the scene, instead of
doing it manually. Select all objects in the scene by iterating over them, then use
bpy.ops.object.delete(), consult the Blender documentation for more details.
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2.2 Points, Lines and Planes
Vectors are not the only objects that can be described using linear algebra. Points
and any form of hyperplane are also important objects of linear algebra. We will
start with the regular (3d) plane itself. A plane is usually defined using a normal
vector, which is a vector that is orthogonal to the plane. (Recall that all hyperplanes
are affixed to the origin.)

Exercise: Create a function draw_plane that takes a plane normal n and creates
an object in the scene displaying that plane.

In principle (hyper)planes are infinite, but displaying an infinite plane doesn’t
help with insight. Define some (global) constants in your script that describe how
far “infinite” objects are allowed to extend. Make sure this can be changed easily.

Next is the line. A line in linear algebra is basically the set of points s · v⃗, where s
is some scalar and v⃗ some vector. It is essentiall all points you can make by scaling
the given vector.

Exercise: Create a function draw_line that takes a vector v and creates an object
in the scene displaying a line.

Again you can choose how to display your line, just make sure it visible from
any angle. The same goes for the point:

Exercise: Create a function draw_pnt that takes a vector v and creates an object
in the scene displaying a point.

2.3 Matrices
The best way to visualize a matrix is by interpreting its row and column vectors as
a basis (three vectors that define the axes of the coordinate system).

Exercise: Write a function draw_rowb that takes a matrix M and draws its rows
as separate vectors.

Again make sure that it doesn’t matter what exact type the matrix is. Most of
the time this will be a numpy array, but pyhon lists should work as well.

The identity matrix is the matrix that has all zeroes except for the diagonal1 0 0
0 1 0
0 0 1


If you now draw the identity matrix I using this function you will get something
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that will look like the standard coordinate axes. This is not a coincidence. Any
matrix in essence is a set of coordinate axes, though some axes may overlap.

Exercise: Write a function draw_colb that takes a matrix M and draws its columns
as separate vectors.

A linear combination of two vectors v⃗ and u⃗ is a vector that you can get by taking
the sum of some scaled version of those vectors, formally a linear combination is a
vector s· v⃗+t·u⃗ where s and t are some scalars. Two vectors that are a combination
are said to be linearly dependent. Both these concept extends to any number of
vectors, not just two.

Exercise: Think of an arbitrary 3×3 matrix M , make sure that none of the column
vectors are linearly dependent. Draw this matrix using the draw_colb function.

This matrix can be thought of as a linear transformation. To transform a vector
v⃗, we typically left multiply M · v⃗.

Exercise: Draw the result r of the left multiplication r = M · v⃗ in the scene.

Exercise: Now using the draw_vadd function draw the linear combination of the
column vectors of M . Using the elements of v⃗ as scalars, that is x·C1+y ·C2+z ·C3

where v⃗ = [x, y, z] and C1, C2, C3 the columns of M .

Look closely, what is the pattern here? How was the vector r built? Recall,
that a linear transformation is nothing more than changing the basis (the coordinate
system).

Exercise: Now create a new matrix N , where the third column is a linear combina-
tion of the first two and draw it in the scene using draw_colb. Also draw a plane
using draw_plane with the cross product of the first two columns (C1 × C2).

What do you notice about the vectors and the plane? Why can we say that a
plane is a subspace of 3-dimensional space (R3)?

Exercise: Draw the row basis for N using the draw_rowb function, over what you
drew in the previous exercise.

What do you notice about the row basis of N? Can you say something about
the dimension of the space spanned (formed by taking linear combinations of its
basis vectors) by N? We call the dimension that a matrix is able to cover with its
basis vectors its rank. What can you say about the rank of the space covered by its
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columns and its rows?

2.4 Inverse and Gaussian Elimination
When a matrix M is viewed as a linear transformation (by left multiplication), we
then call the matrix that undoes this transformation the inverse matrix M−1. We
could find the inverse of a given matrix by using the numpy.linalg.inv function.
But to gain an understanding of what that function does we will first invert a matrix
by hand. Lets say we have the following matrix.

M =

1 2 3
0 1 4
5 6 0


And we want to invert this matrix, we can use the following procedure. First

write the concatenation (putting matrixes side by side) of M and the identity matrix. 1 2 3 1 0 0
0 1 4 0 1 0
5 6 0 0 0 1


We know that we can interpret the rows of any matrix as vectors themselves,

and thus we can take linear combinations of them. For example we can subtract 2
times the first row 2 · [1 2 3 1 0 0] from the 3rd row, to yield: 1 2 3 1 0 0

0 1 4 0 1 0
3 2 −6 −2 0 1


Exercise: Add and subtract linear combinations of the vectors until the 3 × 3
submatrix left of the vertical bar is equal to the identity matrix.

The 3× 3 submatrix on the right now contains the inverse M−1 of the original
matrix. This process is called Gaussian elimination (or sometimes row reduction).

Exercise: Verify in Blender that the matrix you got indeed is the inverse of M .

Exercise: Can you explain why this procedure works to invert the matrix? (Think
of the matrices as a change in coordinate system.)

2.5 Solving systems of Equations
It might not seem intuitive, but there is a close connection of matrices to systems
of equations. Consider the following set of equations:
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x+ y + z = 6

2x− y = 3

3x− 2y + z = 4

Exercise: Can you solve this set of equations, and verify that (x, y, z) = ( 114 , 5
2 ,

3
4 ).

Now let’s take the first equation. it can be read as a condition: the set of points
(x, y, z) such that if you add them together they result in 6.

Exercise: Write code that draws a large number of points using the draw_pnt
function that satisfy the condition x+ y + z = 6

What do you notice about this set of points? Can you give a geometric inter-
pretation of the condition x+ y + z = 6?

Exercise: Extend the draw_plane with an extra optional parameter p⃗ that moves
the origin of the plane to the point p⃗.

You can make an optional parameter in python by adding a default value using
the equals sign. Just make sure all the optional values are the last parameters of
the function.

Exercise: Create a function ”n, p = plane_from_equation(c)” that calculates
the plane normal n⃗ and origin p⃗ of a plane given coefficients of the form c = [a, b, c, d]
which satisfies the equation a · x+ b · y + c · z = d. Then use that to draw a plane
for the equation x+ y + z = 6.

You will notice that there are multiple choices for p⃗, can you find one that is
convenient to use?

Exercise: Using the plane_from_equation function, plot all the three equations.
Then plot the solution of the equations as a point.

Can you give a geometric interpretation of solving a system of equations? If
there is a geometric interpretation, then there should also be a vector-matrix form
for the system. In fact, we can rewrite the above equations in matrix form:1 1 1

2 −1 0
3 2 1

 ·

xy
z

 =

63
4
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If we call the left hand side M and the right hand side d⃗, and the vector
x⃗ = [x, y, z] we can that equation as:

Mx⃗ = d⃗

Where we want to find a solution for the vector x⃗. We know that for the matrix
inverse we have M−1·M = I. Recall that matrix multiplication is non-commutative,
it therefore matters whether we multiply from the left or right. If we now multiple
the previous equation with M−1 on both sides:

M−1Mx⃗ = M−1d⃗

Simplifying:

Ix⃗ = M−1d⃗

x⃗ = M−1d⃗

This means we can find a solution to the system by finding the inverse of the
coefficient matrix and left-multiplying it with the vector of constants d⃗.

Exercise: Using the numpy matrix inverse function numpy.linalg.inv, verify that
the system of equations indeed has (x, y, z) = ( 114 , 5

2 ,
3
4 ) as a solution.

2.6 Minimum Least Squares fit to a Set of Points
The following section is quite a bit more advanced, but if you manage to do this
you will have quite an advantage in the coming few assignments.

Say we are given a set of points P (e.g. a point cloud), and want to fit a plane
through this set that closely matches that point set. One way to do so is using a
least-squares fit. Such a fit minimizes the sum of squared distances from the plane
to each point in P . Each point pi is given by the coordinates xi, yi, zi. The squared
distance to some point (also called the error function) is given by:

e(a, b, c) =
∑

(ax+ by + c− z)2

For a plane with equation ax+ by + c = z. We want to minimize this sum, in
essence this means we want to find the values for a, b and c where the error function
is minimal. This is often written as:

argmin (E(a, b, c))

Which you should read as, for all the arguments, the argmin function returns
the values of the parameters of e where the function e has the lowest value. We
can formulate this problem in matrix form:
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x0 y0 1
x1 y1 1

. . .
xn yn 1

 ·

ab
c

 =


z0
z1
. . .
zn


Which we can abstract as Mx = d. This system has way more equations than

variables, so it doesn’t have a “true” inverse. Instead we compute the Moore-
Penrose Pseudo-inverse to get a least squares fit approximation, using the following
formula: ab

c

 = (MTM)−1MT d

Exercise: Write python code that creates a point set P by sampling random values
in the vicinity of a plane defined by a normal n fixated at the origin, and plot this
point set using the draw_pnt function.

Exercise: Find a least squares fit to the point set P using the algorithm given
above, and plot it into the scene using the draw_plane function.
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