
STV Project 2023/24, PART 1

Deadline: see website.

The overall goal of this project is to learn how some basic
concepts and techniques in software testing can be applied
in practice. To simulate a real-life problem, you will start by
developing an application and do unit testing on its compo-
nents. We will do this project in two PARTs; this is the first
one.

The software to implement is a console-based, single player
turn-based game inspired by the classic rogue RPG game.
The game is played in a dungeon in the form of a connected
graph. The goal is to survive the dungeon, and reach its exit.
Evil monsters roam the dungeon, but there are also items
which can help the player to defeat them.

The implementation language for this project is C#.
A starting implementation will be given to you, though it

leaves most of the game logic unimplemented (and there are
also some bugs left there):

https://git.science.uu.nl/prase101/STVrogue

You can clone it, and read its .sln file into your IDE. This ini-
tial implementation prescribes the architecture of the game
logic. Please stick to this architecture and do not change the
signature of existing methods (feel free to add more methods
and classes). Keep your clone private!
The list of features to implement is kept minimum, to

let you focus on the above mentioned goal. Some degree
of complexity is deliberately introduced, to provide some
challenges.

I also need you to keep track of your unit testing
effort and findings (the hours you spend on testing
and the number of bugs you find).

1 Required software
You need an IDE for C# that includes a code coverage tool.
There are two options:

1. Jetbrains Rider1. This has my preference. If you use
Mac or Linux, you should use Rider. You can get free
education license for this2. You additionally need to
install the DotCover plugin.

2. Microsoft Visual Studio Enterprise Edition. You need
the Enterprise edition. It is a bit overkill, but smaller

1https://www.jetbrains.com/rider/
2https://www.jetbrains.com/community/education

Course Software Testing & Verification,
2024.

edition does not include any code coverage tool. Unfor-
tunately, the Enterprise edition seems to be no longer
in our free university deal. So, it is not a real option.

For Unit Testing we will be using NUnit Testing Frame-
work3, but your IDE should get this automatically when you
read the project’s .sln file into the IDE.

It is also useful to have a code metrics tool.
An important metric is the McCabe/Cyclometic metric

(recall MSO, else check Wikipedia). If you use Rider you
need to install the CyclomaticComplexity plugin.

Visual Studio has a more complete Code Metrics function-
ality. Along with McCabe it can give many other metrics.
The feature is available even in the Community edition, but
only the Windows version.

We also allow you to use Github Co-Pilot.

2 Few Important Notes before You Start
Intercepting I/O. For the PART-2 of the project we want to
be able to record the user’s inputs and to check the game’s
outputs on the console. To facilitate we will need to inter-
cept these inputs and outputs. For this reason, your game
implementation should not directly use the System’s Con-
sole WriteLine() and ReadKey(). See also the remark at the
end of Section 3.

Test Flakiness: Random Generator. Like in many other
games, some parts of STV Rogue are required to behave ran-
domly (e.g. when generating dungeons, or when deciding
monsters’ actions). When testing a program that behaves
non-deterministically, the same test may yied different re-
sults when re-run with exactly the same inputs and config-
uration. Such a test is called ’flaky’ or ’unrepeatable’. Obvi-
ously we do not want to have flaky tests.
To this end, you need to make it so that you can con-

figure your implementation of STV Rogue to switch from
using normal random generators to using pseudo random
generators when testing it4. Such a generator behaves de-
terministically when given the same seed. Check the class
Utils.STVControlledRandom to obtain such a generator.

Test Flakiness: Persistent State. Another source of flaky-
ness is dependency on ’persistent’ data, such as a database or
a static variable. For example, the aforementioned STVControlledRandom

3https://nunit.org/
4Well, a ’normal’ random generator is typically also a pseudo random
generator. It is just that its seed is not fixed, e.g. it is based on the system
time. You can make your random generators deterministic by controlling
the seed(s) they use —check the documentation of the class Random. When
deploying the game for actual users, you can supress the seeds so that they
will use random system-seeds.

https://git.science.uu.nl/prase101/STVrogue
https://www.jetbrains.com/rider/
https://www.jetbrains.com/community/education
https://nunit.org/

Course Software Testing & Verification,

Figure 1. The architecture in UML-like Class Diagram.

keeps its state in a static variable. When running a set of
test methods, keep in mind that they may be executed in a
different order when the set is different, or simply because
the used unit testing framework makes no commitment on
keeping the order the same. This may cause the tests to affect
a persistent state in a different order, resulting in flakiness.

To avoid this, make sure that you reset relevant persistent
states before every run of a test method. See the documenta-
tion of the attribute [SetUp] of NUnit :)

LINQ. Check out how to use Language Integrated Query in
C# to make your code less complicated, e.g. to count the
number of healing potions in the player bag:

(from 𝑖 in player.Bag where 𝑖 is HealingPotion
select 𝑖).Count()

Or alternatively, in the functional programming style:
player.Bag.Where(i ⇒ i is HealingPotion).Count().
Or, in this case, simply: player.Bag.Count(i ⇒ i is Heal-

ingPotion).

3 Architecture
The initial code of STVRogue establishes the simple archi-
tecture shown in Figure 1. The class Program serves as the
usual main-class from which the game is run. Program will
simply call GameRunner; this contains the game main-loop.
In this loop, the game shows the game state to the user, and
asks the user to decide and enter his/her action. The action
is then interpreted to update the game state. This completes
a turn, and the loop starts over again.
The state of the game is maintained in the class Game.

This method also has the methodGame.Update() where you
should implement how a single turn updates the game state.
The class Game also holds a pointer to a GameConsole

that providesmethods for printing texts to the system-console
and for reading strings from it. Do not use the system-console
directly for your console I/O. Use this GameConsole instead
(later, in Part-2 we will extend this).

Figure 2. Some examples of dungeons: tree-shaped (left), lin-
ear dungeon (top right), and a dungeon which is neither tree-
shaped nor linear (bottom right).

4 The Game Logic
The game logic is implemented by the classes in STVrogue.GameLogic.
A large part of these classes are left unimplemented for you.
And yes, you will also need to test them to make sure you
deliver a correct game logic.

4.1 Class GameEntity
Monsters, items, rooms, and the player are the main entities
of the game. They will have their own class, but they all
inherit from a minimalistic class called GameEntity. We will
insist that game entities (so, instances ofGameEntity) should
have unique IDs; this will make it easier for you later to debug
the game from its UI.

4.2 Class Dungeon
The game is played on a dungeon, which consists of rooms.
There are three types of rooms: start-room, exit-room, and
other rooms (we will call then ’ordinary’ room). A dungeon
should have one unique start-room, one unique exit-room,
and at least one ordinary room.

Rooms are connected with edges. If 𝑟 is a room, all rooms
that are directly connected to 𝑟 are called the neighbors of 𝑟 .
Self-loop (connecting a room to itself) is not allowed as this
tends to confuse users. The player and monsters can move
from rooms to rooms by traversing edges. Technically, this
means that the rooms in the dungeon form a graph whose
edges are bi-directional. We require that all rooms in the
dungeon are reachable from the start-room. Figure 2 shows
some example of dungeons.

The class Dungeon has two basic operations:
1. A constructor Dungeon(𝑠ℎ𝑎𝑝𝑒, 𝑁 ,𝛾) to create a dun-

geon consisting of 𝑁≥3 rooms that meets certain re-
quirements; see below. The constructor is allowed to
fail, but if it does construct a Dungeon, the require-
ments below should be met.

STV Project 2023/24, PART 1 Course Software Testing & Verification,

a. Keep in mind that a dungeon should satisfy the pre-
viously mentioned constraints about its connectivity
and the uniqueness of its start and exit-rooms.

b. The parameter 𝑠ℎ𝑎𝑝𝑒 determines the shape of the
dungeon. There are three types: LINEARshape, TREE-
shape, and RANDOMshape. A LINEARshape dun-
geon forms a list with the start-room at one of its
ends, and the exit-room at the other end.
A TREEshape dungeon contains no cycle, and is not
linear-shaped. Furthermore, the exit-room should
be a leaf of this tree.
When 𝑠ℎ𝑎𝑝𝑒 is RANDOMshape, a dungeon with a
random shape is to be generated, but it should not
be linear nor a tree. I leave it to you to decide how
random you want to make it; but try not to over do
it.

c. Every room in the dungeon has a capacity. If 𝑐 is the
capacity of a room 𝑟 , the number of monsters in 𝑟

should not exceed 𝑟 .
i. For start and exit-rooms: 𝑐 = 0.
ii. For rooms neigboring to the exit room: 𝑐 = 𝛾 .
iii. Other rooms have random capacities 𝑐 ∈ [1..𝛾].

2. Amethod SeedMonstersAndItems(𝑀,𝐻, 𝑅) to randomly
populate the rooms in the dungeon with monsters and
items. There are two types of items: healing potion
and rage potion.
The paramemer𝑀 specifies the number of monsters to
be dropped in the dungeon,𝐻 is the number of healing
potions to be dropped, and 𝑅 is the number of rage
potions.
Populating the dungeon are subject to the require-
ments set below. Meeting these requirements are not
always possible (e.g. it is impossible to populate a dun-
geon with 𝑁 rooms of max-capacity 𝛾 with more than
(𝑁 − 2)𝛾 monsters).
The method SeedMonstersAndItems returns true if it
manages fullfill the requirements, else it returns false.
The requirements are:
a. Every monster in the dungeon should be alive and

have HP and AR >0.
b. Every room cannot be populated with more mon-

sters than its capacity allows.
c. Let 𝑁𝐸 be the set of neighbor-rooms of the exit-

room. Every room in 𝑁𝐸 should be populated with
at least as many monsters in any non-𝑁𝐸 room. So,
for any 𝑟 ∈ 𝑁𝐸 and 𝑟 ′ ∉ 𝑁𝐸 , then |𝑟 .monsters| ≥
|𝑟 ′.monsters| should hold.

d. Let 𝑁 be the number of rooms in the dungeon. At
least ⌊𝑁 /2⌋ number of rooms should have no item
at all.

e. If a room contains healing potion(s), none of its
neighbours should contain a healing potion.

f. Rage potions can only be placed in rooms which are
"leaves" in the dungeon, and are not the exit-room.

(so, how do you recognize if a room is a ’leaf’?) This
implies btw that you cannot have a rage potion in a
LINEARshape dungeon.

4.3 Class Creature
A creature has hit point (HP), attack rating, and its location
(the room it is in) in a dungeon. Attack rating should be a
positive integer. A creature is alive if and only if its HP is >0.
There are two subclasses of Creature: Monster and Player.

Creature has two operations: move(𝑟) to move it to a
neigboring room, subject to the room capacity, and attack(𝑓)
to attack another creature 𝑓 provided it is located in the same
room. When a creature 𝑐 attacks 𝑓 , the action will damage
𝑓 ’s HP (that is, reducing it) by Δ where Δ is the attacker’s
attack rating. If 𝑓 ’s HP drops to 0, 𝑓 dies.
The player has additionally ’Kill Point’ (KP) that is in-

creased by one each time it kills a monster. The player also
has a bag, that contains items it picked up.

4.4 Items
Items are dropped in the dungeon. When the player enters a
room that contains items, it can pick them. The items will
then be put in the player’s bag.
There are two types of items: Healing Potion and Rage

Potion. A healing potion has some positive healing value.
When used, it will restore the player’s HP with this value,
though the HP can never be healed beyond the player’s
HPMax.

A rage potion will turn the player into a raging barbarian.
This temporarily double the player’s attack rating. The effect
last for 5 turns (including the turn when it is used).

Using a potion will consume it.

4.5 Class Game
The class implements the game’s main loop, and also holds
most of the game logic5.
The constructor Game(𝑐𝑜𝑛𝑓) takes a configuration and

will create a populated dungeon according to the configura-
tion. The configuration 𝑐𝑜𝑛𝑓 is a record (𝑠ℎ𝑎𝑝𝑒, 𝑁 ,𝛾,𝑀,𝐻, 𝑅, 𝑑𝑖 𝑓)
of 7 parameters:

1. 𝑠ℎ𝑎𝑝𝑒 the shape of the dungeon to generate.
2. 𝑁 the number of rooms in the dungeon.
3. 𝛾 specifies the maximum rooms’ capacity.
4. 𝑀 is the number of monsters to generate.
5. 𝐻 is the number of healing potion to generate.
6. 𝑅 is the number of rage potion to generate.
7. 𝑑𝑖 𝑓 is the difficulty mode of the game. There are three

modes: Newbie-mode (easy), Normal-mode, and Elite-
mode.

5For a larger game with a more complex it would make sense to introduce
more decomposition. STV Rogue is not that complex though; so, to favor
simplicity I will keep most of the logic centralized in the class Game.

Course Software Testing & Verification,

The constructor will generate a dungeon satisfying the
parameters in 𝑐𝑜𝑛𝑓 . Some configurations might be hard, or,
as remarked in Section 4.2, even impossible to satisfy. The
constructor is allowed to fails (it would then throw an excep-
tion), if after some 𝑘 attempts if cannot generate a dungeon
that satisfies the configuration.

The player should be alive, and its HP is equal to HPMax,
and >0. The player always starts at the start-room of the
dungeon.

STV Rogue is a turn-based game. It means that the game
moves from turn to turn, starting from turn 0, then turn 1,
turn 2, etc. At a turn, every creature in the dungeon, and is
still alive, makes one single action. The order is left to you
to decide, as long as everyone gets exacly one action.
The player wins if it manages to reach the dungeon’s

exit-node. It loses if it dies before reaching it.
Themainmethods of the classGame is𝑢𝑝𝑑𝑎𝑡𝑒 () explained

below.

4.5.1 The method update(𝛼). The method will advance
the game by one turn. This method iterates over all creatures
in the dungeon. A monster can choose its action randomly;
this will be explained more below. The action of the player
is as specified by 𝛼 .
The player is in-combat if it is in the same room with a

monster. Likewise, a monster is in-combat if it is in the same
room with the player.

There are six possible actions that a creature can do, though
a monster can only do four of them:

1. DoNOTHING, it means as it says.

2. MOVE 𝑟 : the creature moves to another node 𝑟 . This
should be a neighboring node, and furthermore this
should not breach 𝑟 ’s capacity.
MOVE is not possible when the creature is in combat.

The logic for executing this action is to be implemented
in the method Game.Move(𝑐, 𝑟), where 𝑐 is the crea-
ture that moves.

3. PICKUP: this will cause the player to pick up all items
in the room it is currently at. The items will the be put
in the player’s bag. A monster cannot do this action.

4. USE 𝑖: this will cause the player to use an item 𝑖 . The
item should be in its bag. The effect of using different
items were explained in Section 4.4.

The logic for executing this action is to be implemented
in the method Game.UseItem(𝑖).

5. ATTACK 𝑓 : the creature attacks another creature 𝑓 .
This is only possible if both the attacker and defender
are alive and are in the same room. Also, a monster

cannot attack another monster.

The logic for executing this action to be implemented
in the method Game.Attack(𝑐, 𝑓), where 𝑐 is the at-
tacker and 𝑓 the defender.

6. FLEE: the creature flees a combat to a randomly cho-
sen neighboring room. Fleeing is subject to a number
of conditions listed below. When multiple conditions
conflict, the condition that is listed first takes prece-
dence (e.g. conditions b and c below may conflict; in
such a situation we should follow b and ignore c).
a. A monster cannot flee to a room if this would exceed

the room’s capacity.
b. The player cannot flee to the exit-room.
c. In the Newbie-mode, the player can always flee.
d. In the Normal-mode, the player cannot flee if in the

previous turn it uses a potion.
e. In the Elite-mode, in addition to the restriction of

the Normal-mode, the player cannot flee while it is
in the enraged state. Otherwise it can flee.

The logic for executing this action is to be implemented
in the method Game.Flee(𝑐), where 𝑐 is the fleeing
creature.

5 The Game Loop
The game’s main-loop is to be implemented in the class
GameRunner, more precisely in the method Game.Run(𝜙).
The implementation is not complete :) You should complete
it. You can ignore the parameter 𝜙 (but leave it there); this is
for PART-2 of the project.
This main loop is directly called from the top level class

Program, so you can run and try this loop by running Program.
At every iteration of this main loop, the game prints the

game status to the Console, and then waits for the player’s
action. The action is read from the Console —the method
Run should handle invalid inputs given by the user, or if
multi-inputs are needed. This action 𝛼 is then passed to the
method Game.update(𝛼) to decide what to do with it. The
loop then advances to the next iteration. This is repeated
until the game ends.
When ran, the main loop first shows a welcome-screen,

and the game begins. At each turn the game should display
at least:

1. The turn number.
2. Player information: HP and KP.
3. The id of the room the player is currently at, and those

of connected rooms.
4. Ids of monsters in the room.
5. Items in the room.
6. Items in the player’s bag.

STV Project 2023/24, PART 1 Course Software Testing & Verification,

7. Avaialable actions for the player. Some actions may not
always be possible. E.g. using a potion is not possible
when the player does not have any. Likewise, fleeing
is not always possible. When the player tries to do
an action that is actually not possible, your program
should not crash. Instead, it should print a message
notifying the player that the action is not possible.
Importantly, this does not count as his/her action for
the turn. The player can retry with another action.

When the player does an action, print amessage to the con-
sole informing the player of the effect of this action. When
a monster in the current room does an action, also print
similar message. Actions of monsters in other rooms should
not be echoed to the console.

When the player wins or loses, print your ending message
before exiting the game.

6 The Class Program
The class STVrogue.Program is the main class (the class with
theMain method) from where the game will be configured,
created, and run. When you start the application, it reads the
game configuration from a file (configuration is explained in
Section 4.5). It then creates an instance of Game according
to this configuration, and run it.

By default the configuration file is:
𝑟𝑜𝑜𝑡/STVrogue/saved/rogueconfig.txt

where 𝑟𝑜𝑜𝑡 is the directory where you put the STVrogue git
(the directory where you find the readme.md of the project).

7 Your Tasks
Your tasks are listed below. All are mandatory, except Task
8. You should divide the work among your team members
such that everyone has her/his fair share of testing. In fact,
the author of a functionality should not be the only person
to test the functionality due to her/his obvious bias.

1. the method Move(𝑟) (of Monster and Player) and the
method Creature.Attack(𝑓) (0.5 pt).

2. Dungeon(𝑠ℎ𝑎𝑝𝑒, 𝑁 ,𝛾) (1.5 pt).
3. Dungeon.SeedMonstersAndItems(𝑀,𝐻, 𝑅) (1.5 pt).
4. Game(𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛) (1 pt).
5. Game.Flee(𝑐) (1 pt).
6. Finishing the implementation of STV Rogue (2 pt).
7. Test the rest of the game logic (1.2 pt).
8. Optional: stronger testing of Flee(𝑐) (1pt). This item

is not critical for the completion of the project, but it
is a nice-have, from which you can learn something.
Just to be clear: optional point is not bonus.

9. Report (0.3 pt).
Test coverage requirement. For 7.1 - 7.5 and 7.8, all pro-

duced tests should deliver 100% code coverage6 on their test
6Visual Studio tracks both line coverage and block coverage. The concept
of ’block’ coverage is explained in one of the lectures. Rider uses a different

target and all its worker methods (e.g., your tests on Flee(𝑐)
should give 100% coverage on this method, and other work-
ers it invokes). For 7.7 we aim for at least 90% code coverage.
If you deliver less, you have to explain the reason in your
Report (e.g. because the uncovered parts are unreachable, or
simply because you run out of time).
Delegated logic/worker. You may decide to delegate

some of the logic of the above listed targets to another class.
E.g. in the implementation of 𝐺𝑎𝑚𝑒.𝑓 𝑙𝑒𝑒 (𝑐) you might dele-
gate some of the logic to 𝑃𝑙𝑎𝑦𝑒𝑟 .𝑓 𝑙𝑒𝑒 (). Keep in mind that
this delegated logic/worker should then also be fully covered
by your tests.

Please document your test methods and in-code
specifications/parameterized-tests. Write a comment
describing what each test method tries to check. In-
side the body of each in-code specification/parame-
terized test, write a comment explaining what cor-
rectness properties different parts of the specification
try to capture.

The McCabe/Cyclometic metric of your method should
gives a rough estimation on the minimum number of test
cases you would need to test it (but keep in mind that it
won’t take delegated logic into accout). The metric gives the
number of ’linearly independent’ control paths in themethod
(check Wikipedia’s entry on Cyclometic complexity).

7.1 TestMove(𝑟) of Monster and Player. Test
Creature.Attack(𝑓) too. (0.5 pt)

To get you started in learning to do basic unit testing, test
the above mentioned two methods to verify their correct-
ness. The methods are already implemented, so you only
need to test them (and to fix them if you find bugs). Note
thatMove(r) of Monster and Player also callMove(𝑟) of the
superclass Creature; don’t forget that the move of Creature
has two branches.

Use NUnit Framework to write your tests.

7.2 Implement and test the constructor
Dungeon(𝑠ℎ𝑎𝑝𝑒, 𝑁 ,𝛾) (1.5 pt)

The intended behavior of this constructor is informally spec-
ified in Section 4.2. Implement the constructor. Then, formal-
ize its informal specification as an in-code specification
and then use NUnit parameterized test to test the method.
Figure 3 shows an example of how to do this.

concept, namely statement coverage. It means that Rider can tell you which
statements are covered or otherwise. This is slightly more coarse grained
than block coverage. E.g. if you have a statement if (𝑝 | |𝑞) 𝑥++, Rider can
tell you whether or not you have executed the 𝑥++ in the then-branch, but
it cannot tell whether you have explored all the possibilities for enabling
its guard (either due to 𝑝 is true, or 𝑞 is true), because techically a guard is
an expression rather than a statement.

Course Software Testing & Verification,

[T e s t F i x t u r e]
p u b l i c c l a s s Tes t_Remainder {

/ / the t e s t s :
[Tes tCase (5 , 0)]
[Tes tCase (5 , 3)]
[Tes tCase (5 , − 3)]
[Tes tCase (−5 , −3)]
. . .
/ / the in −code spec . f o r % :
p u b l i c vo id Spec_Remainder (i n t x , i n t y) {

/ / check the method−under − t e s t ' s pre − c on d i t i o n :
i f (y != 0) {

/ / c a l l i n g the method−under − t e s t :
i n t r = x % y
/ / (a) check the method ' s post − c on d i t i o n : r i s a c o r r e c t
/ / reminder i f i t i s equa l t o x − d ∗ y , where d i s the
/ / r e s u l t o f d i v i d i n g x with y :
A s s s e r t . I s t r u e (r == x − (x / y) ∗ y) ;
/ / Note : u s ing AreEqual i s here b e t t e r . Check i t s doc .

}
e l se {

/ / (b) the method shou ld throw t h i s e x c ep t i on when i t s
/ / pre − c on d i t i o n i s not s a t i s f i e d :
A s s e r t . Throws<Div ideByZeroExcep t ion >(x % y) ;

}
}

}

Figure 3. An example of how to write an NUnit test through
an in-code specification. Let’s imagine we want to test C#
remainder operator (%).

The class Utils.HelperPredicates contains some help pred-
icates you might find useful. E.g. it contains a predicate to
check if a dungeon is linear-shaped. You may also want to
play with CoPilot a bit to see if it can generate some asser-
tions for you. You can e.g. first type what you want in a plain
language, in a comment, and see what CoPilot then generate
out of it. Here is an example of what it produced (in my case):

// each room has a capacity between 0 and capacity:
Assert.That(Forall(D.Rooms, r => r.Capacity >= 0 && r.Capacity <= capacity));

Note that CoPilot might help saving some typingwork, but
you cannot blindly trust it. Ultimately, you are responsible
for the correctness of your solution and that your tests are
sensical.

7.3 Implementation and test
Dungeon.SeedMonstersAndItems(𝑀,𝐻, 𝑅) (1.5 pt)

The intended behavior of this constructor is informally spec-
ified in Section 4.2. Implement it and write an in-code spec-
ification for the method. This time, formulate the in-code
specification as NUnit Theory and then test that Theory.
You only need to guarantee that seeding, when successful, is
correct.

CheckNUnit Documentation: https://docs.nunit.org/articles/
nunit/intro.html entry about Theory should be listed under
the category ’Attributes’. There is also an example of using
Theory in the STV Rogue project itself.

Note that the dungeon itself is an implicit parameter of the
method, in particular the number of rooms in the dungeon
and the shape of the dungeon (e.g. a linear dungeon put a
rather unique restriction on the placement of rage potions).

7.4 Implementation and test the constructor
Game(𝑐𝑜𝑛𝑓) (1 pt)

The intended behavior of this constructor is informally spec-
ified in Section 4.5. Implement the constructor and write
in-code specification for this method. Formulate it as a pa-
rameterized test. This time, use NUnit combinatoric testing
feature to generate tests for the constructor. Be mindful that
full combinatoric test may blow up to thousands of test cases.
You may want to consider pair-wise testing instead.

Check the entries on ’Combinatorial’ and ’Pairwise’ in
NUnit documentation. There are also examples of these in
the STV Rogue project itself.

This is an instance of integration test. The workers behind
this constructor are the constructorDungeon and themethod
SeedMonstersAndItems, whose logic has been separately
tested in Sections 7.2 and 7.3. At the level of Dungeon we
will just check if the generated dungeon has the specified
numbers of rooms, shape, numbers of monsters, etc. We
will not check the more elaborate constraints as those were
already checked at the unit testing of the aforementioned
worker methods.

Your tests should give full coverage on those worker meth-
ods as well though.

7.5 Implementation and test the method
Game.Flee(𝑐) (1 pt)

The intended behavior of this method is informally speci-
fied in Section 4.5. The logic of this method is not trivial.
Implement and test it.

7.6 Finish the Implementation of STV Rogue (2 pt)
Finish the implementation of STV Rogue to get a working
game. Among other things, you will have to implement the
methodGame.Update(𝑐𝑚𝑑) aswell as finishingGame.main(..).

7.7 Test the rest of the game logic (1.2 pt)
Finish the testing of the game logic (that is, of all classes
in the STVrogue.GameLogic namespace). We aim for 90%
coverage on the classes under GameLogic. If you have less,
give the reason in your report (e.g. unrachable code).

7.8 Optional: stronger testing of Flee(𝑐) (1pt)
The logic of the method Dungeon.Flee(𝑐) is fairly compli-
cated. For such a method simple code coverage does not
really reflect the adquacy of your tests as it cannot enforce
path-level verification. Unfortunately there is no tool in the
market that will let you do path coverage tracking. Let us
try to compensate this by augmenting your existsing tests
for Flee with combinatoric testing. Chapter 4 in Ammann &
Offutt’s book (Ch. 6 for 2nd Ed.) explains the main concepts.
See also the slides from Week-2.

Identify the set of ’characteristics’ on which the behavior
of Flee(𝑐) depends on. These typically include the method

https://docs.nunit.org/articles/nunit/intro.html
https://docs.nunit.org/articles/nunit/intro.html

STV Project 2023/24, PART 1 Course Software Testing & Verification,

parameters (there is only one: 𝑐), but also other aspects that
are not formally listed as a parameter, e.g. whether or not all
rooms around 𝑐 are full (populated by monsters to their full
capacity), whether 𝑐 has used a potion, the difficulty-mode
of the game, etc.

Then, decide how you want to partition each characteris-
tic into ’blocks’. E.g. 𝑐 can be a monster or the player (so, we
would have two blocks for 𝑐). The position of 𝑐 can be distin-
guished between: a neighbor of the exit-room, or other room.
The used difficulty-mode can be distinguished between: the
newbie-mode, the normal-mode, or the elite-mode. And so
on.
Translate your design into an NUnit combinatoric (or at

least pair-wise) test using a parameterized test.

7.9 Report (0.3 pt, mandatory)
Make a report containing the items listed below.

1. The general statistics of your implementation:

𝑁 = total #classes : ...
𝑀 = total #methods : ...
𝑙𝑜𝑐𝑠 = total #lines of codes(*) : ...
𝑙𝑜𝑐𝑠𝑎𝑣𝑔 = average #lines of codes(*) : 𝑙𝑜𝑐𝑠/𝑁

(*) exclude comments

2. Statistics of your unit-testing effort:
Global Statistics

𝑁 ′ = #classes targeted by your unit-tests : ...
total coverage over GameLogic : ...
𝑇 = #test cases (*) : ...
𝑇𝑙𝑜𝑐𝑠 = total #lines of codes (locs) of your unit-tests : ...
𝑇𝑙𝑜𝑐𝑠𝑎𝑣𝑔 = average #unit-tests’ locs per target class : 𝑇𝑙𝑜𝑐𝑠/𝑁 ′

𝐸 = total time spent on writing tests : ...
𝐸𝑎𝑣𝑔 = average effort per target class : 𝐸/𝑁 ′

total #bugs found by testing : ...
Statistics of some selected targets

Dungeon(𝑠ℎ𝑎𝑝𝑒, 𝑁 ,𝛾)
mcCabe metric (*) : ...
test-cases (**) : ...
coverage : ...

Dungeon.SeedMonstersAndItems(𝑀,𝐻, 𝑅)
mcCabe metric : ...
test-cases (*) : ...
coverage : ...

Game(𝑐𝑜𝑛𝑓)
mcCabe metric : ...
test-cases (*) : ...
coverage : ...

Game.Flee(𝑐)
mcCabe metric : ...
test-cases (*) : ...
coverage : ...

Game.Update(𝑐𝑚𝑑)
mcCabe metric : ...
test-cases (*) : ...
coverage : ...

(*) Also known as the Cyclometic metric.
(**) We will define the ’number of test-cases’ as the number of tests that NUnit
reports, **excluding** the inconclusive tests.

3. Explanation: if your coverage for the targets listed
above is below 100%, mention why you failed to get it
to 100.

4. If you do the Optional Task (Section 7.8), describe your
chosen set of characteristics and how they are divided
into blocks. Describe your chosen approach of com-
binatoric testing, and how this is translated to NUnit
parameterized test.

5. Specify how the work is distributed among your team
members, in terms of who is doing what, and the per-
centage of the total team effort that each person shoul-
ders.

6. Mention the url of your git repository in case we need
to look deeper into it.

8 Submitting
A Blackboard assignment will be created to submit your
project.

1. State in the **readme.md** where your unit tests are
located. We will run your 𝑃𝑟𝑜𝑔𝑟𝑎𝑚-main and all your
NUnit tests. Make sure they do not crash.

2. Upload a zip to the Blackboard, containing of thewhole
project and the pdf of your report. The name of the zip-
file should begin with TEAM_𝑁 where 𝑁 is your team-
id number. Only one person from each team needs to
submit the zip.

	1 Required software
	2 Few Important Notes before You Start
	3 Architecture
	4 The Game Logic
	4.1 blueClass GameEntity
	4.2 blueClass Dungeon
	4.3 blueClass Creature
	4.4 blueItems
	4.5 blueClass Game

	5 The Game Loop
	6 The Class Program
	7 redYour Tasks
	7.1 Test Move(r) of Monster and Player. Test Creature.Attack(f) too. (0.5 pt)
	7.2 Implement and test the constructor Dungeon(shape,N,) (1.5 pt)
	7.3 Implementation and test Dungeon.SeedMonstersAndItems(M,H,R) (1.5 pt)
	7.4 Implementation and test the constructor Game(conf) (1 pt)
	7.5 Implementation and test the method Game.Flee(c) (1 pt)
	7.6 Finish the Implementation of STV Rogue (2 pt)
	7.7 Test the rest of the game logic (1.2 pt)
	7.8 Optional: stronger testing of Flee(c) (1pt)
	7.9 Report (0.3 pt, mandatory)

	8 Submitting

