
B3CC: Concurrency
09: GPGPU

Ivo Gabe de Wolff

Announcement

• Mid-term exam next week

- Tuesday 19-12-2023 @ 13:00 – 15:00 in Olympos Hal 2

- Covers all the material up to and including STM

- Excluding Delta-stepping

2

Announcement

• “Minder massaal” exam

- Only for students with permission

- Ruppert D, 13:00 - 15:00

- Room and time changed!

3

Recap

4https://en.wikichip.org/wiki/amd/ryzen_7/1800x

Multi-core
NUMA: Non-uniform memory access

Out-of-order/
speculative execution

Accelerators

Increase IPCSMT

SIMD

Hide latency

Distributed

GPU/DPU/SmartNIC/FPGA/…

Multi-socket

Bluefield-2 DPU (8 core)

Ryzen 7 1800X CPU (8 core)

A100 GPU (6912 core)

Fugaku (158,976 x 48 core)

• Explicit threads

• Synchronise via locks, messages, or STM

• Modest parallelism

• Hard to program

• Operate simultaneously on bulk data

• Implicit synchronisation

• Massive parallelism

• Easy to program

Recap

5

… n{ { {

P1 P2 P3

…

Task parallelism Data parallelism

Data parallelism

• Despite the name, data parallelism is only a programming model

- The key is a single logical thread of control

- It does not actually require the operations to be executed in parallel!

- Today: let’s look at how you would actually implement data-parallel operations, in parallel, on the GPU

6

CPU vs. GPU

• Traditional CPU designs optimise for single-threaded performance

- Branch prediction, out-of-order execution, large caches, etc.

- Much of the available die area is dedicated to non-computation resources

- CPUs are designed to optimise latency of an individual thread's results

- Must be good at everything, parallel or not

7https://www.anandtech.com/show/16261/investigating-performance-of-multithreading-on-zen-3-and-amd-ryzen-5000

CPU vs. GPU

• GPUs are designed to accelerate graphics processing (rasterisation)

- This is an inherently data-parallel task

- GPUs are designed to maximise bandwidth: the time to process as single pixel is less important than the number
of pixels processed per second

- Specialised for compute intensive, highly parallel computation

8

CPU vs. GPU

• CPU

- Multiple tasks = multiple threads

- Tasks run different instructions

- 10s of complex threads execute on a few cores

- Threads managed explicitly

- Expensive to create & manage threads

• GPU

- SIMD: single instruction, multiple data

- 10s of thousands of lightweight threads

- Threads are managed and scheduled by the
hardware

- Cheap to create many threads

9

CPU vs. GPU

• Horizontal parallelism: 
increase throughput

- More execution units
working in parallel

• Vertical parallelism: 
hide latency

- Keep functional units busy
when waiting for
dependencies, memory, etc.

10https://en.wikipedia.org/wiki/IP_over_Avian_Carriers

A B C D

throughput

A B
A

C
B
A

D
C
B
A

lat
en

cy

t0 t1 t2 t3

Stage 1

Stage 2

Stage 3

Stage 4

A B C D

t0 .. t3 t4 .. t7 t8 .. t11 t12 .. t15

t0 .. t3 t4 .. t7

• Image we need to perform
some operation that takes 4
units of time (clock cycles), 
on values A, B, C and D.

CPU vs. GPU

11https://en.wikichip.org/wiki/amd/microarchitectures/zen

Front End

Execution
Engine

Memory

L2 C
ache

512K
iB

 8-W
ay

L3

DTLB
Load Buffer
(72 entries) 32B/cycle

(44 entries)
Store Buffer

32B/cycle store
WCB

ITLB

OP Cache
Tags

L1 Instruction Cache
64KiB 4-Way

3
2

B
/

C
ycle

32B/Cycle

Physical
Request Queue

L1/L2 BTB
Return Stack (32 entry)

Indirect Target Array (ITA)
(512 entry; direct map)

N
ex

t
PC

Instruction Byte Buffer

PreDecode / Pick

OP Cache
(2K entry)

6 µOPs

4-8 MOPs

4 Instructions

Integer

FP
/

S
IM

D

4-Way Decode
(Including fused µOPs)

DecoderDecoderDecoderDecoder

Dispatch

MicroCode ROM
(MSROM)

Stack Engine
Memfile

µOP Queue (72 entry)

4 µOPs

Rename / Allocate

Physical Register File (168 entries)

I Scheduler
(14 entries)

I Scheduler
(14 entries)

I Scheduler
(14 entries)

I Scheduler
(14 entries)

Mem Sche
(14 entries)

Mem Sche
(14 entries)

AGU0 AGU1

Forwarding Muxes

ALU
Branch

ALU
Branch

ALU
IMUL

ALU
IDIV

Non-Scheduling Queue (NSQ)

128 bit
loads

LDCVT

128-bit
FMA
FMUL

128-bit
FADD

128-bit
FMA
FMUL

128-bit
FADD

Forwarding Muxes

Physical Register File (160 entries)

Scheduling Queue (SQ)
(96 entries)

L1 Data Cache
32KiB 8-Way

2
x
1

2
8

-b
it

2
 lo

a
d

s/
cycle

1
 sto

re
/

cycle

4-8 MOPs

Move Elimination

Rename / Allocate

Store to Load
Forwarding

8 entry L0 (all sizes)
64 entry L1 (all sizes)
512 entry L2 (no 1G)

Retire Queue
(192 entries)

8-wide retire

Branch Fusion

Hash
Perceptron

4 µOPs
6 µOPs

64 entry L1
1.5K entry L2 (no 1G)

Micro-Tags
(L1$ & µOP$)

CPU vs. GPU

12NVIDIA GA102

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 10

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

GPU architecture

• The CPU spends a lot of resources to avoid latency

• The GPU instead uses parallelism to hide latency

- No branch prediction

- One task (kernel) at a time

- No context switching

- Limited super-scalar pipeline

- No out-of-order execution

- Very low clock speed

13

GPU architecture

• Each GPU has…

- A number of streaming multiprocessors (comparable to CPU cores)

- Each core executes a number of warps (comparable to a CPU thread)

- Each warp consists of 32 “threads” that run in lockstep* (comparable to a single lane of a SIMD execution unit)

14*not so for Volta architecture and onwards… http://www.catb.org/jargon/html/W/wheel-of-reincarnation.html

GPU architecture

• Each streaming multiprocessor (SM) executes a number of warps

- The SM has a number of active threads (e.g. Ampere has up to 2048 per SM)

- The core will switch warps whenever there is a stall in execution (e.g. waiting for memory)

- Latency is thus hidden by having many active threads; this is only possible if you can feed the GPU enough work

15

GPU architecture

• There are many similarities between the CPU and GPU

- Multiple cores

- A memory hierarchy

- SIMD vector instructions

• But there are also fundamental differences

- Each SM executes up to 64 warps, instead of two threads (with SMT2)

- The memory hierarchy is explicit on the GPU (software managed cache)

- CPU uses thread (SMTx) and instruction level parallelism to saturate ALUs

- GPU SIMD is implicit (SIMT model)

16

Execution model

• The GPU is a co-processor controlled by a host program

- The host (CPU) and device (GPU) have separate memory spaces

- The host program controls data management on the device (allocation, transfer) as well as launching kernels

17

Lecture 17 – Manycore Computing and GPUs

Using cudaMemCpy()

!  cudaMemcpy() invokes a DMA copy engine
!  Minimize the number of copies
!  Use data as long as possible in a given place
!  PCIe gen2 peak bandwidth = 6 GB/s
!  GPU load/store DRAM peak bandwidth = 150 GB/s

SM
EM

)

SM
EM

)

SM
EM

)

SM
EM

)

Device Memory
PCIe)

Bridge

CPU

Host
Memory

cudaMemcpy()

Introduction to Parallel Computing, University of Oregon, IPCC

Lecture 17 – Manycore Computing and GPUs

Hierarchy of Concurrent Threads

33

!"#$%&

!"#$%$&'()*+),*-&.$$#-/)0'$#%12)

!  '()(**+*&,+)-+*.&/0120.+3&04&1(-5&67)+(3.&
!  (**&67)+(3.&+8+/96+&67+&.(1+&.+:9+-6;(*&2)0<)(1&

!  =7)+(3.&()+&<)092+3&;-60&67)+(3&>*0/,.&
!  67)+(3.&;-&67+&.(1+&>*0/,&/(-&/002+)(6+&

!  =7)+(3.#>*0/,.&7(?+&9-;:9+&@A.&

=7)+(3&6&

!"#!$#%#!&#
B*0/,&>&

Tuesday, October 11, 11Introduction to Parallel Computing, University of Oregon, IPCC

host thread

Lecture 17 – Manycore Computing and GPUs

Hierarchy of Concurrent Threads

33

!"#$%&

!"#$%$&'()*+),*-&.$$#-/)0'$#%12)

!  '()(**+*&,+)-+*.&/0120.+3&04&1(-5&67)+(3.&
!  (**&67)+(3.&+8+/96+&67+&.(1+&.+:9+-6;(*&2)0<)(1&

!  =7)+(3.&()+&<)092+3&;-60&67)+(3&>*0/,.&
!  67)+(3.&;-&67+&.(1+&>*0/,&/(-&/002+)(6+&

!  =7)+(3.#>*0/,.&7(?+&9-;:9+&@A.&

=7)+(3&6&

!"#!$#%#!&#
B*0/,&>&

Tuesday, October 11, 11Introduction to Parallel Computing, University of Oregon, IPCC Lecture 17 – Manycore Computing and GPUs

Hierarchy of Concurrent Threads

33

!"#$%&

!"#$%$&'()*+),*-&.$$#-/)0'$#%12)

!  '()(**+*&,+)-+*.&/0120.+3&04&1(-5&67)+(3.&
!  (**&67)+(3.&+8+/96+&67+&.(1+&.+:9+-6;(*&2)0<)(1&

!  =7)+(3.&()+&<)092+3&;-60&67)+(3&>*0/,.&
!  67)+(3.&;-&67+&.(1+&>*0/,&/(-&/002+)(6+&

!  =7)+(3.#>*0/,.&7(?+&9-;:9+&@A.&

=7)+(3&6&

!"#!$#%#!&#
B*0/,&>&

Tuesday, October 11, 11Introduction to Parallel Computing, University of Oregon, IPCC Lecture 17 – Manycore Computing and GPUs

Hierarchy of Concurrent Threads

33

!"#$%&

!"#$%$&'()*+),*-&.$$#-/)0'$#%12)

!  '()(**+*&,+)-+*.&/0120.+3&04&1(-5&67)+(3.&
!  (**&67)+(3.&+8+/96+&67+&.(1+&.+:9+-6;(*&2)0<)(1&

!  =7)+(3.&()+&<)092+3&;-60&67)+(3&>*0/,.&
!  67)+(3.&;-&67+&.(1+&>*0/,&/(-&/002+)(6+&

!  =7)+(3.#>*0/,.&7(?+&9-;:9+&@A.&

=7)+(3&6&

!"#!$#%#!&#
B*0/,&>&

Tuesday, October 11, 11Introduction to Parallel Computing, University of Oregon, IPCC

…

grid of thread blocks

• The GPU kernels execute multiple thread blocks over the SMs

- All threads execute the same sequential program

- Thread instructions are executed in logical SIMD groups (warps)

Lecture 17 – Manycore Computing and GPUs

Using cudaMemCpy()

!  cudaMemcpy() invokes a DMA copy engine
!  Minimize the number of copies
!  Use data as long as possible in a given place
!  PCIe gen2 peak bandwidth = 6 GB/s
!  GPU load/store DRAM peak bandwidth = 150 GB/s

SM
EM

)

SM
EM

)

SM
EM

)

SM
EM

)

Device Memory
PCIe)

Bridge

CPU

Host
Memory

cudaMemcpy()

Introduction to Parallel Computing, University of Oregon, IPCC

Execution model

18

Lecture 17 – Manycore Computing and GPUs

Hierarchy of Concurrent Threads

33

!"#$%&

!"#$%$&'()*+),*-&.$$#-/)0'$#%12)

!  '()(**+*&,+)-+*.&/0120.+3&04&1(-5&67)+(3.&
!  (**&67)+(3.&+8+/96+&67+&.(1+&.+:9+-6;(*&2)0<)(1&

!  =7)+(3.&()+&<)092+3&;-60&67)+(3&>*0/,.&
!  67)+(3.&;-&67+&.(1+&>*0/,&/(-&/002+)(6+&

!  =7)+(3.#>*0/,.&7(?+&9-;:9+&@A.&

=7)+(3&6&

!"#!$#%#!&#
B*0/,&>&

Tuesday, October 11, 11Introduction to Parallel Computing, University of Oregon, IPCC

Thread
registers,
per-thread

local memory

per-application
global memory

Lecture 17 – Manycore Computing and GPUs

Hierarchy of Concurrent Threads

33

!"#$%&

!"#$%$&'()*+),*-&.$$#-/)0'$#%12)

!  '()(**+*&,+)-+*.&/0120.+3&04&1(-5&67)+(3.&
!  (**&67)+(3.&+8+/96+&67+&.(1+&.+:9+-6;(*&2)0<)(1&

!  =7)+(3.&()+&<)092+3&;-60&67)+(3&>*0/,.&
!  67)+(3.&;-&67+&.(1+&>*0/,&/(-&/002+)(6+&

!  =7)+(3.#>*0/,.&7(?+&9-;:9+&@A.&

=7)+(3&6&

!"#!$#%#!&#
B*0/,&>&

Tuesday, October 11, 11Introduction to Parallel Computing, University of Oregon, IPCC

per-block
shared

memory

Block

Programming model

• The CUDA (and OpenCL, Vulkan and Metal) programming model provides

- A thread abstraction to deal with SIMD

- Synchronisation and data sharing between small groups of threads (100s)

- A scalable programming model to deal with lots of threads (10,000s)

- A C-like language for device code

• The similarity is only superficial; it is heavily influenced by the underlying hardware model because people feel more

comfortable if there are braces and semicolons ._.

19

Programming model

• A GPU program consists of the kernel run on the GPU

- Kernels are functions which are executed n times in parallel by n different threads on the device

- Each thread executes the same sequential program

• We can not execute different code in parallel

• … together with a program on the CPU to launch the kernel and control GPU device operations

20

Kernels

• Example: element-wise add two vectors

- Sequential version:

- CUDA kernel:

21

5 6 7 8B …

1 2 3 4A …

++ + +

void vector_add(float* A, float* B, float* C, int n)
{
 for (int i = 0; i < n; ++i) {
 C[i] = A[i] + B[i];
 }
}

__global__ void vector_add(float* A, float* B, float* C, int n)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < n) {
 C[i] = A[i] + B[i];
 }
}

Threads

• A kernel consists of multiple copies of the code executed in parallel

- Each thread has its own registers

- Each warp or each thread has its own program counter*

- The order in which threads are executed is not specified

• Threads are very fine-grained

- Launching threads on the GPU is cheap compared to on the CPU

22* Pre-Volta there is one PC per warp; post-Volta each thread has its own PC

Threads

• Threads execute in a single-instruction multiple-thread model (SIMT)

- In a SIMD model the vector width is explicit

- In SIMT this is left unspecified

- Greatly simplifies the programming model

23

1 2 3 4A

5 6 7 8B

+

__m128 a = _mm_set_ps(4, 3, 2, 1);
__m128 b = _mm_set_ps(8, 7, 6, 5);
__m128 c = _mm_add_ps(a, b)

SIMD SIMT

1 2 3 4A

B 5 6 7 8

+ + + +

__global__ void vector_add(...) {
	 // as before
}

Threads

• Threads execute in a single-instruction multiple-thread (SIMT) model

- Understanding how this is mapped to the underlying hardware is important

- In CUDA threads execute in groups of 32 called a warp

- This is the logical vector width

• Performance considerations

- Threads in a warp share the same program counter

- Good code will try to keep all threads convergent within a warp

24

Threads

• The scalar (kernel) code is mapped onto the hardware SIMD execution

- Hardware handles control flow divergence and convergence

- Divergent control flow between warp threads is handled via an active mask

25

if (threadIdx.x < 8) {
 for (int i = 0; i < threadIdx.x; ++i) {
 // ...
 }
}
else
{
 if (answer == 42) {
 // ...
 }
 else {
 // ...
 }
}

Threads

• Divergent control flow is handled by predicated execution

- At each cycle all threads in a warp must execute the same instruction

- Conditional code is handled by temporarily disabling threads for which the condition is not true (alternatively;
false)

- If-then-else blocks are sequentially executing the ‘if ’ and ‘else’ branches

• The GPU is therefore a very wide vector processor

26

Threads

• Divergent control flow is handled by predicated execution

- Can lead to subtle deadlocks…

- Consider the canonical implementation of a spin-lock (for the CPU):

27

do {
 old = atomic_exchange(&lock[i], 1);
} while (old == 1);

/* critical section */

atomic_exchange(&lock[i], 0);

Threads

• Benefits of SIMT vs. SIMD

- Similar to regular scalar code, easier to read and write

• Drawbacks of SIMT vs. SIMD

- The (logical) vector width is always 32, regardless of the data size

- Scattered memory access and control flow are not discouraged

28

Thread hierarchy

• Parallel kernels are composed of many threads

- Executing the same sequential program

- Each thread has a unique identifier

• Threads are grouped into blocks

- Threads in the same block can cooperate

• A grid of thread blocks is the collection of 
threads which will execute a given kernel

- Thread blocks will be scheduled onto
the SMs of the GPU for execution

29

Thread hierarchy

• Individual threads are grouped into thread blocks

- Each thread block constitutes an independent data-parallel task

- Threads in the same block can cooperate and synchronise with each other

- Threads in different thread blocks can not cooperate

- The program must be valid for any interleaving of thread blocks

• This independence requirement ensures scalability

30

Thread hierarchy

• Each thread block is mapped onto a SM of the GPU to be executed

- The hardware is free to assign blocks to any processor (SM) at any time

- A kernel scales across any number of parallel processors

- Each block executes in any order relative to other blocks

31Lecture 17 – Manycore Computing and GPUs

Transparent Scalability
!  Hardware is free to assigns blocks to any processor

at any time
� A kernel scales across any number of parallel

processors

Introduction to Parallel Computing, University of Oregon, IPCC

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each)block)can)execute)in)any)order)relaJve)to)other)blocks.))

Jme)

Lecture 17 – Manycore Computing and GPUs

Transparent Scalability
!  Hardware is free to assigns blocks to any processor

at any time
� A kernel scales across any number of parallel

processors

Introduction to Parallel Computing, University of Oregon, IPCC

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each)block)can)execute)in)any)order)relaJve)to)other)blocks.))

Jme)

Lecture 17 – Manycore Computing and GPUs

Transparent Scalability
!  Hardware is free to assigns blocks to any processor

at any time
� A kernel scales across any number of parallel

processors

Introduction to Parallel Computing, University of Oregon, IPCC

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each)block)can)execute)in)any)order)relaJve)to)other)blocks.))

Jme)

time

Thread hierarchy

• Each GPU thread is individually very weak

- Hardware multithreading is required to hide latency

- This means that performance depends on the number of thread blocks which can be allocated onto each SM

- This is limited by the set of registers and shared memory on the SM which are shared between all threads
executing on that processor

• Therefore, per-thread resource usage costs performance

- More registers => fewer thread blocks

- More shared (local) memory usage => fewer thread blocks

32

Occupancy

• The multiprocessor occupancy is the number of kernel threads which can run simultaneously on each SM,
compared to the maximum possible

- Example: Constants for Turing architecture (RTX 2080 and similar)

• Simultaneous thread blocks (B) ≤ 16

• Warps per thread block (T) ≤ 32

• Maximum resident warps: B × T ≤ 32

• 32-bit registers per thread: B × T × 32 ≤ 65536

• Shared memory per block (bytes) × B ≤ 65536*

• Occupancy: B × T / 48

33

Thread blocks

• Threads in a thread block can communicate and synchronise

- Example: reverse a vector

- Question: Does this work?

34

__global__ void reverse(float* arr, int n)
{
 __shared__ float tmp[blockDim.x];
 int gid = blockDim.x * blockIdx.x + threadIdx.x;

 if (gid < n)
 {
 tmp[threadIdx.x] = arr[gid];
 __syncthreads();
 arr[n - gid - 1] = tmp[blockDim.x - threadIdx.x - 1];
 }
}

Memory hierarchy

• A many-core processor is a device for turning a compute
bound problem into a memory bound problem

- Lots of processors (ALUs)

- Memory concerns dominate performance tuning

- Only global memory is persistent across kernel launches

35

Memory hierarchy

• Global memory is accessed in 32-, 64-, or 128-byte transactions

- Similar to how a CPU reads a cache line at a time

- The GPU has a "coalescer" which examines the memory requests from threads in the warp, and issues one or
more global memory transactions

• To use bandwidth effectively, threads should read/write in dense blocks

36

GPGPU

• A typical GPU program

1. Set up input data on the CPU

2. Transfer input data to the GPU

3. Operate on the data

4. Transfer results back to the CPU

5. …

6. profit

37

Summary

• GPU excels at executing many parallel threads

- Scalable parallel execution

- High bandwidth parallel memory access

• CPU excels at executing a few serial threads

- Fast sequential execution

- Low latency cached memory access

38

Summary

• GPUs excel when…

- The calculation is data-parallel and the control-flow is regular

- The calculation is large (compute/memory bound)

• CPUs excel when…

- The calculation is largely serial and the control-flow is irregular

- The programmer is lazy

39 Photo by Ramiz Dedaković

tot ziens

Extra slides

• NVIDIA programming guides

• Intel intrinsics guide

41

B3CC: Concurrency
11: Accelerate

Tom Smeding

Announcement

• Welcome back!

• The third practical is now available

- Due Friday 26 January @ 23:59

- You may work in pairs

�2

Scaling and Speedup

Leftovers from 09: Parallelism

�3

Speedup

• The performance improvement, or speedup of a parallel application, is:

- Where TP is the time to execute using P threads/processors

• The efficiency of the program is:

• Here, � can be:

- The parallel algorithm executed on one thread: relative speedup

- An equivalent serial algorithm: absolute speedup

T1

�4

speedup = SP =
T1

TP

efficiency =
SP

P
=

T1

P TP

Maximum speedup

• Several factors appear as overhead in parallel computations and limit the speedup of the program

- Periods when not all processors are performing useful work

- Extra computations in the parallel version not appearing in the sequential version (example: recompute
constants locally)

- Communication time between processes

�5

Amdahl

• The execution time (�) of a program splits into:

- : time spent doing (non-parallelisable) serial work

- : time spent doing parallel work

• If is the fraction of serial work to be performed, we get the parallel speedup:

• This is called Amdahl’s Law

T1

Wser

Wpar

�6

TP ≥ Wser +
Wpar

P

SP ≤
1

f + (1 − f)/P

f =
Wser

Wser + Wpar

Amdahl

• The speedup bound is determined by the degree of sequential execution in the program, not the number of
processors

- Strong scaling (fixed-sized speedup):

�7

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP 
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP  1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

limP!1 SP  1/f
<latexit sha1_base64="kssmcsTmUvrC5s98zwN82SPjWfE=">AAACCnicdVC7TsMwFL0pr1JeAUYWQ4XEVBIY6FiJhbEV9CE1VeS4TmvVcSLbQYqiziz8CgsDCLHyBWxsjHwGbgsSzyNZOj7nXtnnBAlnSjvOi1WYm19YXCoul1ZW19Y37M2tlopTSWiTxDyWnQArypmgTc00p51EUhwFnLaD0enEb19SqVgsLnSW0F6EB4KFjGBtJN/e9TiL/LyOPB0jj4lQZ2N07ps7p8hFhyj07bJTOa46Bug3cSvOFOUaary9AkDdt5+9fkzSiApNOFaq6zqJ7uVYakY4HZe8VNEEkxEe0K6hAkdU9fJplDHaN0ofhbE0R2g0Vb9u5DhSKosCMxlhPVQ/vYn4l9dNdVjt5UwkqaaCzB4KU45M7EkvqM8kJZpnhmAimfkrIkMsMdGmvZIp4TMp+p+0jiqu4Q23XKvBDEXYgT04ABdOoAZnUIcmELiCG7iDe+vaurUerMfZaMH62NmGb7Ce3gEIGptp</latexit><latexit sha1_base64="gFh/2lH8FHMrjDZAqOKc4u3OPAs=">AAACCnicdVDLSgMxFM3UR2t9jbp0Ey2CqzqjiF0W3Lhs0T6gMwyZNNOGJpkhyQjD0LUbf8WNC0Xc+gXu/AHxM0xbBZ8HAifn3EtyTpgwqrTjvFiFufmFxWJpqby8srq2bm9stlWcSkxaOGax7IZIEUYFaWmqGekmkiAeMtIJR6cTv3NJpKKxuNBZQnyOBoJGFCNtpMDe8RjlQd6Ano6hR0WkszE8D8ydEejCAxgFdsWpHtUcA/ibuFVnikodNt9eS8XjRmA/e/0Yp5wIjRlSquc6ifZzJDXFjIzLXqpIgvAIDUjPUIE4UX4+jTKGe0bpwyiW5ggNp+rXjRxxpTIemkmO9FD99CbiX14v1VHNz6lIUk0Enj0UpQya2JNeYJ9KgjXLDEFYUvNXiIdIIqxNe2VTwmdS+D9pH1Zdw5tupV4HM5TANtgF+8AFJ6AOzkADtAAGV+AG3IF769q6tR6sx9lowfrY2QLfYD29A2rVm7M=</latexit><latexit sha1_base64="gFh/2lH8FHMrjDZAqOKc4u3OPAs=">AAACCnicdVDLSgMxFM3UR2t9jbp0Ey2CqzqjiF0W3Lhs0T6gMwyZNNOGJpkhyQjD0LUbf8WNC0Xc+gXu/AHxM0xbBZ8HAifn3EtyTpgwqrTjvFiFufmFxWJpqby8srq2bm9stlWcSkxaOGax7IZIEUYFaWmqGekmkiAeMtIJR6cTv3NJpKKxuNBZQnyOBoJGFCNtpMDe8RjlQd6Ano6hR0WkszE8D8ydEejCAxgFdsWpHtUcA/ibuFVnikodNt9eS8XjRmA/e/0Yp5wIjRlSquc6ifZzJDXFjIzLXqpIgvAIDUjPUIE4UX4+jTKGe0bpwyiW5ggNp+rXjRxxpTIemkmO9FD99CbiX14v1VHNz6lIUk0Enj0UpQya2JNeYJ9KgjXLDEFYUvNXiIdIIqxNe2VTwmdS+D9pH1Zdw5tupV4HM5TANtgF+8AFJ6AOzkADtAAGV+AG3IF769q6tR6sx9lowfrY2QLfYD29A2rVm7M=</latexit><latexit sha1_base64="L21ie50RyOMlNX/TmtDJ/4rg6i8=">AAACCnicdVC7TsMwFL0pr1JeAUYWQ4XEVBIY6FiJhbEI+pCaKHJcp7XqOJHtIEVRZxZ+hYUBhFj5Ajb+BveBxPNIlo7PuVf2OWHKmdKO826VFhaXllfKq5W19Y3NLXt7p62STBLaIglPZDfEinImaEszzWk3lRTHIaedcHQ+8Ts3VCqWiGudp9SP8UCwiBGsjRTY+x5ncVA0kacT5DER6XyMrgJz5xS56BhFgV11aqd1xwD9Jm7NmaIKczQD+83rJySLqdCEY6V6rpNqv8BSM8LpuOJliqaYjPCA9gwVOKbKL6ZRxujQKH0UJdIcodFU/bpR4FipPA7NZIz1UP30JuJfXi/TUd0vmEgzTQWZPRRlHJnYk15Qn0lKNM8NwUQy81dEhlhiok17FVPCZ1L0P2mf1FzDL91qozGvowx7cABH4MIZNOACmtACArdwD4/wZN1ZD9az9TIbLVnznV34Buv1A7JcmPA=</latexit>

Amdahl

�8

• The serial fraction of the program limits the achievable speedup

Gustafson-Barsis

• Often the problem size can increase as the number of processes increases

- The proportion of the serial part decreases

- Weak scaling (scaled speedup):

�9

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

S′�P = f + (1 − f)P
Data parallelism, GPU programming

�10

• Explicit threads

• Synchronise via locks, messages, or STM

• Modest parallelism

• Hard to program

• Operate simultaneously on bulk data

• Implicit synchronisation

• Massive parallelism

• Easy to program

Recap

�11

… n{ { {

P1 P2 P3

…

Task parallelism Data parallelism

Recap

• Despite the name, data parallelism is only a programming model

- The key is a single logical thread of control

- It does not actually require the operations to be executed in parallel!

- Today we’ll look at a language for data-parallel programming on the GPU

�12

GPU (graphics processing unit)

• Lots of interest to use them for non-graphics tasks

- Machine learning, bioinformatics, data science, weather & climate, medical imaging, computational chemistry, …

- Can have much higher performance than a traditional CPU

• Specialised hardware with a specialised programming model

- Caches are software programmable; must be wary of associativity

- Memory management is explicit, with distinct memory spaces

- Thousands of threads running simultaneously, each of which can modify any piece of memory at any time

�13

GPU programming

�14

Pe
rf

or
m

an
ce

Effort

GPU programming

�15

Pe
rf

or
m

an
ce

Effort

expected

GPU programming

�16

Pe
rf

or
m

an
ce

Effort

expected

actual

GPU programming

�17

Pe
rf

or
m

an
ce

Effort

expected

actual

desired

GPU programming

�18https://devblogs.nvidia.com/getting-started-openacc/

Pe
rf

or
m

an
ce

Effort

expected

actual

desired

After expressing available parallelism, I often find that
the code has slowed down.

— Jeff Larkin, NVIDIA Developer Technology

GPU programming

• Two main difficulties:

1. Structuring the program in a way suitable for GPU parallelisation

2. Writing (performant) GPU code

�19

←

Accelerate

�20

Accelerate

• An embedded language for data-parallel arrays in Haskell

- Takes care of generating the high-performance CPU/GPU code for us

- Computations take place on dense multi-dimensional arrays

- Parallelism is introduced in the form of collective operations on arrays

�21

Haskell/Accelerate
program

Target code

Compile and run on
the CPU/GPU

Copy result back to Haskell

Reify and optimise
Accelerate program

Accelerate

• Computations take place on arrays

- Parallelism is introduced in the form of collective operations over arrays

- map, zipWith, fold, scan (various kinds); permutations (data movement); etc.

- It is a restricted language: consists only of operations which can be executed efficiently in parallel

- Different types to distinguish parallel computations from scalar expressions

�22

Example: dot product

• In Haskell (lists):

�23

import Prelude

dotp :: Num a
 => [a]
 -> [a]
 -> a
dotp xs ys = foldl’ (+) 0 (zipWith (*) xs ys)

Example: dot product

• In Accelerate:

�24

import Data.Array.Accelerate

dotp :: Num a
 => Acc (Vector a)
 -> Acc (Vector a)
 -> Acc (Scalar a)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Example: dot product

• In Accelerate:

�25

import Data.Array.Accelerate

dotp :: Num a
 => Acc (Array DIM1 a)
 -> Acc (Array DIM1 a)
 -> Acc (Array DIM0 a)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Scalar a = Array DIM0 a
Vector a = Array DIM1 a
Matrix a = Array DIM2 a
 Array DIM3 a
 ...

Dimensionality

Element type

= Array Z a
= Array (Z :. Int) a
= Array (Z :. Int :. Int) a
= Array (Z :. Int :. Int :. Int) a

Int, Float, (a,b), Maybe a, etc.

Accelerate

• Compile and execute an Accelerate program

- The same program can be run on different targets

�26There’s also runQ, but don’t worry about that

import Data.Array.Accelerate.Interpreter
-- import Data.Array.Accelerate.LLVM.Native
-- import Data.Array.Accelerate.LLVM.PTX

run :: Arrays a => Acc a -> a
runN :: Afunction f => f -> AfunctionR f

runN :: (…) => Acc a -> a
runN :: (…) => (Acc a -> Acc b) -> a -> b
runN :: (…) => (Acc a -> Acc b -> Acc c) -> a -> b -> c
-- ...

Accelerate

• Parallel computations take place on arrays

- A stratified language of parallel (Acc) and scalar (Exp) computations

- Parallel operations consist of many scalar expressions executed in parallel

�27

Accelerate

• The map operation:

- A collective operation (Acc) which applies the given scalar function (Exp) to each element of the array in
parallel

- map (\x -> x+1) xs on a one-dimensional array of floats:

�28

__global__ void map(float* d_xs, float* d_ys, int len)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < len) {
 float x = d_xs[i];
 d_ys[i] = x + 1;
 }
}

Acc

Exp

Accelerate

• The map operation:

- A collective operation (Acc) which applies the given scalar function (Exp) to each element of the array in
parallel

�29

map :: (Shape sh, Elt a, Elt b)
 => (Exp a -> Exp b)
 -> Acc (Array sh a)
 -> Acc (Array sh b)

"an array index type" "an array element type"

Oddities

• Accelerate is a language embedded in Haskell

- We reuse much of the syntax, but the semantics are different

• Strict evaluation, unboxed data, no general recursion…

- Actually, Acc and Exp are just data structures!

• Have a Show instance

• The Haskell program generates the Accelerate program

• The run operation performs runtime (cross) compilation

- But the integration has some oddities as well…

�30

Lifting & Unlifting

• Consider the following two types:

- The first is a Haskell pair of embedded expressions on Int

- The second is an embedded expression returning a pair of Ints

• How to convert between the two?

- The pattern synonym T2

- (legacy: the functions lift and unlift (not recommended))

�31

x :: (Exp Int, Exp Int)
y :: Exp (Int, Int)

Pattern synonyms

• We use pattern synonyms for constructing & destructing embedded tuples

- Can’t overload built-in syntax (,), (,,), etc.

- Instead we use T2, T3, etc. at both the Acc and Exp level

�32

result :: Acc (Vector Int, Scalar Int)
result = …

T2 idx tot = result
 -- idx :: Acc (Vector Int)
 -- tot :: Acc (Scalar Int)

res = T2 tot idx
 -- res :: Acc (Scalar Int, Vector Int)

Shapes

• Array shapes (& indices) are snoc-lists formed from Z and (:.)

- Z is a zero-dimensional (scalar)

- (:.) adds one inner-most dimension on the right

• More pattern synonyms for constructing & destructing indices

�33

type DIM1 = Z :. Int
type Vector a = Array DIM1 a

x :: Exp Int
I1 x :: Exp DIM1 -- you’ll need this one

Pattern matching

• Use the match operator to perform pattern matching in embedded code

- Also note the pattern synonyms for constructing/deconstructing cases

�34

foo :: Exp (Maybe Int) -> Exp Int
foo x = x & match \case
 Nothing_ -> 0
 Just_ y -> y + 1

Guards

• Unfortunately guard syntax doesn’t work

- Use a regular if-then-else (chain) instead

�35

nope :: Exp Int -> Exp Int
nope x
 | x < 0 = ...
 | otherwise = ...

Looping

• Can’t write recursive embedded functions directly

- Need to use an explicit (tail-recursive) looping combinator instead

- Continue applying the body function (second argument) as long as the predicate function (first argument)
returns true

�36

awhile
 :: Arrays a
 => (Acc a -> Acc (Scalar Bool))
 -> (Acc a -> Acc a)
 -> Acc a
 -> Acc a

Debugging

• Some trace functions for printf-style debugging

- Output a trace message as well as some arrays to the console before proceeding with the computation

- Useful for inspecting intermediate values

�37

atraceArray
 :: (Arrays a, Arrays b)
 => Text
 -> Acc a
 -> Acc b
 -> Acc b

use "quotes"

Documentation

• More information in the documentation

- https://ics.uu.nl/docs/vakken/b3cc/resources/acc-head-docs (latest version, used in the Quickhull template)

- https://hackage.haskell.org/package/accelerate (released version (older))

�38

Accelerate

• Implementing a data-parallel program consists of two parts:

- What are the collective (parallel) operations that need to be done?

- What does each individual (sequential) thread need to do?

�39

Quickhull

�40

Quickhull

• An algorithm to determine the small polygon containing a set of points

- You will implement a data-parallel version of the algorithm in Accelerate

- See the specification for details

�41

• Initial points

- The goal is to find the smallest polygon 
containing all these points

- This is known as the convex hull

Example

�42

• Create initial partition

- Choose two points that are definitely 
on the convex hull

- Partition others to either side of that  
line (above/left and below/right)

- Points of the same colour are in the 
same segment

Example

�43

• Recursively partition each segment

- This is done for all points at once,  
in data-parallel

- The hollow circles are points no longer  
under consideration

- Orange circles are on the convex hull

- Other colours are still undecided.

- Same colours are in the same partition

Example

�44

Example

• Continue partitioning each segment…

�45

Example

• … until no undecided points remain

�46

Photo by @zumothesamoyed

tot ziens Traditional compiler construction

�48Modern Compiler Implementation in Java, A. Appel and J. Palsberg

Modern compiler construction

�49https://msm.runhello.com/p/1003

B3CC: Concurrency
12: Data Parallelism (1)

Ivo Gabe de Wolff

Recap

• Concurrency: dealing with lots of things at once

• Parallelism: doing lots of things at once

- Processors are no longer getting faster: limitations in power consumption, memory speed, and instruction-level
parallelism

- Adding more processor cores has been the dominant method for improving processor performance for the last
decade

2

• Explicit threads

• Synchronise via locks, messages, or STM

• Modest parallelism

• Hard to program

• Operate simultaneously on bulk data

• Implicit synchronisation

• Massive parallelism

• Easy to program

Recap

3

… n{ { {

P1 P2 P3

…

Task parallelism Data parallelism

Goals

• Large applications use a mix of task- and data-parallelism

- There is a difference in how to make use of 2-4 cores vs. 32+ cores

• In the application of parallelism, we would like to achieve:

- Performance: ease of use, scalability, and predictability

- Productivity: expressivity, correctness, clarity, and maintainability

- Portability: between different machines, compilers, or architectures

4

Applications

• Games

- Probably the primary consumer market for teraflop computing applications

• Image and video editing

• Scientific computing

- Numeric simulations, modelling, etc.

• Machine learning

5

Patterns

• Patterns, or algorithmic skeletons

- A pattern is a recurring combination of task distribution and data access

- Patterns provide a vocabulary for [parallel] algorithm design

- These ideas are not tied to a particular hardware architecture

• This distinguishes two important aspects:

- Semantics: what we want to achieve

- Implementation: how to achieve this on a given architecture

6

Patterns

• Patterns also exist in serial code

- We often don't think of serial code in this way, however it helps to name these patterns in order to talk about
these ideas in a parallel context

- Compositional patterns: nesting

- Control-flow patterns: sequence, selection, repetition, and recursion

7

Patterns: nesting

• Nesting simply refers to the ability to hierarchically compose patterns

- Including recursive functions

8

do_physics

update_quadtree

compute_forces

update_positions

recursive

Patterns: sequence

• Tasks executed in a specified order

- We generally assume that the program is executed in the text order

- Modern CPUs violate this (out-of-order execution (instructions & memory))

- Programmer or language specifies if/how
memory operations may be reordered
(memory_order in c++)

9

https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Memory_ordering#Runtime_memory_ordering
https://en.cppreference.com/w/cpp/atomic/memory_order

f = a * a

g = a + a

h = f - g

f

g

A

h

B

f

g

A

h

B

Patterns: selection

• Conditionals are pervasive in serial code

- On average one branch every five instructions

- Modern CPUs speculatively execute (far) ahead of when c is known

- TensorFlow (google deep learning framework) always evaluates both branches of conditionals

10https://en.wikipedia.org/wiki/Speculative_execution

a

c

b

T Fif (c) {
 a;
} else {
 b;
}

Patterns: iteration

• Continually execute a task while some condition is true

- Parallelisation of loops is complicated due to loop-carried dependencies

- There is a lot of research in this area (polyhedral models, loop nests)

- Instead, several parallel patterns exist for specific loop forms: map, reduce, scan, scatter, gather…

11https://en.wikipedia.org/wiki/Polytope_model

f

c
T F

while (c) {
 f;
}

Map

• The map operation applies the same function to each element of a set

- This is a parallelisation of a loop with a fixed number of iterations

- There must not be any dependencies between loop iterations: the function uses only the input element value
and/or index

12https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:18

1 2 3 4 5 6 7 … n

+1 +1 +1 +1 +1 +1 +1 +1

2 3 4 5 6 7 8 … n+1

for (i = 0; i < len; ++i)
{
 x = xs[i];
 y = f(x);
 ys[i] = y;
}

Map

• The map operation applies the same function to each element of a set

- The function only has access to a single value

- The number of iterations is dynamic (e.g. size of the array) but fixed at the start of the map: does not vary

based on the loop body

- Note that the order of operations is not specified

13

zn+1 = z2n + c

<latexit sha1_base64="vkojeydVxK8CGHaly0xXuJwKr88=">AAACDXicbVDLSsNAFJ34rPUVdelmsApCoSSloBuh6MZlBfuANobJZNoOnUzCzESIIT/gxl9x40IRt+7d+TdO2iy09cDlHs65l5l7vIhRqSzr21haXlldWy9tlDe3tnd2zb39jgxjgUkbhywUPQ9JwignbUUVI71IEBR4jHS9yVXud++JkDTktyqJiBOgEadDipHSkmsepwOfyoihRKqEEfjgprxqZxd5z+7SelbFWdk1K1bNmgIuErsgFVCg5ZpfAz/EcUC4wgxJ2betSDkpEopiRrLyIJYkQniCRqSvKUcBkU46vSaDJ1rx4TAUuriCU/X3RooCKZPA05MBUmM57+Xif14/VsNzJ6U8ihXhePbQMGZQhTCPBvpUEKxYognCguq/QjxGAmGlA8xDsOdPXiSdes1u1Bo3jUrzsoijBA7BETgFNjgDTXANWqANMHgEz+AVvBlPxovxbnzMRpeMYucA/IHx+QOuLZvs</latexit>

Map

• The map operation applies the same function to each element of a set

- On the GPU this corresponds to one thread per element

- Number of loop iterations is controlled by how many threads the kernel is launched with

- Host code:

- GPU code:

14

__global__ void map(float* d_xs, float* d_ys, int len)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < len) {
 d_ys[i] = f (d_xs[i]);
 }
}

map<<<4, 1024>>>(h_xs, h_ys, 4000);

Map

• In the graphics pipeline, vertex and fragment shaders are a parallel map

- Each shader outputs a single pixel or vertex; no other side effects

- Shaders are also examples of streaming algorithms: data is used exactly
once, so no caching is necessary

• On the CPU, can be implemented via

- Static schedule (like count & list mode of IBAN)

- fork-join

- divide-and-conquer (like search mode of IBAN)

- …

15

0 1 2 3

6

[0,4)

[0,2) [2,4) [4,6) [6,9)

[6,7) [7,9)

7 8

54

[4,9)

[0,9)

Stencil

• A map with access to the neighbourhood around each element

- The set of neighbours is fixed, and relative to the element

- Ubiquitous in scientific, engineering, and image processing algorithms

16https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:37

i-1 i i+1 ?

f f f f f f f

?

neighbourhood{

input array

function

output array

Stencil

• The stencil pattern

- The set of neighbouring elements used by the stencil function

- The shape of the stencil pattern can be anything: sparse, non-symmetric, etc.

- The pattern of the stencil determines how the stencil operates in an application

17

__global__ void stencil(float* xs, float* ys, int width, int height)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 ys[i] = f (xs[i-width]
 , xs[i-1], xs[i], xs[i+1]
 , xs[i+width]
);
}

Example

• Apply a stencil operation to the inner square

- Treat out-of-bounds elements are zero (we'll come back to this later)

18

0 0 0 0

0 9 7 0

0 6 4 0

0 0 0 0

A

B

Example

• Apply a stencil operation to the inner square

- Treat out-of-bounds elements are zero

- Stencil function: average of the blue squares

19

0 0 0 0

0 9 7 0

0 6 4 0

0 0 0 0

4,4

A

B

Example

• Apply a stencil operation to the inner square

- Treat out-of-bounds elements are zero

- Stencil function: average of the blue squares

20

0 0 0 0

0 9 7 0

0 6 4 0

0 0 0 0

4,4 4,0

A

B

Example

• Apply a stencil operation to the inner square

- Treat out-of-bounds elements are zero

- Stencil function: average of the blue squares

21

0 0 0 0

0 9 7 0

0 6 4 0

0 0 0 0

4,4 4,0

3,8

A

B

Example

• Apply a stencil operation to the inner square

- Treat out-of-bounds elements are zero

- Stencil function: average of the blue squares

22

0 0 0 0

0 9 7 0

0 6 4 0

0 0 0 0

4,4 4,0

3,8 3,4

A

B

Example: Conway’s game of life

• Cellula automaton developed in 1970

- Evolution of the system is determined from an initial state

- Cells live or die based on the population of their surrounding neighbours

- Turing complete!

23
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
https://github.com/tmcdonell/gameoflife-accelerate

Example: heat equation

• Iterative codes are ones that update their data in steps

• Most commonly found in simulations for scientific & engineering applications

- Often used to solve partial differential equations

24
https://en.wikipedia.org/wiki/Stencil_code
https://github.com/tmcdonell/fisher-accelerate

Step 0 Step 200 Step 400 Step 600 Step 800 Step 1000

hot cold

r2u = 0

=
ui�1,j + ui+1,j + ui,j�1 + ui,j+1

4
<latexit sha1_base64="Zl3dAdYjgyqhh5u3YSIKOkpdqjo=">AAACOHicbZDLSgMxFIYzXmu9VV26CRZF6IWZUlAEoeDGnRXsBTq1ZNJMmzaTGZKMUIZ5LDc+hjtx40IRtz6B6bRgbf0h8PGfczg5vxMwKpVpvhhLyyura+upjfTm1vbObmZvvy79UGBSwz7zRdNBkjDKSU1RxUgzEAR5DiMNZ3g1rjceiJDU53dqFJC2h3qcuhQjpa1O5sbmyGHovgTDNDy5hCa07QRsVyAchZ2IFqz8IIY5OObcDOcHBeuXc1YcR+W4k8maRTMRXARrClkwVbWTeba7Pg49whVmSMqWZQaqHSGhKGYkTtuhJAHCQ9QjLY0ceUS2o+TwGB5rpwtdX+jHFUzc2YkIeVKOPEd3ekj15XxtbP5Xa4XKPW9HlAehIhxPFrkhg8qH4xRhlwqCFRtpQFhQ/VeI+0gnpnTWaR2CNX/yItRLRUvzbTlbuZjGkQKH4AicAgucgQq4BlVQAxg8glfwDj6MJ+PN+DS+Jq1LxnTmAPyR8f0Dsimnlw==</latexit><latexit sha1_base64="Zl3dAdYjgyqhh5u3YSIKOkpdqjo=">AAACOHicbZDLSgMxFIYzXmu9VV26CRZF6IWZUlAEoeDGnRXsBTq1ZNJMmzaTGZKMUIZ5LDc+hjtx40IRtz6B6bRgbf0h8PGfczg5vxMwKpVpvhhLyyura+upjfTm1vbObmZvvy79UGBSwz7zRdNBkjDKSU1RxUgzEAR5DiMNZ3g1rjceiJDU53dqFJC2h3qcuhQjpa1O5sbmyGHovgTDNDy5hCa07QRsVyAchZ2IFqz8IIY5OObcDOcHBeuXc1YcR+W4k8maRTMRXARrClkwVbWTeba7Pg49whVmSMqWZQaqHSGhKGYkTtuhJAHCQ9QjLY0ceUS2o+TwGB5rpwtdX+jHFUzc2YkIeVKOPEd3ekj15XxtbP5Xa4XKPW9HlAehIhxPFrkhg8qH4xRhlwqCFRtpQFhQ/VeI+0gnpnTWaR2CNX/yItRLRUvzbTlbuZjGkQKH4AicAgucgQq4BlVQAxg8glfwDj6MJ+PN+DS+Jq1LxnTmAPyR8f0Dsimnlw==</latexit><latexit sha1_base64="Zl3dAdYjgyqhh5u3YSIKOkpdqjo=">AAACOHicbZDLSgMxFIYzXmu9VV26CRZF6IWZUlAEoeDGnRXsBTq1ZNJMmzaTGZKMUIZ5LDc+hjtx40IRtz6B6bRgbf0h8PGfczg5vxMwKpVpvhhLyyura+upjfTm1vbObmZvvy79UGBSwz7zRdNBkjDKSU1RxUgzEAR5DiMNZ3g1rjceiJDU53dqFJC2h3qcuhQjpa1O5sbmyGHovgTDNDy5hCa07QRsVyAchZ2IFqz8IIY5OObcDOcHBeuXc1YcR+W4k8maRTMRXARrClkwVbWTeba7Pg49whVmSMqWZQaqHSGhKGYkTtuhJAHCQ9QjLY0ceUS2o+TwGB5rpwtdX+jHFUzc2YkIeVKOPEd3ekj15XxtbP5Xa4XKPW9HlAehIhxPFrkhg8qH4xRhlwqCFRtpQFhQ/VeI+0gnpnTWaR2CNX/yItRLRUvzbTlbuZjGkQKH4AicAgucgQq4BlVQAxg8glfwDj6MJ+PN+DS+Jq1LxnTmAPyR8f0Dsimnlw==</latexit><latexit sha1_base64="Zl3dAdYjgyqhh5u3YSIKOkpdqjo=">AAACOHicbZDLSgMxFIYzXmu9VV26CRZF6IWZUlAEoeDGnRXsBTq1ZNJMmzaTGZKMUIZ5LDc+hjtx40IRtz6B6bRgbf0h8PGfczg5vxMwKpVpvhhLyyura+upjfTm1vbObmZvvy79UGBSwz7zRdNBkjDKSU1RxUgzEAR5DiMNZ3g1rjceiJDU53dqFJC2h3qcuhQjpa1O5sbmyGHovgTDNDy5hCa07QRsVyAchZ2IFqz8IIY5OObcDOcHBeuXc1YcR+W4k8maRTMRXARrClkwVbWTeba7Pg49whVmSMqWZQaqHSGhKGYkTtuhJAHCQ9QjLY0ceUS2o+TwGB5rpwtdX+jHFUzc2YkIeVKOPEd3ekj15XxtbP5Xa4XKPW9HlAehIhxPFrkhg8qH4xRhlwqCFRtpQFhQ/VeI+0gnpnTWaR2CNX/yItRLRUvzbTlbuZjGkQKH4AicAgucgQq4BlVQAxg8glfwDj6MJ+PN+DS+Jq1LxnTmAPyR8f0Dsimnlw==</latexit>

Example: gaussian blur

• Convolution with a Gaussian function

- Typically used to reduce image noise

- Each pixel becomes the weighted sum of the surrounding pixels

25
https://en.wikipedia.org/wiki/Gaussian_blur
https://github.com/tmcdonell/accelerate-examples/blob/master/examples/canny/src-acc/Canny.hs#L82

(I ⌦K)(x, y) =
X

i

X

j

I(x+ i, y + j)K(i, j)

<latexit sha1_base64="qMBf4mP4CA81EPlvDnB/FY6ZGpY=">AAACH3icbVBdSwJBFJ21L7OvrR57GZJgRZHdkOqhQOgl8cUgTVCR2XFWR2c/mJkNl8V/0kt/pZceioje/DeNug+lHRjmcM693HuPHTAqpGlOtdTa+sbmVno7s7O7t3+gHx41hB9yTOrYZz5v2kgQRj1Sl1Qy0gw4Qa7NyKM9up35j0+EC+p7DzIKSMdFfY86FCOppK5+YVRg25fUJQJWc8a4AKMcvIFtEbpduviGsGKM81Q5+WEOVg1aGOa6etYsmnPAVWIlJAsS1Lr6d7vn49AlnsQMCdGyzEB2YsQlxYxMMu1QkADhEeqTlqIeUgt14vl9E3imlB50fK6eJ+Fc/d0RI1eIyLVVpYvkQCx7M/E/rxVK56oTUy8IJfHwYpATMih9OAsL9ignWLJIEYQ5VbtCPEAcYakizagQrOWTV0njvGiViqX7UrZ8ncSRBifgFBjAApegDO5ADdQBBs/gFbyDD+1Fe9M+ta9FaUpLeo7BH2jTH2F5ntM=</latexit>

⌦

<latexit sha1_base64="utSR/fLLc+AIyqsBQleAb7SDV5M=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4koIVFwMYygvmA5Ah7m02yZG/32J0TwpEfYWOhiK2/x85/4ya5QhMfDDzem2FmXpRIYdH3v73CxubW9k5xt7S3f3B4VD4+aVmdGsabTEttOhG1XArFmyhQ8k5iOI0jydvR5G7ut5+4sUKrR5wmPIzpSImhYBSd1O5pFDG3/XLFr/oLkHUS5KQCORr98ldvoFkac4VMUmu7gZ9gmFGDgkk+K/VSyxPKJnTEu44q6paE2eLcGblwyoAMtXGlkCzU3xMZja2dxpHrjCmO7ao3F//zuikOb8JMqCRFrthy0TCVBDWZ/04GwnCGcuoIZUa4WwkbU0MZuoRKLoRg9eV10rqqBrVq7aFWqd/mcRThDM7hEgK4hjrcQwOawGACz/AKb17ivXjv3seyteDlM6fwB97nD4Zjj64=</latexit>

9⇥ 9,� = 3

<latexit sha1_base64="IAbjBMkgHPDB4ykpI62wWzK56tw=">AAAB/XicdVDLSgMxFM3UV62v8bFzEyyCCxmmdUQLCgU3LivYB3SGkkkzbWiSGZKMUIfir7hxoYhb/8Odf2P6EHweuHA4517uvSdMGFXadd+t3Nz8wuJSfrmwsrq2vmFvbjVUnEpM6jhmsWyFSBFGBalrqhlpJZIgHjLSDAcXY795Q6SisbjWw4QEHPUEjShG2kgde6cCfU05UbByCH1FexydH3Xsout4x17FLcPfpOS4ExTBDLWO/eZ3Y5xyIjRmSKl2yU10kCGpKWZkVPBTRRKEB6hH2oYKZBYG2eT6Edw3ShdGsTQlNJyoXycyxJUa8tB0cqT76qc3Fv/y2qmOToOMiiTVRODpoihlUMdwHAXsUkmwZkNDEJbU3ApxH0mEtQmsYEL4/BT+Txplp+Q53pVXrJ7N4siDXbAHDkAJnIAquAQ1UAcY3IJ78AierDvrwXq2XqatOWs2sw2+wXr9AKsglBU=</latexit>

=

<latexit sha1_base64="X0z6O0rnQmGqBHeWQBkbpgoHXgQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoAeFghePLdhaaEPZbCft2s0m7G6EEvoLvHhQxKs/yZv/xm2bg7Y+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqK3jVDFssVjEqhNQjYJLbBluBHYShTQKBD4E49uZ//CESvNY3ptJgn5Eh5KHnFFjpeZNv1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7olJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvkZl0lqULLFojAVxMRk9jUZcIXMiIkllClubyVsRBVlxmZTsiF4yy+vkvZF1atVa81apX6dx1GEEziFc/DgEupwBw1oAQOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH41FjMI=</latexit>

Example: gaussian blur

• Gaussian function

- This is a separable convolution:
instead of a single n × n stencil,
it can be implemented as an 1 × n stencil after a n × 1 stencil

- This is significant for large n

- Example: 3 × 3 stencil

26http://dev.theomader.com/gaussian-kernel-calculator

2

4
0.077847 0.123317 0.077847
0.123317 0.195346 0.123317
0.077847 0.123317 0.077847

3

5 =

2

4
0.27901
0.44198
0.27901

3

5⇥
⇥
0.27901 0.44198 0.27901

⇤

<latexit sha1_base64="DO6CClpGZUGsPJle/qYmWqi4big=">AAADCnicfVJNj9MwEHXC1xK+unDkYlFRcariNpBWAmklLhx3Jbq7UhNVjjtprXWcyHYQVdQzl/0re+EAQlz5Bdz4N+smAe0XHcnS05vxm+fxJIXg2vj+H8e9dfvO3Xs7970HDx89ftLZfXqo81IxmLBc5Oo4oRoElzAx3Ag4LhTQLBFwlJy83+SPPoHSPJcfzaqAOKMLyVPOqLHUbNfBkYDUTKMEFlxWGTWKf157ft8Pw1EQ4h72+2QwHJIGtmwUeZdoMn49DN5cLK4rtml4Ecj5336R4oulib133n/cDMKxTxrRICDjUQNr9kahyPAM9Ha13j+x3jatWadrPdeBrwPSgi5qY3/W+R3Nc1ZmIA0TVOsp8QsTV1QZzgSsvajUUFB2QhcwtVBS6zSu6q9c45eWmeM0V/ZIg2v24o2KZlqvssRWWptLfTW3IW/KTUuTjuKKy6I0IFnTKC0FNjne7AWecwXMiJUFlCluvWK2pIoyY7fHs0MgV598HRwO+iToBwdBd+9tO44d9By9QK8QQSHaQx/QPpog5nxxzpxvznf31P3q/nB/NqWu0955hi6F++scp//fJg==</latexit>

Stencil boundary

• What to do when the stencil pattern falls outside the bounds of the array?

- At the edges of a simulation, we may need to impose boundary conditions

• choose a fixed value or derivative (e.g. to impose symmetry)

• many options are possible…

• What about between processors?

27

Stencil boundary

• What happens at the boundary of the computation?

- Each larger box is owned by a thread / processor

• Ghost cells are one solution to the boundary and 
update issues of a stencil computation

- Each thread keeps a copy of the neighbour's
data to use in local computations

- The ghost cells must be updated after
each iteration of the stencil

- The set of ghost cells is called the halo

• A deeper halo can be used to reduce
communication for some redundant work

28

Stencil optimisations

• Use a different kernel for the interior and border regions

- In the gaussian blur example of a 512x512 pixel image, 98% of the pixels do not require in-bounds checks

• Optimise data locality & reuse through tiling

- Strip mining is an optimisation that groups elements in a way that avoids redundant memory access and aligns
accesses with cache lines

29

4 x (5 reads + 1 write) 14 reads + 4 writes

Stencil optimisations

Without tiling
• When handling row 0, row 1 is loaded in cache.

• First values of row 1 may already be out of cache, 

when handling row 1

30

With tiling
• Previously loaded row is still in cache

• Tile width is usually a power of 2, 

on GPUs often the warp size (32)

Example: LULESH

31
https://computing.llnl.gov/projects/co-design/lulesh
https://github.com/tmcdonell/lulesh-accelerate

Summary

• Data-parallelism is a good fit for parallel computing

- Conceptually simple programming model: single logical thread of control

- Separate the pattern (what you want to do) from the implementation (how to do it: optimisations, target
hardware, etc.)

32

tot ziens

B3CC: Concurrency
13: Data Parallelism (2)

Ivo Gabe de Wolff

Recap

• Data parallelism: well understood & supported approach to massive parallelism

- Single point of concurrency

- Easy to implement: well supported (Fortran, MPI, OpenMP…), scales to large number of processors, etc.

- Good cost model (work & span): conceptually very simple!

- BUT! the “something” has to be sequential

2

parallel_for (i = 1..N) {
 //... do something to xs[i]
}

… n{ { {

P1 P2 P3

…

xs

Recap

• The map operation applies the same function to each element of a set

- This is a parallelisation of a loop with a fixed number of iterations

- There must not be any dependencies between loop iterations: the function uses only the input element value
and/or index

3

1 2 3 4 5 6 7 … n

+1 +1 +1 +1 +1 +1 +1 +1

2 3 4 5 6 7 8 … n+1

for (i = 0; i < len; ++i)
{
 x = xs[i];
 y = f(x);
 ys[i] = y;
}

Recap

• A map with access to the neighbourhood around each element

- The set of neighbours is fixed, and relative to the element

- Ubiquitous in scientific, engineering, and image processing algorithms

4

i-1 i i+1 ?

f f f f f f f

?

neighbourhood{

input array

function

output array

Data parallelism on CPUs

• Distribute work via

- Static schedule (like count & list mode of IBAN)

- fork-join

- divide-and-conquer (like search mode of IBAN)

- …

5

0 1 2 3

6

[0,4)

[0,2) [2,4) [4,6) [6,9)

[6,7) [7,9)

7 8

54

[4,9)

[0,9)

Data parallelism on GPUs

• A GPU program consists of the kernel that runs on the GPU

- Kernel functions are executed n times in parallel by n different threads

- Each thread executes the same sequential program

- Each thread can distinguish itself from all others only by it’s thread identifier

• Any information a thread needs should be directly derivable from this ID

6

__global__ void kernel(float* xs, float* ys, int n, ...)
{
 int idx = blockDim.x * blockIdx.x + threadIdx.x;
 if (idx < n) {
 // do something
 }
}

More parallel patterns

• We have seen:

- Map

- Stencil

• We will discuss today and next time:

- Gather or backwards permute: random reads

- Scatter or permutation: random writes

- Fold or reduction: combined value of all items

- Scan prefix sum: at each index, combined value of all prior elements

7

Gather

• The gather pattern performs independent random reads in parallel

- Also known as a backwards permutation

- Collects all the data from a source array at the given locations

8https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:29

x0 x1 x2 x3 x4 x5 x6values

3 2 0 7 3 5 6 4

x7

indices

x3 x2 x0 x7 x3 x5 x6 x4result

for (i = 0; i < len; ++i)
{
 idx = indices[i];
 val = values[idx];
 result[i] = val;
}

Gather

• The gather pattern performs independent random reads in parallel

- Requires a function from output index to input index

- Not all input values have to be read

- Some values may be read twice

- Input and output may have different dimensions

9

x0 x1 x2 x3 x4 x5 x6

3 2 0 7

x7

x3 x2 x0 x7

x1

x3

x2

x4

(0,0) (1,1) (2,2) (3,3)

x1 x2 x3 x4

Example: matrix transpose

10

1 2 3 4
5 6 7 8
9 10 11 12

1 5 9
2 6 10
3 7 11
4 8 15

• Transpose rows and columns of a matrix

Example: matrix transpose

• Transpose the rows and columns of a matrix

11

transpose :: Elt a => Acc (Matrix a) -> Acc (Matrix a)
transpose xs =
 let I2 rows cols = shape xs
 in backpermute (I2 cols rows) (\(I2 y x) -> I2 x y) xs

__global__ void transpose(float* xs, float* ys, int rows, int cols)
{
 int idx = blockDim.x * blockIdx.x + threadIdx.x;
 if (idx < n) {
 int row = idx / rows;
 int col = idx % cols;
 ...
 }
}

Example: matrix transpose

12

1 2 3 4
5 6 7 8
9 10 11 12

1 5 9
2 6 10
3 7 11
4 8 15

1 2 3 4 5 6 7 8 9 10 11 12 1 5 9 2 6 10 3 7 11 4 8 15

• In memory, this is stored as:

• To write one row of the output, 
we read one column of the input

Example: matrix transpose

13

1 2 3 4
5 6 7 8
9 10 11 12

1 5 9
2 6 10
3 7 11
4 8 15

1 2 3 4 5 6 7 8 9 10 11 12 1 5 9 2 6 10 3 7 11 4 8 15

Example: matrix transpose

• The memory access pattern for transpose is not ideal

- On the CPU work in tiles to improve cache behaviour

- On the GPU use shared memory explicitly to do coalesced reads & writes

14

Example: matrix vector multiply

• The dense matrix-vector multiply

- Perform a dot-product of each row of the matrix against the vector

- Can be parallelised in different ways

15

for (r = 0; r < rows; ++r) {
 result[r] = 0;
 for (c = 0; c < cols; ++c) {
 // dot product of this row with the vector
 result[r] += matrix[r][c] * vector[c];
 }
}

Example: sparse-matrix vector multiply

16

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

3
1
0
2
1

4
11
0
1
9

=⋅((()))

Example: sparse-matrix vector multiply

17

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

3
1
0
2
1

4
11
0
1
9

=⋅((()))
Example: sparse-matrix vector multiply

• Multiply a sparse matrix by a dense vector

- Example: Hardesty3 dataset

• Matrix size is 8.2M x 7.6M

• Only 40M non-zero entries (0.000065%)

- Want to store only the non-zero entries, as
only these will contribute to the result

- Together with the row/column index of each
element (various encodings possible)

18https://sparse.tamu.edu/Hardesty/Hardesty3

Example: sparse-matrix vector multiply

• Store matrix in compressed sparse row format (CSR)

- Stores only the non-zero elements together with their column index

- Also need the number of non-zero elements in each row

- …corresponds to:

19

[(0, 1.0), (1, 1.0), (1, 7.0), (2, 3.0), (3, 2.0)
, (1, 1.0), (3, 3.0), (4, 4.0)]

segment descriptor

index-value pairs

[2, 3, 0, 1, 2]

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

()

Example: sparse-matrix vector multiply

• Store matrix in compressed sparse row format (CSR)

- Stores only the non-zero elements together with their column index

- Also need the number of non-zero elements in each row

- …corresponds to:

20

[(0, 1.0), (1, 1.0), (1, 7.0), (2, 3.0), (3, 2.0)
, (1, 1.0), (3, 3.0), (4, 4.0)]

segment descriptor

index-value pairs

[2, 3, 0, 1, 2]

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

()

Example: sparse-matrix vector multiply

• Store matrix in compressed sparse row format (CSR) 

• The sparse-matrix dense-vector multiply is then:

1. gather the values from the input vector at the column indices

2. pair-wise multiply (1) with the matrix values (zipWith)

3. segmented reduction of (2) with the matrix segment descriptor

- … more on reductions and segmented operations next time!

21https://github.com/tmcdonell/accelerate-examples/tree/master/examples/smvm

[0, 1, 1, 2, 3, 1, 3, 4]

segment descriptor

indices

[2, 3, 0, 1, 2]

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

()
vector [3, 1, 0, 2, 1]

[1.0, 1.0, 7.0, 3.0, 2.0, 1.0, 3.0, 3.0]values

Example: sparse-matrix vector multiply

• This can be viewed as a kind of nested data-parallel computation: parallel computations which spawn further
parallel work

- More difficult to parallelise (for both hardware and software)

- Segmented operators allow us to convert nested parallel computations into flat parallel computations

22

3 1 7 0 4 1 6 3

2 3 0 1 2

values

segment descriptor

4 11 0 1 9segmented fold

Gather

• Gather or backwards permutation transforms indices in the output array to indices in the input array

- But; arbitrary memory access patterns are slow (especially on the GPU)

- Simple pattern; many common cases which can be made more efficient

• Next is scatter, forward permutation, which transforms indices in the input array to indices in the output array

23

Scatter

• The scatter pattern performs independent random writes in parallel

- Also known as forward permutation

- Puts data from the source array into the specified locations

24https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:28

x0 x1 x2 x3 x4 x5 x6values

2 4 1 0 7 6 5 3

x7

indices

x3 x2 x0 x7 x1 x5 x6 x4result

for (i = 0; i < len; ++i)
{
 val = values[i];
 idx = indices[i];
 result[idx] = val;
}

Scatter

• The scatter pattern performs independent random writes in parallel

- Analogously to gather, we can consider scatter as an index mapping f
transforming indices in the input (source) array to indices in the output (destination) array

- More complex than gather, especially if

• f is not surjective: the range of f might not cover the entire codomain

• f is not injective: distinct indices in the domain may map to the same index in the codomain

• f is partial: elements in the domain may be ignored

25

• The index permutation might not cover every element in the output

- We need to first initialise the output array

Scatter

26

x0 x1 x2 x3

x2 x3 x0 x1

2 4 0 1

Collisions

• Multiple values may map to the same output index

- Possible strategies to handle collisions:

• Disallow

• Non-deterministically, one write succeeds

• Merge values with a given associative and commutative operation

27

x0 x1 x2 x3

?? x0 x1

2 4 1 1

Collisions: atomic instructions

Possible strategies to handle collisions:

1. Non-deterministically, one write succeeds

- Requires atomic writes

- Writes of single words are typically atomic, but that depends on architecture

2. Merge values with a given associative and commutative operation

- Use an atomic read-modify-write instruction (e.g. atomic_fetch_add), if it exists for this operation

- Use an atomic compare-and-swap loop, if a value is a single word

• Maximal size of a word for compare-and-swap depends on the architecture

3. Use (per element) locks otherwise
28

Collisions: locks

• A general merge function might need to implement some locking strategy

- If no atomic instruction exists; or multiple words are updated

- Recall: this classic spin lock executed on the GPU can deadlock:

29

do {
 old = atomic_exchange(&lock[i], 1);
} while (old == 1);

/* critical section */

atomic_exchange(&lock[i], 0);

Example: histogram

• Computing a histogram requires merging writes to the same location

• Sample data:

30https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:permute

[0,0,1,2,1,1,2,4,8,3,4,9,8,3,2,5,5,3,1,2]

8 3 2 5 5 3 1 21 1 2 4 8 3 4 90 0 1 2

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1values

indices

result 0 0 0 0 0 00 0 0 0

atomic_add()

1

atomic_add()

1

atomic_add()

2 2 2 0 0 2 12 4 4 3

Example: filter (compact)

• Return only those elements of the array which pass a predicate

1. map the predicate function over the
values to determine which to keep

2. exclusive scan the boolean flags to
determine the output locations and
number of elements to keep

3. permute the values into the position given
by (2) if (1) is true

31https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:filter

x0 x1 x2 x3 x4 x5 x6 x7

1 1 0 0 1 0 1 0

0 1 2 2 2 3 3 4

x0 x1 x4 x6

4

Scatter

• Scatter is more expensive than gather for a number of reasons

- Not only to handle collisions!

- Due to the behaviour of caches, there is inter-core communication when threads access the same cache line,
even if there is no actual collision

- If the target locations are known in advance, scatter can be converted into a gather operation (this may require
extra processing)

32

Scatter

• Reframing an algorithm can be key to converting scatter to gather

- As always, there are different tradeoffs in computation vs. communication

- Per element: scatter

- Per node: gather

33

element&

node&

Figure 1.2. Variables on a staggered mesh. Thermodynamic variables are represented at element

centers. Kinematic variables are represented at nodes. The figure shows a two-dimensional mesh

for simplicity; a three-dimensional mesh representation is the obvious extension.

point at the element center. Kinematic variables such as �!X and �!
U are defined at the element nodes.

The single-point quadrature mesh elements used in the challenge problem implementation, while less
accurate than alternatives, have a long history of demonstrated robustness for modeling realistic prob-
lems involving plastic flow and shock discontinuities. The spatial relationships among these variables
are illustrated in Fig. 1.2. Spatial gradients are computed using finite element approximations. The
reference code (see Section 1.3) uses specific computational operations to perform the finite element
approximations that are employed in production hydrocodes.
1.2.3 Numerical Time Integration

After setting the initial values of the solution variables on the mesh and defining appropriate bound-
ary conditions, the solution evolves by integrating the equations in time. As is common in hydrody-
namics simulations, the challenge problem implementation uses an explicit time stepping algorithm
to advance the solution through a sequence of discrete time increments. That is, the solution at time
t
n is advanced to time t

n+1 = t
n +�t

n, where n is the step number and �t
n = t

n+1 � t
n is the time

increment.
An accurate and robust Lagrangian time integration algorithm requires that several issues be ad-

dressed: time increment selection, artificial viscosity, and an hourglass filter. Production Lagrangian
hydrocodes treat these concerns in various ways all of which adds to algorithm and code complexity.
The inclusion of these mechanisms in our challenge problem code allows us to maintain essential
features of production hydrocodes.

The Courant-Friedrichs-Lewy (CFL) condition determines the maximum size of each time incre-
ment based on the shortest distance across any mesh element and the sound speed of the material
in the element [4]. The stability condition insures that the simulation does not propagate information
faster in the numerical approximation than is dictated by the governing equations. Since the same time
increment is used to advance the solution over the entire mesh, the determination of the maximum
allowable increment usually requires a collective communication operation.

To model the entropy-conserving properties of the governing equations properly, the discrete equa-
tions must be augmented with a dissipation mechanism. In reality, physical viscosity has a dissipation
length scale of a few molecular mean free paths which cannot be represented at the length scale of

7

element&

node&

Figure 1.2. Variables on a staggered mesh. Thermodynamic variables are represented at element

centers. Kinematic variables are represented at nodes. The figure shows a two-dimensional mesh

for simplicity; a three-dimensional mesh representation is the obvious extension.

point at the element center. Kinematic variables such as �!X and �!
U are defined at the element nodes.

The single-point quadrature mesh elements used in the challenge problem implementation, while less
accurate than alternatives, have a long history of demonstrated robustness for modeling realistic prob-
lems involving plastic flow and shock discontinuities. The spatial relationships among these variables
are illustrated in Fig. 1.2. Spatial gradients are computed using finite element approximations. The
reference code (see Section 1.3) uses specific computational operations to perform the finite element
approximations that are employed in production hydrocodes.
1.2.3 Numerical Time Integration

After setting the initial values of the solution variables on the mesh and defining appropriate bound-
ary conditions, the solution evolves by integrating the equations in time. As is common in hydrody-
namics simulations, the challenge problem implementation uses an explicit time stepping algorithm
to advance the solution through a sequence of discrete time increments. That is, the solution at time
t
n is advanced to time t

n+1 = t
n +�t

n, where n is the step number and �t
n = t

n+1 � t
n is the time

increment.
An accurate and robust Lagrangian time integration algorithm requires that several issues be ad-

dressed: time increment selection, artificial viscosity, and an hourglass filter. Production Lagrangian
hydrocodes treat these concerns in various ways all of which adds to algorithm and code complexity.
The inclusion of these mechanisms in our challenge problem code allows us to maintain essential
features of production hydrocodes.

The Courant-Friedrichs-Lewy (CFL) condition determines the maximum size of each time incre-
ment based on the shortest distance across any mesh element and the sound speed of the material
in the element [4]. The stability condition insures that the simulation does not propagate information
faster in the numerical approximation than is dictated by the governing equations. Since the same time
increment is used to advance the solution over the entire mesh, the determination of the maximum
allowable increment usually requires a collective communication operation.

To model the entropy-conserving properties of the governing equations properly, the discrete equa-
tions must be augmented with a dissipation mechanism. In reality, physical viscosity has a dissipation
length scale of a few molecular mean free paths which cannot be represented at the length scale of

7

Summary

• Performance is often more limited by data movement than computation

- Transferring data across memory layers is costly

- Data organisation and layout can help to improve locality & minimise access times

- Design the application around the data movement

• Similar consistency issues arise as when dealing with computation parallelism

• Might involve the creation of additional intermediate data structures

• Some applications are all about data movement: searching, sorting…

34

Photo by ipet photo

tot ziens

B3CC: Concurrency
14: Data Parallelism (3)

Ivo Gabe de Wolff

Recap

2

… n{ { {

P1 P2 P3

…

• Data parallelism: well understood approach to massive parallelism

- Distributes the data over the different processing nodes

- Executes the same computation on each of the nodes (threads)

- Scales to very large numbers of processors

- Conceptually simple: single thread of control

Recap

• So far our parallel patterns are embarrassingly parallel

- Each operation is completely independent* from
the computation in other threads

• But some collective operations deal with the data as a whole

- The computation of each output element may depend on the results at other outputs (computed by other
threads)

- More difficult to parallelise!

3

__global__ void kernel(float* xs, float* ys, int n, ...)
{
 int idx = blockDim.x * blockIdx.x + threadIdx.x;
 if (idx < n) {
 // do something & communicate with others
 }
}

Fold

• Combine a collection of elements into a single value

- A function combines elements pair-wise

- Example: sum, minimum, maximum

4https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:32

// fold1 (n > 0)
r = x[0];
for (i = 1; i < n; ++i)
 r = combine(r, x[i]);

// fold (n >= 0)
r = initial_value;
for (i = 0; i < n; ++i)
 r = combine(r, x[i]);

Fold

• Parallel reduction changes the order of operations

- Number of operations remains the same, using ⎡log2 N⎤ steps

5

Sequential Parallel

Fold

• Parallel reduction changes the order of operations

- In order to do this, the combination function must be associative

- Other optimisations are possible if the
function is commutative, or the initial value
is an identity element

- In general difficult to automatically prove
these properties for user defined functions

6

x0 x1 x2 x3 x4 x5 x6 x7

r

r = x0 ⌦ x1 ⌦ x2 ⌦ x3 ⌦ x4 ⌦ x5 ⌦ x6 ⌦ x7

= ((((((x0 ⌦ x1)⌦ x2)⌦ x3)⌦ x4)⌦ x5)⌦ x6)⌦ x7

= ((x0 ⌦ x1)⌦ (x2 ⌦ x3))⌦ ((x4 ⌦ x5)⌦ (x6 ⌦ x7))
<latexit sha1_base64="UaqP7fjSGrVhs0hxosTv4QBiZA4=">AAADInicdZLLSgMxFIYz4328tbp0EyxKuykztrZFEApuXFawF+iUkklTDc1cSDJiKT6LG1/FjQtFXQk+jJm2QlrtD4HvnJMz/5wkXsSokLb9ZZhLyyura+sb1ubW9s5uKr3XEGHMManjkIW85SFBGA1IXVLJSCviBPkeI01vcJHUm3eECxoG13IYkY6PbgLapxhJleqmjQqHx+fwvmtDN5TUJ0Kxo/GJxgWNixqfalzSuAxd14LJ97NjzbnkdBs9KOhBUQ9O9aCkB2VLM1tolJ0bKKeVsnNDzXTNjJV0ud1Uxs4XKrYS/AtO3h4rA6aqdVMfbi/EsU8CiRkSou3YkeyMEJcUM/JgubEgEcIDdEPaCgOk3Dqj8RU/wCOV6cF+yNUKJBxn9Y4R8oUY+p7a6SN5K+ZrSfK/WjuW/UpnRIMoliTAE6N+zKAMYfJeYI9ygiUbKkCYU/WvEN8ijrBUr8pSh/A7KVwMjZO8o/iqmKmeTY9jHRyAQ5AFDiiDKrgENVAH2Hg0no1X4818Ml/Md/NzstU0pj37YEbm9w+/6PPC</latexit><latexit sha1_base64="UaqP7fjSGrVhs0hxosTv4QBiZA4=">AAADInicdZLLSgMxFIYz4328tbp0EyxKuykztrZFEApuXFawF+iUkklTDc1cSDJiKT6LG1/FjQtFXQk+jJm2QlrtD4HvnJMz/5wkXsSokLb9ZZhLyyura+sb1ubW9s5uKr3XEGHMManjkIW85SFBGA1IXVLJSCviBPkeI01vcJHUm3eECxoG13IYkY6PbgLapxhJleqmjQqHx+fwvmtDN5TUJ0Kxo/GJxgWNixqfalzSuAxd14LJ97NjzbnkdBs9KOhBUQ9O9aCkB2VLM1tolJ0bKKeVsnNDzXTNjJV0ud1Uxs4XKrYS/AtO3h4rA6aqdVMfbi/EsU8CiRkSou3YkeyMEJcUM/JgubEgEcIDdEPaCgOk3Dqj8RU/wCOV6cF+yNUKJBxn9Y4R8oUY+p7a6SN5K+ZrSfK/WjuW/UpnRIMoliTAE6N+zKAMYfJeYI9ygiUbKkCYU/WvEN8ijrBUr8pSh/A7KVwMjZO8o/iqmKmeTY9jHRyAQ5AFDiiDKrgENVAH2Hg0no1X4818Ml/Md/NzstU0pj37YEbm9w+/6PPC</latexit><latexit sha1_base64="UaqP7fjSGrVhs0hxosTv4QBiZA4=">AAADInicdZLLSgMxFIYz4328tbp0EyxKuykztrZFEApuXFawF+iUkklTDc1cSDJiKT6LG1/FjQtFXQk+jJm2QlrtD4HvnJMz/5wkXsSokLb9ZZhLyyura+sb1ubW9s5uKr3XEGHMManjkIW85SFBGA1IXVLJSCviBPkeI01vcJHUm3eECxoG13IYkY6PbgLapxhJleqmjQqHx+fwvmtDN5TUJ0Kxo/GJxgWNixqfalzSuAxd14LJ97NjzbnkdBs9KOhBUQ9O9aCkB2VLM1tolJ0bKKeVsnNDzXTNjJV0ud1Uxs4XKrYS/AtO3h4rA6aqdVMfbi/EsU8CiRkSou3YkeyMEJcUM/JgubEgEcIDdEPaCgOk3Dqj8RU/wCOV6cF+yNUKJBxn9Y4R8oUY+p7a6SN5K+ZrSfK/WjuW/UpnRIMoliTAE6N+zKAMYfJeYI9ygiUbKkCYU/WvEN8ijrBUr8pSh/A7KVwMjZO8o/iqmKmeTY9jHRyAQ5AFDiiDKrgENVAH2Hg0no1X4818Ml/Md/NzstU0pj37YEbm9w+/6PPC</latexit><latexit sha1_base64="UaqP7fjSGrVhs0hxosTv4QBiZA4=">AAADInicdZLLSgMxFIYz4328tbp0EyxKuykztrZFEApuXFawF+iUkklTDc1cSDJiKT6LG1/FjQtFXQk+jJm2QlrtD4HvnJMz/5wkXsSokLb9ZZhLyyura+sb1ubW9s5uKr3XEGHMManjkIW85SFBGA1IXVLJSCviBPkeI01vcJHUm3eECxoG13IYkY6PbgLapxhJleqmjQqHx+fwvmtDN5TUJ0Kxo/GJxgWNixqfalzSuAxd14LJ97NjzbnkdBs9KOhBUQ9O9aCkB2VLM1tolJ0bKKeVsnNDzXTNjJV0ud1Uxs4XKrYS/AtO3h4rA6aqdVMfbi/EsU8CiRkSou3YkeyMEJcUM/JgubEgEcIDdEPaCgOk3Dqj8RU/wCOV6cF+yNUKJBxn9Y4R8oUY+p7a6SN5K+ZrSfK/WjuW/UpnRIMoliTAE6N+zKAMYfJeYI9ygiUbKkCYU/WvEN8ijrBUr8pSh/A7KVwMjZO8o/iqmKmeTY9jHRyAQ5AFDiiDKrgENVAH2Hg0no1X4818Ml/Md/NzstU0pj37YEbm9w+/6PPC</latexit>

7

https://ausopen.com/draws#!mens-singles

Fold in tournaments

• Australian Open has 128 participants

• Fold “computes” the best or maximum player

• Sequentially would take 127 days

- Player 1 vs player 2, its winner vs player 3, that winner vs player 4, …

- Assuming a person can only play one match per day

• With enough courts, this takes log2(128) = 7 days

• In reality, takes 15 days as the first rounds take multiple days

8

Associativity

• Sum works in parallel because addition is associative

- Sequential: (((x + y) + z) + w)

- Recursive: ((x + y) + (z + w))

• Associative: change the position of the parentheses:	 ((x + y) + z) ≡ (x + (y + z))

• Commutative: change the position of the variables: 	 x + y ≡ y + x

- Example:

• Function composition is associative: (f ⋅ g) ⋅ h ≡ f ⋅ (g ⋅ h)

• But not commutative: (f ⋅ g) ≢ (g ⋅ f)

9

Associativity

• “Best” in sports is probably not associative (nor deterministic)

• Strictly speaking, computer arithmetic is not 
associative

- Integer arithmetic can over/underflow

- Floating-point values have limited precision

- Example: 7-digit mantissa

10http://www.smbc-comics.com/comic/2013-06-05
https://en.wikipedia.org/wiki/Kahan_summation_algorithm

1234.567
 45.67844
 0.000400

1234.567 + 45.67844 = 1280.24544
 + 0.000400 = 1280.2454
 = 1280.245

45.67844 + 0.000400 = 45.67884
 + 1234.567 = 1280.24584
 = 1280.256

Fold

• In practice, the input is split into multiple
tiles (chunks)

• The tiles are distributed over the available
cores (for CPUs) or streaming
multiprocessors (GPUs)

• The results per tile are then reduced

- With a sequential fold,
or recursively with a parallel fold

11https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Fold

• Reduction happens on multiple levels in the hardware

• For a GPU:

- Each thread handles multiple elements, with a sequential loop

- Each warp reduces the values of its threads

- Each thread block reduces the values of its warps
and writes the results to global memory

- In a separate kernel, we reduce the results of all thread blocks

12

• For a CPU:

- Each SIMD lane …

- Each thread …

- Afterwards, reduce
the results of all
threads

Example: dot product

• The vector dot-product operation pair-wise multiplies the elements of two vectors, and then sums the result

- A combination of zipWith followed by a fold

- These operations can be fused to avoid storing the intermediate result

- Array fusion is an important optimisation for collection-based programming models (c.f. loop fusion)

13

a · b =
n�1X

i=0

aibi
<latexit sha1_base64="8w5ZR7js2k+s6AoVtEuaNexo7Q4=">AAACHXicbVDNS8MwHE3n15xfVY9egmPgxdHKQC+DoRePE9wHrLWkWbqFpWlJUmGU/iNe/Fe8eFDEgxfxvzHdKujmg8DLe/mR93t+zKhUlvVllFZW19Y3ypuVre2d3T1z/6Aro0Rg0sERi0TfR5IwyklHUcVIPxYEhT4jPX9ylfu9eyIkjfitmsbEDdGI04BipLTkmQ0nRGrsBynKHDyM1M/Vz2ATOjIJvZQ2rewu5ad2BpFHoe9Rz6xadWsGuEzsglRBgbZnfjjDCCch4QozJOXAtmLlpkgoihnJKk4iSYzwBI3IQFOOQiLddLZdBmtaGcIgEvpwBWfq74kUhVJOQ524loeXi14u/ucNEhVcuCnlcaIIx/OPgoRBFcG8KjikgmDFppogLKjOCvEYCYSVLrSiS7AXV14m3bO6rflNo9q6LOoogyNwDE6ADc5BC1yDNugADB7AE3gBr8aj8Wy8Ge/zpyWjmDkEf2B8fgN8OKIY</latexit><latexit sha1_base64="8w5ZR7js2k+s6AoVtEuaNexo7Q4=">AAACHXicbVDNS8MwHE3n15xfVY9egmPgxdHKQC+DoRePE9wHrLWkWbqFpWlJUmGU/iNe/Fe8eFDEgxfxvzHdKujmg8DLe/mR93t+zKhUlvVllFZW19Y3ypuVre2d3T1z/6Aro0Rg0sERi0TfR5IwyklHUcVIPxYEhT4jPX9ylfu9eyIkjfitmsbEDdGI04BipLTkmQ0nRGrsBynKHDyM1M/Vz2ATOjIJvZQ2rewu5ad2BpFHoe9Rz6xadWsGuEzsglRBgbZnfjjDCCch4QozJOXAtmLlpkgoihnJKk4iSYzwBI3IQFOOQiLddLZdBmtaGcIgEvpwBWfq74kUhVJOQ524loeXi14u/ucNEhVcuCnlcaIIx/OPgoRBFcG8KjikgmDFppogLKjOCvEYCYSVLrSiS7AXV14m3bO6rflNo9q6LOoogyNwDE6ADc5BC1yDNugADB7AE3gBr8aj8Wy8Ge/zpyWjmDkEf2B8fgN8OKIY</latexit><latexit sha1_base64="8w5ZR7js2k+s6AoVtEuaNexo7Q4=">AAACHXicbVDNS8MwHE3n15xfVY9egmPgxdHKQC+DoRePE9wHrLWkWbqFpWlJUmGU/iNe/Fe8eFDEgxfxvzHdKujmg8DLe/mR93t+zKhUlvVllFZW19Y3ypuVre2d3T1z/6Aro0Rg0sERi0TfR5IwyklHUcVIPxYEhT4jPX9ylfu9eyIkjfitmsbEDdGI04BipLTkmQ0nRGrsBynKHDyM1M/Vz2ATOjIJvZQ2rewu5ad2BpFHoe9Rz6xadWsGuEzsglRBgbZnfjjDCCch4QozJOXAtmLlpkgoihnJKk4iSYzwBI3IQFOOQiLddLZdBmtaGcIgEvpwBWfq74kUhVJOQ524loeXi14u/ucNEhVcuCnlcaIIx/OPgoRBFcG8KjikgmDFppogLKjOCvEYCYSVLrSiS7AXV14m3bO6rflNo9q6LOoogyNwDE6ADc5BC1yDNugADB7AE3gBr8aj8Wy8Ge/zpyWjmDkEf2B8fgN8OKIY</latexit><latexit sha1_base64="8w5ZR7js2k+s6AoVtEuaNexo7Q4=">AAACHXicbVDNS8MwHE3n15xfVY9egmPgxdHKQC+DoRePE9wHrLWkWbqFpWlJUmGU/iNe/Fe8eFDEgxfxvzHdKujmg8DLe/mR93t+zKhUlvVllFZW19Y3ypuVre2d3T1z/6Aro0Rg0sERi0TfR5IwyklHUcVIPxYEhT4jPX9ylfu9eyIkjfitmsbEDdGI04BipLTkmQ0nRGrsBynKHDyM1M/Vz2ATOjIJvZQ2rewu5ad2BpFHoe9Rz6xadWsGuEzsglRBgbZnfjjDCCch4QozJOXAtmLlpkgoihnJKk4iSYzwBI3IQFOOQiLddLZdBmtaGcIgEvpwBWfq74kUhVJOQ524loeXi14u/ucNEhVcuCnlcaIIx/OPgoRBFcG8KjikgmDFppogLKjOCvEYCYSVLrSiS7AXV14m3bO6rflNo9q6LOoogyNwDE6ADc5BC1yDNugADB7AE3gBr8aj8Wy8Ge/zpyWjmDkEf2B8fgN8OKIY</latexit>

Scan

• Similar to reduce, but produces all partial reductions of the input

- An important building-block in many parallel algorithms

• Sorting algorithms, lexical comparison of strings, lexical analysis (parsing), evaluating polynomials, adding multi-
precision numbers…

- Trickier to parallelise than reduce

- Two (main) variants: inclusive and exclusive

• Scan is an important building block in many parallel algorithms

14https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:35

Scan

• Two variants: inclusive and exclusive

- Inclusive scan includes the current element in the partial reduction

- Exclusive scan includes all prior elements

15

// inclusive: scanl1
r = initial_value;
for (i = 0; i < n; ++i) {
 r = combine(r, x[i]);
 y[i] = r;
}

Scan

• Two variants: inclusive and exclusive

- Inclusive scan includes the current element in the partial reduction

- Exclusive scan includes all prior elements

16

// exclusive: scanl
r = initial_value;
for (i = 0; i < n; ++i) {
 y[i] = r;
 r = combine(r, x[i]);
}
// optionally: y[i] = r;

Example: filter (compact)

• Return only those elements of the array which pass a predicate

1. map the predicate function over the
values to determine which to keep

2. exclusive scan the boolean flags to
determine the output locations and
number of elements to keep

3. permute the values into the position given
by (2) if (1) is true

17https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:31

x0 x1 x2 x3 x4 x5 x6 x7

1 1 0 0 1 0 1 0

0 1 2 2 2 3 3 4

x0 x1 x4 x6

4

Example: Integral Image

• Consider this inclusive prefix sum

- We can use this result to calculate the sum of any interval of the input:

sum [3..6] = ys[5] - ys[1] = 21 - 3 = 18

18

1 2 3 4 5 6 7

28

8

1 3 6 10 15 21 36ys

Example: Integral Image

• This idea extends to two (or more) dimensions

- Known as the integral image or summed area table

- Suppose I want to find the
sum of the green region:

- Can be used to implement a box filter in constant time

- Key component of the Viola-Jones face recognition algorithm

19https://youtu.be/uEJ71VlUmMQ

I(x, y) =
yX

v=0

xX

u=0

i(u, v)
<latexit sha1_base64="E6UUBhzPTpi18n2xJU2ySv4wWpQ=">AAACEnicdVDLSgMxFM34rPU16tJNsAgtlDJVwSIUCm50V8E+oK0lk6ZtaDIz5FE6DP0GN/6KGxeKuHXlzr8x047g80Dg3HPu5eYeN2BUKsd5txYWl5ZXVlNr6fWNza1te2e3Ln0tMKlhn/mi6SJJGPVITVHFSDMQBHGXkYY7Oo/9xpgISX3vWoUB6XA08GifYqSM1LVzl9lJPszBMmxLzbvRuOxMb8Kk0HExgTSr8+Nc1844heOSYwB/k2LBmSEDElS79lu752PNiacwQ1K2ik6gOhESimJGpum2liRAeIQGpGWohziRnWh20hQeGqUH+74wz1Nwpn6diBCXMuSu6eRIDeVPLxb/8lpa9UudiHqBVsTD80V9zaDyYZwP7FFBsGKhIQgLav4K8RAJhJVJMW1C+LwU/k/qR4Wi4VcnmcpZEkcK7IMDkAVFcAoq4AJUQQ1gcAvuwSN4su6sB+vZepm3LljJzB74Buv1A5PAnCU=</latexit><latexit sha1_base64="E6UUBhzPTpi18n2xJU2ySv4wWpQ=">AAACEnicdVDLSgMxFM34rPU16tJNsAgtlDJVwSIUCm50V8E+oK0lk6ZtaDIz5FE6DP0GN/6KGxeKuHXlzr8x047g80Dg3HPu5eYeN2BUKsd5txYWl5ZXVlNr6fWNza1te2e3Ln0tMKlhn/mi6SJJGPVITVHFSDMQBHGXkYY7Oo/9xpgISX3vWoUB6XA08GifYqSM1LVzl9lJPszBMmxLzbvRuOxMb8Kk0HExgTSr8+Nc1844heOSYwB/k2LBmSEDElS79lu752PNiacwQ1K2ik6gOhESimJGpum2liRAeIQGpGWohziRnWh20hQeGqUH+74wz1Nwpn6diBCXMuSu6eRIDeVPLxb/8lpa9UudiHqBVsTD80V9zaDyYZwP7FFBsGKhIQgLav4K8RAJhJVJMW1C+LwU/k/qR4Wi4VcnmcpZEkcK7IMDkAVFcAoq4AJUQQ1gcAvuwSN4su6sB+vZepm3LljJzB74Buv1A5PAnCU=</latexit><latexit sha1_base64="E6UUBhzPTpi18n2xJU2ySv4wWpQ=">AAACEnicdVDLSgMxFM34rPU16tJNsAgtlDJVwSIUCm50V8E+oK0lk6ZtaDIz5FE6DP0GN/6KGxeKuHXlzr8x047g80Dg3HPu5eYeN2BUKsd5txYWl5ZXVlNr6fWNza1te2e3Ln0tMKlhn/mi6SJJGPVITVHFSDMQBHGXkYY7Oo/9xpgISX3vWoUB6XA08GifYqSM1LVzl9lJPszBMmxLzbvRuOxMb8Kk0HExgTSr8+Nc1844heOSYwB/k2LBmSEDElS79lu752PNiacwQ1K2ik6gOhESimJGpum2liRAeIQGpGWohziRnWh20hQeGqUH+74wz1Nwpn6diBCXMuSu6eRIDeVPLxb/8lpa9UudiHqBVsTD80V9zaDyYZwP7FFBsGKhIQgLav4K8RAJhJVJMW1C+LwU/k/qR4Wi4VcnmcpZEkcK7IMDkAVFcAoq4AJUQQ1gcAvuwSN4su6sB+vZepm3LljJzB74Buv1A5PAnCU=</latexit><latexit sha1_base64="E6UUBhzPTpi18n2xJU2ySv4wWpQ=">AAACEnicdVDLSgMxFM34rPU16tJNsAgtlDJVwSIUCm50V8E+oK0lk6ZtaDIz5FE6DP0GN/6KGxeKuHXlzr8x047g80Dg3HPu5eYeN2BUKsd5txYWl5ZXVlNr6fWNza1te2e3Ln0tMKlhn/mi6SJJGPVITVHFSDMQBHGXkYY7Oo/9xpgISX3vWoUB6XA08GifYqSM1LVzl9lJPszBMmxLzbvRuOxMb8Kk0HExgTSr8+Nc1844heOSYwB/k2LBmSEDElS79lu752PNiacwQ1K2ik6gOhESimJGpum2liRAeIQGpGWohziRnWh20hQeGqUH+74wz1Nwpn6diBCXMuSu6eRIDeVPLxb/8lpa9UudiHqBVsTD80V9zaDyYZwP7FFBsGKhIQgLav4K8RAJhJVJMW1C+LwU/k/qR4Wi4VcnmcpZEkcK7IMDkAVFcAoq4AJUQQ1gcAvuwSN4su6sB+vZepm3LljJzB74Buv1A5PAnCU=</latexit> B

CD

A

IABCD = IC � ID � IB + IA
<latexit sha1_base64="YpyEiGVZY1no98R6RWZ0eXK1WVc=">AAACCXicdVDLSgMxFM3UV62vUZdugkUQxDKjgkUQ+lroroJ9QDsMmTTThmYyQ5IRytCtG3/FjQtF3PoH7vwb02kFnwdyOZxzLzf3eBGjUlnWu5GZm19YXMou51ZW19Y3zM2tpgxjgUkDhywUbQ9JwignDUUVI+1IEBR4jLS8YXXit26IkDTk12oUESdAfU59ipHSkmvCSzcpV6q1MTzXtAoPda2ltQIPdC27Zt4qHBctDfib2AUrRR7MUHfNt24vxHFAuMIMSdmxrUg5CRKKYkbGuW4sSYTwEPVJR1OOAiKdJL1kDPe00oN+KPTjCqbq14kEBVKOAk93BkgN5E9vIv7ldWLlF52E8ihWhOPpIj9mUIVwEgvsUUGwYiNNEBZU/xXiARIIKx1eTofweSn8nzSPCrbmVyf50tksjizYAbtgH9jgFJTABaiDBsDgFtyDR/Bk3BkPxrPxMm3NGLOZbfANxusHGs6WGg==</latexit><latexit sha1_base64="YpyEiGVZY1no98R6RWZ0eXK1WVc=">AAACCXicdVDLSgMxFM3UV62vUZdugkUQxDKjgkUQ+lroroJ9QDsMmTTThmYyQ5IRytCtG3/FjQtF3PoH7vwb02kFnwdyOZxzLzf3eBGjUlnWu5GZm19YXMou51ZW19Y3zM2tpgxjgUkDhywUbQ9JwignDUUVI+1IEBR4jLS8YXXit26IkDTk12oUESdAfU59ipHSkmvCSzcpV6q1MTzXtAoPda2ltQIPdC27Zt4qHBctDfib2AUrRR7MUHfNt24vxHFAuMIMSdmxrUg5CRKKYkbGuW4sSYTwEPVJR1OOAiKdJL1kDPe00oN+KPTjCqbq14kEBVKOAk93BkgN5E9vIv7ldWLlF52E8ihWhOPpIj9mUIVwEgvsUUGwYiNNEBZU/xXiARIIKx1eTofweSn8nzSPCrbmVyf50tksjizYAbtgH9jgFJTABaiDBsDgFtyDR/Bk3BkPxrPxMm3NGLOZbfANxusHGs6WGg==</latexit><latexit sha1_base64="YpyEiGVZY1no98R6RWZ0eXK1WVc=">AAACCXicdVDLSgMxFM3UV62vUZdugkUQxDKjgkUQ+lroroJ9QDsMmTTThmYyQ5IRytCtG3/FjQtF3PoH7vwb02kFnwdyOZxzLzf3eBGjUlnWu5GZm19YXMou51ZW19Y3zM2tpgxjgUkDhywUbQ9JwignDUUVI+1IEBR4jLS8YXXit26IkDTk12oUESdAfU59ipHSkmvCSzcpV6q1MTzXtAoPda2ltQIPdC27Zt4qHBctDfib2AUrRR7MUHfNt24vxHFAuMIMSdmxrUg5CRKKYkbGuW4sSYTwEPVJR1OOAiKdJL1kDPe00oN+KPTjCqbq14kEBVKOAk93BkgN5E9vIv7ldWLlF52E8ihWhOPpIj9mUIVwEgvsUUGwYiNNEBZU/xXiARIIKx1eTofweSn8nzSPCrbmVyf50tksjizYAbtgH9jgFJTABaiDBsDgFtyDR/Bk3BkPxrPxMm3NGLOZbfANxusHGs6WGg==</latexit><latexit sha1_base64="YpyEiGVZY1no98R6RWZ0eXK1WVc=">AAACCXicdVDLSgMxFM3UV62vUZdugkUQxDKjgkUQ+lroroJ9QDsMmTTThmYyQ5IRytCtG3/FjQtF3PoH7vwb02kFnwdyOZxzLzf3eBGjUlnWu5GZm19YXMou51ZW19Y3zM2tpgxjgUkDhywUbQ9JwignDUUVI+1IEBR4jLS8YXXit26IkDTk12oUESdAfU59ipHSkmvCSzcpV6q1MTzXtAoPda2ltQIPdC27Zt4qHBctDfib2AUrRR7MUHfNt24vxHFAuMIMSdmxrUg5CRKKYkbGuW4sSYTwEPVJR1OOAiKdJL1kDPe00oN+KPTjCqbq14kEBVKOAk93BkgN5E9vIv7ldWLlF52E8ihWhOPpIj9mUIVwEgvsUUGwYiNNEBZU/xXiARIIKx1eTofweSn8nzSPCrbmVyf50tksjizYAbtgH9jgFJTABaiDBsDgFtyDR/Bk3BkPxrPxMm3NGLOZbfANxusHGs6WGg==</latexit>

Scan

• In the prefix sum we produce all partial reductions of the input

- That is, the reduction of every prefix

- The prefix sum you might also think of as a cumulative sum

- Variations for inclusive, exclusive, left, right, product, conjunction…

- Sequential calculation is a single sweep of n-1 additions

20https://en.wikipedia.org/wiki/Prefix_sum

 input = [3,4, 4, 4, 4, 3, 5, 4, 5]
scanl1 (+) input = [3,7,11,15,19,22,27,31,36]

for (i = 1, i < n; ++i)
 A[i] = A[i] + A[i-1]

Scan

• Example: how to parallelise prefix sum

- Split the data over two processors and perform a prefix sum individually on each part:

- The left part looks correct, but every element in the right part needs to be incremented by 19

- Luckily, this is the final result of the left side, which we just computed!

21

 split: [3,4, 4, 4, 4] [3,5, 4, 5]
left/right result: [3,7,11,15,19] [3,8,12,17]

 input: [3,4, 4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

P1 P2

Scan

• Parallel scan split into tiles is classically done in three phases:

1. Upsweep: Break the input into equally sized tiles, and reduce each tile

2. Perform an exclusive scan of the reduction values

3. Downsweep: Perform a scan of each tile, using the per-tile carry-in values computed in step 2 as the initial
value

22

Scan

• Example: how to parallelise prefix sum (per-tile)

- Here computed in SIMD (e.g. in a warp on the GPU)

- Parallel scan [again] changes the order of operations

23

1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2

1 2 3 4 4 4 4 4

1 2 3 4 5 6 7 8

for (d = 0
 ; d < log2 N;
 ; d ++)
{
 int offset = 2d;
 if (i >= offset) // parallel
 x[i] = x[i-offset] + x[i];
}

d=0, 2d=1

d=1, 2d=2

d=2, 2d=4

Scan

• Three-phase tiled implementation of inclusive scan:

24

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 167 — #167

5.5 Fusing Map and Scan 167

FIGURE 5.6

Three-phase tiled implementation of inclusive scan, including initial value.

first map can be combined with the serial reductions in the first phase of the scan, and the tiled scan
in the third phase can be combined with the following tiled map. This is shown in Figure 5.7. This
creates more arithmetically intense code blocks and can cut down significantly on memory traffic and
synchronization overhead.

It would also be possible to optimize a scan by fusing it with following reductions or three-phase
scans since the first part of a three-phase scan is a tile reduction. However, if a reduction follows a
scan, you can get rid of the reduction completely since it is available as an output of the scan, or it can
be made available with very little extra computation.

initial value Upsweep

Compute carry-in

Downsweep

Scan

25Single-pass Parallel Prefix Scan with Decoupled Look-back, D. Merrill and M. Garland, 2016

2

suggests that as circuit depth is increasingly constrained, DSO
networks no longer exist and the size of the networks increases
rapidly.

Fig. 1 presents commonplace scan networks relevant to
contemporary prefix scan algorithms. Although the serial, or
chained scan, construction in Fig. 1a has maximal n-1 depth and
no concurrent computations, its minimal n-1 size makes it an
attractive subcomponent of scan networks designed for
oversubscribed processors. Increasing the computational
granularity (i.e., items per thread) is a common technique for
improving processor utilization by reducing inter-thread
communication.

The Kogge-Stone construction [19] in Fig. 1b (and
corresponding Hillis-Steele algorithm [17]) is a well-known,
minimum-depth network that uses a recursive-doubling approach
for aggregating partial reductions. Despite having inefficient
O(nlog2n) work complexity, its shallow depth and simple shared
memory address computations make it an attractive strategy for
SIMD architectures (e.g., GPU warps) where inactive processor
resources cannot be scavenged1.

The Sklansky construction [24] in Fig. 1c employs a recursive,
scan-then-fan approach that also achieves minimum depth log2n at
the expense of O(nlog2n) work complexity. Compared to Kogge-
Stone constructions, these networks exhibit high-radix fan-out
when propagating partial prefixes computed by recursive
subgraphs. This improved sharing leads to smaller circuit sizes
and reduced memory bandwidth overheads.

1 Kogge-Stone “warpscans” are typical of GPU implementations where
(1) SIMD-synchronicity has historically enabled efficient barrier-free
communication, and (2) the hardware provisions a “shuffle” crossbar for
efficient inter-warp communication.

Whereas minimum-depth circuits are fast when the input size
is less than or equal to the width of the underlying multiprocessor,
minimum-size networks are important for larger problems. Many
parallel programming models virtualize the underlying physical
processors, causing overall runtime to scale with circuit size
instead of depth. Therefore work-efficiency is often a practical
design objective for general-purpose prefix scan algorithms.

The Brent-Kung construction [8] in Fig. 1d (and corresponding
Blelloch algorithm [4, 5]) is a work-efficient strategy having
2log2n depth and O(n) size. Visually, the data flow resembles an
“hourglass” shape comprising (1) an upsweep accumulation tree
having progressively less parallelism, and (2) a downsweep
propagation tree exhibiting progressively more parallelism.
Generalizing the binary operators in the upsweep with radix-b
scans and those in the downsweep with radix-b fans, the Brent-
Kung strategy exhibits a more pronounced scan-then-propagate
behavior (as illustrated in Fig. 2a).

For programming models that virtualize an unlimited number
of processors, a concern with scan-then-propagate data flow is
that ~n live values are spilled and filled through last-level memory
between upsweep and downsweep phases when the input exceeds
on-chip memory. To eliminate the writes, we can simply
rematerialize the intermediates during the downsweep phase at the
expense of O(n) redundant calculations, as shown in Fig. 1e [9,
12, 22]. This has the effect of converting downsweep behavior
from propagation to scan. We refer to this adaptation as the
reduce-then-scan strategy.

In general, an important property of recursive network design
is the ability to mix-and-match different strategies at different
levels. Further variation is also possible through operator
generalization: whereas these binary operators compute radix-2
scans and fans, network height can be reduced using radix-b
subcomponents as building blocks [18]. This flexibility allows for

(a) serial (chained scan) (b) Kogge-Stone (c) Sklansky

(d) Brent-Kung (e) Reduce-then-scan

Fig. 1. Commonplace scan constructions for n = 16.
Dashed boxes illustrate recursive construction.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0
x0:x1

x0:x2
x0:x3

x0:x4
x0:x5

x0:x6
x0:x7

x0:x8
x0:x9

x0:x10
x0:x11

x0:x12
x0:x13

x0:x14
x0:x15

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0: x0

x0: x1
x0: x2

x0: x3
x0: x4

x0: x5
x0: x6

x0: x7
x0: x8

x0: x9
x0: x10

x0: x11
x0: x12

x0: x13
x0: x14

x0: x15

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0: x0

x0: x1
x0: x2

x0: x3
x0: x4

x0: x5
x0: x6

x0: x7
x0: x8

x0: x9
x0: x10

x0: x11
x0: x12

x0: x13
x0: x14

x0: x15

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0
x0:x1

x0:x2
x0:x3

x0:x4
x0:x5

x0:x6
x0:x7

x0:x8
x0:x9

x0:x10
x0:x11

x0:x12
x0:x13

x0:x14
x0:x15

U
ps
w
ee
p

D
ow

ns
w
ee
p

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

x0:x0
x0:x1

x0:x2
x0:x3

x0:x4
x0:x5

x0:x6
x0:x7

x0:x8
x0:x9

x0:x10
x0:x11

x0:x12
x0:x13

x0:x14
x0:x15

Three-phase scans on GPUs

• Scans are (or used to be) implemented via three phases on GPUs

- Kernel 1 performs a fold per block

- Kernel 2 scans over the results per block (using a single thread block)

- Kernel 3 performs a scan per block, using the prefix of that block computed in kernel 2

• Synchronization between blocks happens by splitting the program in multiple kernels

- Kernel 2 only starts when all thread blocks of kernel 1 have finished

• It is advised to not perform synchronization between thread blocks within the same kernel

- But…

26

Chained scans on GPUs

• Chained scans use only one kernel, and do synchronize within the kernel

- Each thread block does the following:

• Read a tile of the array

• Fold

• Wait on prefix of previous tile

• Share own prefix

• Scan

- Three-phase scans typically split the input in a fixed number of blocks,
chained scans use fixed-size blocks as the data should fit in the registers of the threads of a thread block.

27https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back

Chained scans on GPUs

• Chained scans go against the advice of independent thread blocks

• You have to be careful:

- Don’t use the hardware scheduler - implement your own scheduling of thread blocks

- Prevent memory reordering

- Waiting on the prefix of the previous block can be a significant bottleneck

• The Single-pass Parallel Prefix Scan with Decoupled Look-back optimizes this

• Chained may be faster than three-phase scans

- as they read the input once instead of twice

28https://research.nvidia.com/publication/2016-03_single-pass-parallel-prefix-scan-decoupled-look-back

Flat data parallelism

• Widely used, well understood & supported approach to massive parallelism

- Single point of concurrency

- Easy to implement

- Good cost model (work & span)

- BUT! the “something” has to be sequential

29

__global__ void kernel(float* xs, float* ys, int n, ...)
{
 int idx = blockDim.x * blockIdx.x + threadIdx.x;
 if (idx < n) {
 // do something sequentially
 // but can not launch further parallel work!
 }
}

Nested data parallelism

• Main idea: allow the “something” to also be parallel

- Now the parallelism structure is recursive and unbalanced

- Still a good cost model

- Wider range of applications: sparse arrays, adaptive methods (Barnes-Hut), divide and conquer (quicksort,
quickhull), graph algorithms (shortest path, spanning tree)

30

…

Nested data parallelism

• The flattening transformation

- Concatenate the subarrays into one big flat array

- Operate in parallel on the big array

- A segment descriptor keeps track of where the sub-arrays begin

• Example: given an array of nodes in a graph, compute an array of their neighbors

- For instance in findRequests for Delta-stepping

• The scan operation gives us a way to do this

31

…

…

Segmented scan

• We can also create segmented versions of collective operations like scan

- Generalises scan to perform separate parallel scans on arbitrary contiguous partitions (segments) of the input
vector

- In particular useful for sparse and irregular computations

- Can be implemented via operator transform:

32

3 1 7 0 4 1 6 3

1 0 1 0 0 1 0 1

values

segment descriptor

3 4 7 7 11 1 7 3scan_seg

(fx, x)�s (fy, y) = (fx|fy, if fy then y else x� y)
<latexit sha1_base64="N/g4/Ess1z/x1+b4ABBJUcTJObw=">AAACUXicdZHPSxtBFMdfVttq0h9bPXp5GAoJSNjYQj20IPTiUcGYQDYNs5O3ZnB2dpmZLVm2+Rc92JP/h5ceKs7GiNG2Dwa+fN6PefOdKJPC2CC4rnlr6y9evtrYrDdev3n7zn+/dWbSXHPq8VSmehAxQ1Io6llhJQ0yTSyJJPWji29Vvv+DtBGpOrVFRqOEnSsRC86sQ2N/2orHsz2ctTFMM5mb7wYdKfawaOPXSs7wJ1YgxDBhdqqTUsTzsEKPxE5JObZCSBpyZLac6qaN/WbQ+XgQuMC/RbcTLKIJyzge+1fhJOV5QspyyYwZdoPMjkqmreCS5vUwN5QxfsHOaeikYgmZUblwZI4fHJlgnGp3lMUFXe0oWWJMkUSustrYPM9V8F+5YW7jg1EpVJZbUvz+ojiXaFOs7MWJ0MStLJxgXAu3K/Ip04xb9wl1Z8LDS/H/4my/03X65FPz8MvSjg3YgV1oQRc+wyEcwTH0gMMl3MAfuK39qv32wPPuS73asmcbnoTXuAMa/LJt</latexit><latexit sha1_base64="N/g4/Ess1z/x1+b4ABBJUcTJObw=">AAACUXicdZHPSxtBFMdfVttq0h9bPXp5GAoJSNjYQj20IPTiUcGYQDYNs5O3ZnB2dpmZLVm2+Rc92JP/h5ceKs7GiNG2Dwa+fN6PefOdKJPC2CC4rnlr6y9evtrYrDdev3n7zn+/dWbSXHPq8VSmehAxQ1Io6llhJQ0yTSyJJPWji29Vvv+DtBGpOrVFRqOEnSsRC86sQ2N/2orHsz2ctTFMM5mb7wYdKfawaOPXSs7wJ1YgxDBhdqqTUsTzsEKPxE5JObZCSBpyZLac6qaN/WbQ+XgQuMC/RbcTLKIJyzge+1fhJOV5QspyyYwZdoPMjkqmreCS5vUwN5QxfsHOaeikYgmZUblwZI4fHJlgnGp3lMUFXe0oWWJMkUSustrYPM9V8F+5YW7jg1EpVJZbUvz+ojiXaFOs7MWJ0MStLJxgXAu3K/Ip04xb9wl1Z8LDS/H/4my/03X65FPz8MvSjg3YgV1oQRc+wyEcwTH0gMMl3MAfuK39qv32wPPuS73asmcbnoTXuAMa/LJt</latexit><latexit sha1_base64="N/g4/Ess1z/x1+b4ABBJUcTJObw=">AAACUXicdZHPSxtBFMdfVttq0h9bPXp5GAoJSNjYQj20IPTiUcGYQDYNs5O3ZnB2dpmZLVm2+Rc92JP/h5ceKs7GiNG2Dwa+fN6PefOdKJPC2CC4rnlr6y9evtrYrDdev3n7zn+/dWbSXHPq8VSmehAxQ1Io6llhJQ0yTSyJJPWji29Vvv+DtBGpOrVFRqOEnSsRC86sQ2N/2orHsz2ctTFMM5mb7wYdKfawaOPXSs7wJ1YgxDBhdqqTUsTzsEKPxE5JObZCSBpyZLac6qaN/WbQ+XgQuMC/RbcTLKIJyzge+1fhJOV5QspyyYwZdoPMjkqmreCS5vUwN5QxfsHOaeikYgmZUblwZI4fHJlgnGp3lMUFXe0oWWJMkUSustrYPM9V8F+5YW7jg1EpVJZbUvz+ojiXaFOs7MWJ0MStLJxgXAu3K/Ip04xb9wl1Z8LDS/H/4my/03X65FPz8MvSjg3YgV1oQRc+wyEcwTH0gMMl3MAfuK39qv32wPPuS73asmcbnoTXuAMa/LJt</latexit><latexit sha1_base64="N/g4/Ess1z/x1+b4ABBJUcTJObw=">AAACUXicdZHPSxtBFMdfVttq0h9bPXp5GAoJSNjYQj20IPTiUcGYQDYNs5O3ZnB2dpmZLVm2+Rc92JP/h5ceKs7GiNG2Dwa+fN6PefOdKJPC2CC4rnlr6y9evtrYrDdev3n7zn+/dWbSXHPq8VSmehAxQ1Io6llhJQ0yTSyJJPWji29Vvv+DtBGpOrVFRqOEnSsRC86sQ2N/2orHsz2ctTFMM5mb7wYdKfawaOPXSs7wJ1YgxDBhdqqTUsTzsEKPxE5JObZCSBpyZLac6qaN/WbQ+XgQuMC/RbcTLKIJyzge+1fhJOV5QspyyYwZdoPMjkqmreCS5vUwN5QxfsHOaeikYgmZUblwZI4fHJlgnGp3lMUFXe0oWWJMkUSustrYPM9V8F+5YW7jg1EpVJZbUvz+ojiXaFOs7MWJ0MStLJxgXAu3K/Ip04xb9wl1Z8LDS/H/4my/03X65FPz8MvSjg3YgV1oQRc+wyEcwTH0gMMl3MAfuK39qv32wPPuS73asmcbnoTXuAMa/LJt</latexit>

Segmented scan

• Lift a binary operator to a segmented version:

- Can be implemented via operator transform

- The lifted operator should be associative!

• Concretely, if ⊕ is associative, then ⊕s should also be associative

33

segmented
 :: Elt a
 => (Exp a -> Exp a -> Exp a)
 -> (Exp (Bool, a) -> Exp (Bool, a) -> Exp (Bool, a))
segmented op (T2 fx x) (T2 fy y)
 = T2 (fx || fy)
 (fy ? (y, op x y))

(fx, x)�s (fy, y) = (fx|fy, if fy then y else x� y)
<latexit sha1_base64="N/g4/Ess1z/x1+b4ABBJUcTJObw=">AAACUXicdZHPSxtBFMdfVttq0h9bPXp5GAoJSNjYQj20IPTiUcGYQDYNs5O3ZnB2dpmZLVm2+Rc92JP/h5ceKs7GiNG2Dwa+fN6PefOdKJPC2CC4rnlr6y9evtrYrDdev3n7zn+/dWbSXHPq8VSmehAxQ1Io6llhJQ0yTSyJJPWji29Vvv+DtBGpOrVFRqOEnSsRC86sQ2N/2orHsz2ctTFMM5mb7wYdKfawaOPXSs7wJ1YgxDBhdqqTUsTzsEKPxE5JObZCSBpyZLac6qaN/WbQ+XgQuMC/RbcTLKIJyzge+1fhJOV5QspyyYwZdoPMjkqmreCS5vUwN5QxfsHOaeikYgmZUblwZI4fHJlgnGp3lMUFXe0oWWJMkUSustrYPM9V8F+5YW7jg1EpVJZbUvz+ojiXaFOs7MWJ0MStLJxgXAu3K/Ip04xb9wl1Z8LDS/H/4my/03X65FPz8MvSjg3YgV1oQRc+wyEcwTH0gMMl3MAfuK39qv32wPPuS73asmcbnoTXuAMa/LJt</latexit><latexit sha1_base64="N/g4/Ess1z/x1+b4ABBJUcTJObw=">AAACUXicdZHPSxtBFMdfVttq0h9bPXp5GAoJSNjYQj20IPTiUcGYQDYNs5O3ZnB2dpmZLVm2+Rc92JP/h5ceKs7GiNG2Dwa+fN6PefOdKJPC2CC4rnlr6y9evtrYrDdev3n7zn+/dWbSXHPq8VSmehAxQ1Io6llhJQ0yTSyJJPWji29Vvv+DtBGpOrVFRqOEnSsRC86sQ2N/2orHsz2ctTFMM5mb7wYdKfawaOPXSs7wJ1YgxDBhdqqTUsTzsEKPxE5JObZCSBpyZLac6qaN/WbQ+XgQuMC/RbcTLKIJyzge+1fhJOV5QspyyYwZdoPMjkqmreCS5vUwN5QxfsHOaeikYgmZUblwZI4fHJlgnGp3lMUFXe0oWWJMkUSustrYPM9V8F+5YW7jg1EpVJZbUvz+ojiXaFOs7MWJ0MStLJxgXAu3K/Ip04xb9wl1Z8LDS/H/4my/03X65FPz8MvSjg3YgV1oQRc+wyEcwTH0gMMl3MAfuK39qv32wPPuS73asmcbnoTXuAMa/LJt</latexit><latexit sha1_base64="N/g4/Ess1z/x1+b4ABBJUcTJObw=">AAACUXicdZHPSxtBFMdfVttq0h9bPXp5GAoJSNjYQj20IPTiUcGYQDYNs5O3ZnB2dpmZLVm2+Rc92JP/h5ceKs7GiNG2Dwa+fN6PefOdKJPC2CC4rnlr6y9evtrYrDdev3n7zn+/dWbSXHPq8VSmehAxQ1Io6llhJQ0yTSyJJPWji29Vvv+DtBGpOrVFRqOEnSsRC86sQ2N/2orHsz2ctTFMM5mb7wYdKfawaOPXSs7wJ1YgxDBhdqqTUsTzsEKPxE5JObZCSBpyZLac6qaN/WbQ+XgQuMC/RbcTLKIJyzge+1fhJOV5QspyyYwZdoPMjkqmreCS5vUwN5QxfsHOaeikYgmZUblwZI4fHJlgnGp3lMUFXe0oWWJMkUSustrYPM9V8F+5YW7jg1EpVJZbUvz+ojiXaFOs7MWJ0MStLJxgXAu3K/Ip04xb9wl1Z8LDS/H/4my/03X65FPz8MvSjg3YgV1oQRc+wyEcwTH0gMMl3MAfuK39qv32wPPuS73asmcbnoTXuAMa/LJt</latexit><latexit sha1_base64="N/g4/Ess1z/x1+b4ABBJUcTJObw=">AAACUXicdZHPSxtBFMdfVttq0h9bPXp5GAoJSNjYQj20IPTiUcGYQDYNs5O3ZnB2dpmZLVm2+Rc92JP/h5ceKs7GiNG2Dwa+fN6PefOdKJPC2CC4rnlr6y9evtrYrDdev3n7zn+/dWbSXHPq8VSmehAxQ1Io6llhJQ0yTSyJJPWji29Vvv+DtBGpOrVFRqOEnSsRC86sQ2N/2orHsz2ctTFMM5mb7wYdKfawaOPXSs7wJ1YgxDBhdqqTUsTzsEKPxE5JObZCSBpyZLac6qaN/WbQ+XgQuMC/RbcTLKIJyzge+1fhJOV5QspyyYwZdoPMjkqmreCS5vUwN5QxfsHOaeikYgmZUblwZI4fHJlgnGp3lMUFXe0oWWJMkUSustrYPM9V8F+5YW7jg1EpVJZbUvz+ojiXaFOs7MWJ0MStLJxgXAu3K/Ip04xb9wl1Z8LDS/H/4my/03X65FPz8MvSjg3YgV1oQRc+wyEcwTH0gMMl3MAfuK39qv32wPPuS73asmcbnoTXuAMa/LJt</latexit>

Segment descriptors

• Segment descriptors describe where segments start, via

- Segment lengths, or

- Head flags

• Create the head flags array 
from segment lengths

- The segment descriptor tells us the length
of each segment

- To use the operator from the previous slide,
we need to convert this into a
representation the same size as the input,

with a True value at the start of each

segment and False otherwise
34

mkHeadFlags :: Acc (Vector Int) -> Acc (Vector Bool)
mkHeadFlags seg =
 let
 T2 offset len = scanl' (+) 0 seg
 falses = fill (I1 (the len)) False_
 trues = fill (shape seg) True_
 in permute const falses
 (\ix -> Just_ (I1 (offset!ix))) trues

Segmented scan

• What about other flavours of scan?

- This approach works directly for inclusive segmented scan

- The exclusive version is similar, but needs to fill in the initial element and take care of (multiple consecutive)
empty segments

35

Conclusion

• Fold (reduction) and scan (prefix sum) can be executed in parallel

- if the operator is associative: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

• Prefix sum is a useful application in many (parallel) programming problems

- Use to compute the book-keeping information required to execute nested data-parallel algorithms on flat data-
parallel hardware (e.g. GPUs)

36

tot ziens

Photo by Anusha Barwa

B3CC: Concurrency
15: Work & Span

Ivo Gabe de Wolff

• Explicit threads

• Synchronise via locks, messages, or STM

• Modest parallelism

• Hard to program

• Operate simultaneously on bulk data

• Implicit synchronisation

• Massive parallelism

• Easy to program

Previously…

2

… n{ { {

P1 P2 P3

…

Task parallelism Data parallelism

Performance analysis

• We want to analyse the cost of a parallel algorithm

- We will consider asymptotic costs, to compare algorithms in terms of:

• How they scale to larger inputs

• How they scale (parallelise) over more cores

- Example: some sorting algorithms are O(n log n) and others O(n2) over the size of the input

- Example: RTX 4090 Ti has 16384 “cores” distributed over 128 multiprocessors

3

• When designing and analysing sequential algorithms, we use 
the random access machine (RAM) model

- All locations in memory can be read from & written to in O(1)

- Summing an array can be done in linear Θ(n) time

RAM

4

s = 0
for (i = 0..n)
 s := s + arr[i]

Memory
CPU

• The parallel random access machine (PRAM) model is 
analogous for talking about parallel algorithms

- Shared memory machine with multiple attached processors (cores)

- Ignore details of synchronisation, communication, etc.

- Question: can we sum an array in parallel using this algorithm?

PRAM

5

Memory
CPU

CPU

CPU

CPU

s = 0
parallel_for (i = 0..n)
 s := s + arr[i]

Fold

6

• Binary tree reduction of an array

1. For even i:

arr[i] += arr[i+1]

2. For i a multiple of 4:

arr[i] += arr[i+2]

3. For i a multiple of 8:

arr[i] += arr[i+4]

4. et cetera…

x6 x7x4 x5x3x2x1x0 x8

r

?

Fold

• Binary tree reduction of an array

- To calculate step one instantly you need n/2 processors: O(n) operations and the whole algorithm takes
O(log n) time

- The hardware cost is thus the number of processor P multiplied by how long you need them: O(n log n)

- So, we can go faster with parallelism but at a higher hardware cost. Can this be improved?

1. Can we go faster than O(log n) ?

2. Can we have less hardware cost than O(n log n) ?

7

Fold

• Question 1: can we sum an array in sub-logarithmic time?

- Addition is a binary operator

- Parallel execution of binary operators can, after i rounds, produce values that depend on at most 2i values

- So, no matter what you do in parallel, you can not compute the full sum of n numbers in less than O(log n) time

8

Fold

• Question 1: proof by induction

- Induction hypothesis (IH): after i rounds values can only depend on at most 2i inputs

- i=0: After zero rounds we haven’t done anything, so a number only “depends” on itself, so on one number which
is 20

- i+1: In this round you can combine two inputs from round i, which according to the IH can only depend on at
most 2i + 2i = 2(i+1) inputs

- Therefore, addition can not be done sub-logarithmically. This holds true for all binary operators, which is why
(poly)logarithmic complexity O(logc n) is the best possible outcome for parallel execution

9

• Question 2: can we reduce the hardware cost?

- Split the problem into two steps

- Phase 1: divide the input over the P processors in groups of length n/P

- Phase 2: use a binary tree reduction to calculate the total from
the P partial sums

- Total time Tp = n/p + log p

• If P ≤ n / log n then phase one is dominant

• If P ≤ n / log n then hardware cost is O(n)

Fold

10

n/P

log P

Work & Span

• We don’t want a different optimal calculation when executing for a different number of cores

- Use a description with two parameters, instead of just sequential time

- Let Tp be the running time with P processors available

- Then calculate two extremes: the work and span

• Work = T1: How long to execute on a single processor

• Span = T∞: How long to execute on an infinite number of processors

- The longest dependence chain / critical path length / computational depth

- Example: O(log n) for summing an array

11

Work & Span

• Program can be seen as a dependency graph of the calculation steps

- Work is the total number of nodes (calculations) in the whole graph

- Span is the number of nodes on the longest path (height of the graph)

12

Work & Span

• If the work and span are known, you can estimate the time on P processors TP with:

- max(work/P, span) ≤ TP ≤ work/P + span

- The latter is at most double the former, so:

• TP = O(work/P + span)

- Question: what is the time to execute on 1, 2, or 3 cores?

13

d

c

a

e

b

Scheduling

• Brent proved that greedy scheduling is always two-optimal

- We say a step is ready when all its predecessors (dependencies) have been computed in previous rounds

- A greedy scheduler does as many steps in a round, but does not care which

- This is two-optimal:
Greedy scheduling takes at most twice as long as the optimal schedule

• Say TP* is the time for the optimal schedule, then:

- TP* ≥ work/P, because even the best schedule still has P cores available

- TP* ≥ span, because all calculations on a path must be done sequentially

14

Scheduling

• Greedy scheduling

- Full round: if there are P or more steps ready, do P steps this round; this happens at most work/P times

- Empty round: there are fewer than P steps ready; this happens at most span times, because every round the
span decreases by one

- The length of the greedy schedule is:

 TP	 = full + empty
	 	 ≤ work/P + span
	 	 ≤ TP* + TP*
	 	 ≤ 2TP*

15

Scheduling

• Greedy scheduling

- Greedy scheduling has length at most twice the length of the optimal one, so is asymptotically optimal

- Because work/P + span and max(work/P, span) are asymptotically equal (differ by a factor of two), we can say
that TP = max(work/P, span)

16

Work & Span

• Greedy scheduling

1. As long as P ≤ work/span the first term is
dominant and the calculation can be shortened by
adding more cores: work bound phase

2. If we have P > work/span then the runtime will
not get shorter by adding more cores: span bound
phase

17

Work & Span

• When comparing algorithms, low work is better
than high work, and low span is better than high
span

- What if algorithm one has better work complexity
w1 < w2

- But algorithm 2 has better span complexity s1 > s2

- Low span is theoretically nice, but since we don’t
have infinite processors in practice, be careful not
to lower span at the cost of too much extra work

18

Work & Span

• Calculating work and span is the same as computing the time of an algorithm, as learned in the course data
structures

- Count the number of instructions/operations

- In the case of a loop, the cost of the body times the number of repetitions

- For recursion, use the Master Theorem

• For the analysis of parallel algorithms:

- You must do this process twice, once each for work and span

• Work is done as you would for a sequential algorithm

• Span takes the maximum of the branches which are performed in parallel

19

Example: zipWith

• Pair-wise multiply the elements of two arrays

• Work analysis:

- Doesn’t care about parallelism

- Line one says that this is done n times, so costs Θ(n) steps

• Span analysis:

- The maximum cost of all the branches which are done in parallel

- Loop on line 1 is parallel, so take the longest path of steps: Θ(1)

20

parallel_for (i = 0..n)
 r[i] := x[i] * y[i]

1
2

Example: fold (1)

• Add up all the numbers in an n x n matrix A, with subtotals per row

• Work analysis:

- Loop on line 3-4 costs Θ(n) steps

- Line one says this will be done n times, so line 1-4 take Θ(n2) steps

- Line 6-7 take Θ(n) steps

- Total is Θ(n2) work
21

parallel_for (j = 0..n)
 s[j] = 0
 for (i = 0..n)
 s[j] := s[j] + A[i,j]
t = 0
for (i = 0..n)
 t := t + s[j]

1
2
3
4
5
6
7

Example: fold (1)

• Add up all the numbers in an n x n matrix A, with subtotals per row

• Span analysis:

- Loop line 3-4 is sequential, Θ(n) steps

- Loop line 1 is parallel, so we take the longest path of steps from line 1-4: Θ(n)

- Line 5-7 still have Θ(n) sequential steps

- Total span is Θ(n) steps
22

parallel_for (j = 0..n)
 s[j] = 0
 for (i = 0..n)
 s[j] := s[j] + A[i,j]
t = 0
for (i = 0..n)
 t := t + s[j]

1
2
3
4
5
6
7

Example: fold (2)

• Parallel algorithms can often use recursion effectively

- We want a method sum(A, p, q) that calculates the sum of all numbers in A in the range [p,q)

- Using recursion, pretend you already have a clever way to sum n/2 numbers, which you want to use to calculate
the sum of n numbers

- Ignore possibility of uneven number of inputs, base case of recursion, etc…

23

sum (A, p, q)
 parallel_for (i = 0..(q-p)/2)
 B[i] = A[p+2*i] + A[p+2*i+1]

 sum (B, 0, (q-p)/2)

1
2
3
4
5

Master Theorem

• The master theorem provides a solution to recurrence relations of the form

- For constants a ≥ 1 and b > 1 and f asymptotically positive

• The master theorem has three cases:

T (n) = aT
⇣n
b

⌘
+ f(n)

<latexit sha1_base64="M7TFTkTi9rmEdhQZJEEoVjGfbbY=">AAACEXicbVDLSgMxFM34rPVVdekmWIQpQpnxgW6EohuXFfqCzlAyaaYNzWSG5I5Qhv6CG3/FjQtF3Lpz59+YPhbaeiBwOOdcbu4JEsE1OM63tbS8srq2ntvIb25t7+wW9vYbOk4VZXUai1i1AqKZ4JLVgYNgrUQxEgWCNYPB7dhvPjCleSxrMEyYH5Ge5CGnBIzUKdg1W5bwNSY1T7AQbC9UhGZylAUjT/FeH0r4BIcm0ykUnbIzAV4k7owU0QzVTuHL68Y0jZgEKojWbddJwM+IAk4FG+W9VLOE0AHpsbahkkRM+9nkohE+NkoXh7EyTwKeqL8nMhJpPYwCk4wI9PW8Nxb/89ophFd+xmWSApN0uihMBYYYj+vBXa4YBTE0hFDFzV8x7RPTCZgS86YEd/7kRdI4Lbtn5Yv782LlZlZHDh2iI2QjF12iCrpDVVRHFD2iZ/SK3qwn68V6tz6m0SVrNnOA/sD6/AGa7puh</latexit>

24https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Recursion dominates

If
for some ,

then

f(n) = O
�
n
logb a�✏

�
<latexit sha1_base64="XgZI1h4QaQa68gZ2jOGzvb2EiAg=">AAACEnicdVDLSgNBEJz1bXxFPXoZDEJyMGx8oAcFwYs3FYwK2RhmJ73JkNmZZaZXCEu+wYu/4sWDIl49efNvnMQIPgsaiqpuurvCRAqLvv/mjYyOjU9MTk3nZmbn5hfyi0vnVqeGQ5Vrqc1lyCxIoaCKAiVcJgZYHEq4CDuHff/iGowVWp1hN4F6zFpKRIIzdFIjX4qKqkT36XEgIcKiusoCqVuNkK0HkFghteoFRrTaWGrkC355c9d3oL9JpewPUCBDnDTyr0FT8zQGhVwya2sVP8F6xgwKLqGXC1ILCeMd1oKao4rFYOvZ4KUeXXNKk0bauFJIB+rXiYzF1nbj0HXGDNv2p9cX//JqKUa79UyoJEVQ/GNRlEqKmvbzoU1hgKPsOsK4Ee5WytvMMI4uxZwL4fNT+j853yhXNsvbp1uFg71hHFNkhaySIqmQHXJAjsgJqRJObsgdeSCP3q137z15zx+tI95wZpl8g/fyDiV5nTE=</latexit>

✏ > 0
<latexit sha1_base64="VVNOaCYljaTB0tHbcR0Rntq3YKQ=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4GmaMYg4iAS8eI5gFMkPo6fQkTXp6mu4eIQz5DS8eFPHqz3jzb+wsguuDgsd7VVTViyRn2njeu1NYWl5ZXSuulzY2t7Z3yrt7LZ1mitAmSXmqOhHWlDNBm4YZTjtSUZxEnLaj0dXUb99RpVkqbs1Y0jDBA8FiRrCxUhBQqRlPBbpEXq9c8dxqzbNAv4nvejNUYIFGr/wW9FOSJVQYwrHWXd+TJsyxMoxwOikFmaYSkxEe0K6lAidUh/ns5gk6skofxamyJQyaqV8ncpxoPU4i25lgM9Q/van4l9fNTFwLcyZkZqgg80VxxpFJ0TQA1GeKEsPHlmCimL0VkSFWmBgbU8mG8Pkp+p+0Tly/6p7dnFbqF4s4inAAh3AMPpxDHa6hAU0gIOEeHuHJyZwH59l5mbcWnMXMPnyD8/oBJ0KRGA==</latexit>

T (n) = ⇥
�
nlogb a

�
<latexit sha1_base64="Hn2XXGq6RUIykRZ76GG4yAL7taY=">AAACDnicdVA9SwNBEN2LXzF+RS1tFoMQm3AxiikUAjaWERIVcjHsbeaSJXt7x+6cEI78Ahv/io2FIrbWdv4bNzGCnw8GHu/NMDPPj6Uw6LpvTmZmdm5+IbuYW1peWV3Lr2+cmyjRHJo8kpG+9JkBKRQ0UaCEy1gDC30JF/7gZOxfXIM2IlINHMbQDllPiUBwhlbq5HcaRbVLj6nX6AMyT0KARXWVejLqdXw28rTo9XG3ky+4pUrVtaC/SbnkTlAgU9Q7+VevG/EkBIVcMmNaZTfGdso0Ci5hlPMSAzHjA9aDlqWKhWDa6eSdEd2xSpcGkbalkE7UrxMpC40Zhr7tDBn2zU9vLP7ltRIMqu1UqDhBUPxjUZBIihEdZ0O7QgNHObSEcS3srZT3mWYcbYI5G8Lnp/R/cr5XKldKB2f7hdrRNI4s2SLbpEjK5JDUyCmpkybh5IbckQfy6Nw6986T8/zRmnGmM5vkG5yXd/f6m3c=</latexit>

f dominates

If
for some , and

for some c < 1
for all n sufficiently large,
then

f(n) = ⌦
�
nlogb a+✏

�
<latexit sha1_base64="wqWXs8NgWg5w/vPWHlhpoUDFnEY=">AAACF3icdVBNSyNBEO1Rdzdmv2b16KUxLCQsDJNV2RwUBC/eVDCJkMmGnk7NpLGne+iuWQhD/oUX/4oXD4p41Zv/xs6H4H49KHi8V0VVvTiXwmIYPnlLyytv3r6rrFbff/j46bP/Za1jdWE4tLmW2pzFzIIUCtooUMJZboBlsYRufH4w9bu/wFih1SmOc+hnLFUiEZyhkwZ+kNRVg+7R6CiDlEUSEqyrn2UkdTqI2bcIciukVpPIiHSEjYFfC4OtVuhA/ybNIJyhRhY4HviP0VDzIgOFXDJre80wx37JDAouYVKNCgs54+cshZ6jimVg++Xsrwn96pQhTbRxpZDO1NcTJcusHWex68wYjuyf3lT8l9crMGn1S6HyAkHx+aKkkBQ1nYZEh8IARzl2hHEj3K2Uj5hhHF2UVRfCy6f0/6TzPWhuBTsn27X93UUcFbJBNkmdNMkPsk8OyTFpE04uyBW5IbfepXft3Xn389YlbzGzTn6D9/AMJHifVw==</latexit>

✏ > 0
<latexit sha1_base64="VVNOaCYljaTB0tHbcR0Rntq3YKQ=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4GmaMYg4iAS8eI5gFMkPo6fQkTXp6mu4eIQz5DS8eFPHqz3jzb+wsguuDgsd7VVTViyRn2njeu1NYWl5ZXSuulzY2t7Z3yrt7LZ1mitAmSXmqOhHWlDNBm4YZTjtSUZxEnLaj0dXUb99RpVkqbs1Y0jDBA8FiRrCxUhBQqRlPBbpEXq9c8dxqzbNAv4nvejNUYIFGr/wW9FOSJVQYwrHWXd+TJsyxMoxwOikFmaYSkxEe0K6lAidUh/ns5gk6skofxamyJQyaqV8ncpxoPU4i25lgM9Q/van4l9fNTFwLcyZkZqgg80VxxpFJ0TQA1GeKEsPHlmCimL0VkSFWmBgbU8mG8Pkp+p+0Tly/6p7dnFbqF4s4inAAh3AMPpxDHa6hAU0gIOEeHuHJyZwH59l5mbcWnMXMPnyD8/oBJ0KRGA==</latexit>

af (n/b)  cf (n)
<latexit sha1_base64="ud5IvhPNJ6kxRKF03XIM6pvPCb0=">AAACE3icdZC7SgNBFIZn4y3G26qlzWAQokXcNYopLAI2lhFMIiQhzE5mkyGzs8vMWSEseQcbX8XGQhFbGzvfxtlkBa8/DPx85xzOnN+LBNfgOO9Wbm5+YXEpv1xYWV1b37A3t5o6jBVlDRqKUF17RDPBJWsAB8GuI8VI4AnW8kbnab11w5TmobyCccS6ARlI7nNKwKCefUCwjzuC+VCSh15H8cEQ9lOAKfYzntGeXXTKlapjhH8bt+xMVUSZ6j37rdMPaRwwCVQQrduuE0E3IQo4FWxS6MSaRYSOyIC1jZUkYLqbTG+a4D1D+tgPlXkS8JR+nUhIoPU48ExnQGCof9ZS+FetHYNf7SZcRjEwSWeL/FhgCHEaEO5zxSiIsTGEKm7+iumQKELBxFgwIXxeiv83zaOyWymfXB4Xa2dZHHm0g3ZRCbnoFNXQBaqjBqLoFt2jR/Rk3VkP1rP1MmvNWdnMNvom6/UDy8Cc3w==</latexit>

T (n) = ⇥ (f (n))
<latexit sha1_base64="qfh3Rt1tG1inzZjpR+k0ACUSEG4=">AAACEnicdVA9SwNBEN2L3/ErammzGISkOS5G0UJBsLFUSFTIHWFvM5cs2ds7dueEEPwNNv4VGwtFbK3s/DdukhP8fLDM470ZZueFqRQGPe/dKUxNz8zOzS8UF5eWV1ZLa+sXJsk0hyZPZKKvQmZACgVNFCjhKtXA4lDCZdg/GfmX16CNSFQDBykEMesqEQnO0ErtUrVRUVV6RP1GD5D5EiKsRJOifC26PazmpV0qe279wLOgv0nN9cYokxxn7dKb30l4FoNCLpkxrZqXYjBkGgWXcFP0MwMp433WhZalisVgguH4pBu6bZUOjRJtn0I6Vr9ODFlszCAObWfMsGd+eiPxL6+VYXQQDIVKMwTFJ4uiTFJM6Cgf2hEaOMqBJYxrYf9KeY9pxtGmWLQhfF5K/ycXO26t7u6d75aPD/M45skm2SIVUiP75JickjPSJJzcknvySJ6cO+fBeXZeJq0FJ5/ZIN/gvH4AdwqcwQ==</latexit>

Both contribute

If , then f(n) = ⇥
�
nlogb a

�
<latexit sha1_base64="pzTaIzsJkhOpOgiZpYKsedSLaxE=">AAACDnicdVA9SwNBEN3zM8avU0ubxRBImnAxiikUAjaWCkaFXAx7m7lkcW/v2J0TwpFfYONfsbFQxNbazn/jJkbw88HA470ZZuYFiRQGPe/NmZqemZ2bzy3kF5eWV1bdtfUzE6eaQ5PHMtYXATMghYImCpRwkWhgUSDhPLg6HPnn16CNiNUpDhJoR6ynRCg4Qyt13GJYUmV6QP3TPiDzJYRYUpeZL+NeJ2BDX4teH8sdt+BVanXPgv4m1Yo3RoFMcNxxX/1uzNMIFHLJjGlVvQTbGdMouIRh3k8NJIxfsR60LFUsAtPOxu8MadEqXRrG2pZCOla/TmQsMmYQBbYzYtg3P72R+JfXSjGstzOhkhRB8Y9FYSopxnSUDe0KDRzlwBLGtbC3Ut5nmnG0CeZtCJ+f0v/J2XalWqvsnuwUGvuTOHJkk2yREqmSPdIgR+SYNAknN+SOPJBH59a5d56c54/WKWcys0G+wXl5BxXZm4k=</latexit>

T (n) = ⇥
�
nlogb a log n

�
<latexit sha1_base64="VxhrRlA0hvOVSUnIesMQ8hzfq9M=">AAACFHicdVDJSgNBEO2Je9yiHr00BiEihIkLelAIePEYIYmBTAw9nZqksadn6K4RwpCP8OKvePGgiFcP3vwbO4vg+qCox3tVdNfzYykMuu67k5manpmdm1/ILi4tr6zm1tbrJko0hxqPZKQbPjMghYIaCpTQiDWw0Jdw6V+fDf3LG9BGRKqK/RhaIesqEQjO0Ert3G61oHboKfWqPUDmSQiwoK5ST0bdts8Gw06Vp0W3hzvtXN4t7h+7FvQ3KRXdEfJkgko79+Z1Ip6EoJBLZkyz5MbYSplGwSUMsl5iIGb8mnWhaaliIZhWOjpqQLet0qFBpG0ppCP160bKQmP6oW8nQ4Y989Mbin95zQSD41YqVJwgKD5+KEgkxYgOE6IdoYGj7FvCuBb2r5T3mGYcbY5ZG8LnpfR/Ut8rlvaLhxcH+fLJJI55skm2SIGUyBEpk3NSITXCyS25J4/kyblzHpxn52U8mnEmOxvkG5zXD3c+nd8=</latexit>

Recall: Master Theorem

• The master theorem provides a solution to recurrence relations of the form

- For constants a ≥ 1 and b > 1 and f asymptotically positive

• Examples:

- Merge sort: T(n) = 2T(n/2) + n
Then case 2 gives (a=2, b=2): T(n) = Θ(n log n)

- Traversing a binary tree: T(n) = 2T(n/2) + O(1)
Then case 1 gives (a=2, b=2, ε=1): T(n) = Θ(n)

T (n) = aT
⇣n
b

⌘
+ f(n)

<latexit sha1_base64="M7TFTkTi9rmEdhQZJEEoVjGfbbY=">AAACEXicbVDLSgMxFM34rPVVdekmWIQpQpnxgW6EohuXFfqCzlAyaaYNzWSG5I5Qhv6CG3/FjQtF3Lpz59+YPhbaeiBwOOdcbu4JEsE1OM63tbS8srq2ntvIb25t7+wW9vYbOk4VZXUai1i1AqKZ4JLVgYNgrUQxEgWCNYPB7dhvPjCleSxrMEyYH5Ge5CGnBIzUKdg1W5bwNSY1T7AQbC9UhGZylAUjT/FeH0r4BIcm0ykUnbIzAV4k7owU0QzVTuHL68Y0jZgEKojWbddJwM+IAk4FG+W9VLOE0AHpsbahkkRM+9nkohE+NkoXh7EyTwKeqL8nMhJpPYwCk4wI9PW8Nxb/89ophFd+xmWSApN0uihMBYYYj+vBXa4YBTE0hFDFzV8x7RPTCZgS86YEd/7kRdI4Lbtn5Yv782LlZlZHDh2iI2QjF12iCrpDVVRHFD2iZ/SK3qwn68V6tz6m0SVrNnOA/sD6/AGa7puh</latexit>

25

Example: fold (2)

• Parallel algorithms can often use recursion effectively

• Work analysis:

- Line 3 is Θ(1)

- Line 2 says it is done n/2 times, so Θ(n/2)

- Line 3 is a recursive call on n/2 inputs. Call the work W(n) and we get W(n) = W(n/2) + Θ(n/2)

- Solve with the master theorem (a=1, b=2, ε=1, case 3): W(n) = Θ(n)

26

sum (A, p, q)
 parallel_for (i = 0..(q-p)/2)
 B[i] = A[p+2*i] + A[p+2*i+1]

 sum (B, 0, (q-p)/2)

1
2
3
4
5

Example: fold (2)

• Parallel algorithms can often use recursion effectively

• Span analysis:

- Line 2-3 have constant span because they are done in parallel

- This means the span S(n) = S(n/2) + Θ(1)

- Solve with the master theorem (a=1, b=2, case 2): S(n) = Θ(log n)

• Conclusion: we can sum n numbers in linear work and logarithmic span

27

sum (A, p, q)
 parallel_for (i = 0..(q-p)/2)
 B[i] = A[p+2*i] + A[p+2*i+1]

 sum (B, 0, (q-p)/2)

1
2
3
4
5

Example: scan (1)

• Parallel implementation of prefix sum

- Split the data over two processors and perform a prefix sum individually on each part

28

 split: [3,4, 4, 4, 4] [3,5, 4, 5]
left/right result: [3,7,11,15,19] [3,8,12,17]

 input: [3,4, 4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

P1 P2

Example: scan (1)

• Example: recursive implementation of prefix sum:

- Span (a=1, b=2, case 2): S(n) = S(n/2) + 1 = Θ(log n)

- Work (a=2, b=2, case 2): W(n) = 2 W(n/2) + n = Θ(n log n)

29

prefix_sum (A, p, q)
 // base case

 m = (p+q)/2
 prefix_sum(A, p, m)
 prefix_sum(A, m+1, q)
 parallel_for (i = m+1..q)
 A[i] = A[i] + A[m]

1
2
3
4
5
6
7
8

In parallel

Efficient & optimal

• The parallelisation overhead of an algorithm is its work divided by the cost of the best sequential algorithm

- For this parallel scan we have to put O(n log n) work into something which can be done sequentially in linear
O(n) time: the overhead is logarithmic

- A parallel algorithm is:

• Efficient when the span is poly-logarithmic and the overhead is also poly-logarithmic

• Optimal when the span is poly-logarithmic and the overhead is constant

30

Example: scan (2)

• Let’s try a different approach to parallelising scan:

- Pair up neighbours at the even positions:

- Perform a prefix sum of these values:

- At the uneven positions add the input value at that position to the output of the previous step on the left:

31

 input: [3,4, 4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

[7, 8, 7, 9]

[7, 15, 22, 31]

[3,7,11,15,19,22,27,31,36]

Example: scan (2)

• We can implement this recursively by keeping track of a hop distance

• Work:

- Algorithm does n-1 additions and one half-size prefix sum

- Master theorem (a=1, b=2, ε=1, case 3): W(n) = W(n/2) + n = Θ(n)

32

prefix_sum (A, d)
 parallel_for (i = even multiple of d)
 A[i] += A[i-d]
 prefix_sum(A, 2*d)
 parallel_for (i = uneven multiple of d)
 A[i] += A[i-d]

1
2
3
4
5
6

Example: scan (2)

• We can implement this recursively by keeping track of a hop distance

• Span:

- Additions are done in two (parallel) groups, before and after the prefix sum

- Master theorem (a=1, b=2, case 2): S(n) = 1 + S(n/2) + 1 = Θ(log n)

- Since the span is logarithmic and there is no overhead, this prefix sum is parallelised optimally

33

prefix_sum (A, d)
 parallel_for (i = even multiple of d)
 A[i] += A[i-d]
 prefix_sum(A, 2*d)
 parallel_for (i = uneven multiple of d)
 A[i] += A[i-d]

1
2
3
4
5
6

Summary

• Work and span are used to analyse and compare asymptotic behaviour of parallel algorithms

- Work: total number of steps (computations)

- Span: longest path of steps that need to be done sequentially (steps)

• The PRAM model ignores practical issues such as memory access latency

- Assume uniform costs for all memory access

• Time to perform something on P cores: TP = Θ(work/P + span)

- Compare to the formulation by Amdhal

34

Next time…

• Thursday: Revision lecture

- This will consist of the last lectures presented simultaneously
(it is up to you to parallelise your brain before then)

- Send me questions/topics to cover via Teams!

35 Photo by Claudio Piccolo

tot ziens

B3CC: Concurrency
16: Conclusion

Ivo Gabe de Wolff

Final exam!

• Final exam

- Tuesday 30 January @ 13:30

- Olympos Hal 2

- Mix of multiple choice and open questions

- Covers material from second half of the course:

• From lecture 9 (Parallelism) through lecture 15 (Work & Span)

- You don’t need to write Accelerate code

• But you may be asked to design a parallel algorithm in terms of the parallel patterns

- Remindo has a calculator, no physical calculators allowed

2https://www.instagram.com/p/CZIPjkijxj1

Brief course summary

3

What?

Parallelism
&

Concurrency

4

Why?

5https://github.com/karlrupp/microprocessor-trend-data

Where?

• Three kinds of code:

- Gameplay simulation

• Models the state of the game world as interacting entities

- Numeric computation

• Physics, collision detection, path finding, scene graph traversal, etc.

- Shading

• Pixel & vertex attributes; runs on the GPU

6Sekiro: Shadows Die Twice, FromSoftware

How?

7Tim Sweeney: The Next Mainstream Programming Language, POPL 2006

Game
Simulation

Numeric
Computation Shading

Languages C++, scripting C++ GC, HLSL

CPU Budget 10% 90% n/a

Lines of Code 250.000 250.000 10.000

FPU Usage 0.5 GFLOPS 5 GFLOPS 500 GFLOPS

Concurrency/
Parallelism GPUSIMDSTM

Kinds of parallelism

8

… n{ { {

P1 P2 P3

…

Task parallelism Data parallelism

GPGPU

9

Ampere GPU Architecture In-Depth

NVIDIA Ampere GA102 GPU Architecture 10

Figure 3. GA10x Streaming Multiprocessor (SM)

2x FP32 Throughput
In the Turing generation, each of the four SM processing blocks (also called partitions) had two
primary datapaths, but only one of the two could process FP32 operations. The other datapath
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling
the peak processing rate for FP32 operations. One datapath in each partition consists of 16

• How the parallel patterns we have talked
about map to GPU code

• Difference between CPU and GPU

- What each is designed for; strengths and
weaknesses

- What the GPU programming model
(CUDA) is designed for

Patterns: map

• Apply a function to every element of an array, independently

• This one is (hopefully) straightforward…

10

1 2 3 4 5 6 7 … n

+1 +1 +1 +1 +1 +1 +1 +1

2 3 4 5 6 7 8 … n+1

Patterns: stencil

• A map with access to the surrounding neighbourhood

• What are the difficulties/limitations?

- The ghost region (halo) and how/why to use it

- Optimisations (tiling, strip mining, etc.)

11

i-1 i i+1 ?

f f f f f f f

?

Stencil optimisations

• Use a different kernel for the interior and border regions

- In the gaussian blur example of a 512x512 pixel image, 98% of the pixels do not require in-bounds checks

• Optimise data locality & reuse through tiling

- Strip mining is an optimisation that groups elements in a way that avoids redundant memory access and aligns
accesses with cache lines

12

4 x (5 reads + 1 write) 14 reads + 4 writes

Stencil optimisations

Without tiling
• When handling row 0, row 1 is loaded in cache.

• First values of row 1 may already be out of cache, 

when handling row 1

13

With tiling
• Previously loaded row is still in cache

• Tile width is usually a power of 2, 

on GPUs often the warp size (32)

Patterns: fold

• Reduce an array to a summary value

• How to implement this in parallel

- What kinds of restrictions are necessary?

- What additional restrictions can be leveraged to improve it further?

14

Patterns: scan

• All partial reductions of an array

• Varieties

- Inclusive vs. exclusive etc.

• Parallel implementation

- Restrictions, etc.

15

Patterns: gather

• Parallel random read

• Implications for memory access patterns

- Optimisations for special cases (e.g. transpose), like tiling

- Implications for the GPU, caches, etc.

16

x0 x1 x2 x3 x4 x5 x6

3 2 0 7

x7

x3 x2 x0 x7

Patterns: scatter

• Parallel random write

• How to handle collisions in the index permutation function

- Performance implications of collisions, false sharing, etc.

- Scatter vs. gather

17https://en.wikipedia.org/wiki/False_sharing

x0 x1 x2 x3 x4 x5 x6

2 4 1 0 7 6 5 3

x7

x3 x2 x0 x7 x1 x5 x6 x4

Patterns: gather vs scatter

• Random reads (gather) are slower than structured reads

• Random writes (scatter) are slower than structured writes

• This problem is larger for scatter, 
as the processor needs to perform more synchronization between cores

• In general, use gather instead of scatter if both are possible

18

Patterns

• You should be able to:

- Give examples for each pattern

- Recognise these patterns and where they can be used

• e.g. given a problem description, give an implementation in terms of these patterns

• Use Accelerate code, pseudocode or an explanation in text

• Especially for the latter, make sure your explanation is concrete

19

Work & Span

• We analysed the performance of algorithms using the work and span:

- Work = T1

How long to execute on a single processor

- Span = T∞

How long to execute on an infinite number of processors

• The longest dependence chain / critical path length / computational depth

• Example: O(log n) for summing an array

20

Efficient & optimal

• The parallelisation overhead of an algorithm is its work divided by the cost of the best sequential algorithm

- For this parallel scan we have to put O(n log n) work into something which can be done sequentially in linear
O(n) time: the overhead is logarithmic

- A parallel algorithm is:

• Efficient when the span is poly-logarithmic and the overhead is also poly-logarithmic

• Optimal when the span is poly-logarithmic and the overhead is constant

21

Master Theorem

• The master theorem provides a solution to recurrence relations of the form

- For constants a ≥ 1 and b > 1 and f asymptotically positive

• The master theorem has three cases:

T (n) = aT
⇣n
b

⌘
+ f(n)

<latexit sha1_base64="M7TFTkTi9rmEdhQZJEEoVjGfbbY=">AAACEXicbVDLSgMxFM34rPVVdekmWIQpQpnxgW6EohuXFfqCzlAyaaYNzWSG5I5Qhv6CG3/FjQtF3Lpz59+YPhbaeiBwOOdcbu4JEsE1OM63tbS8srq2ntvIb25t7+wW9vYbOk4VZXUai1i1AqKZ4JLVgYNgrUQxEgWCNYPB7dhvPjCleSxrMEyYH5Ge5CGnBIzUKdg1W5bwNSY1T7AQbC9UhGZylAUjT/FeH0r4BIcm0ykUnbIzAV4k7owU0QzVTuHL68Y0jZgEKojWbddJwM+IAk4FG+W9VLOE0AHpsbahkkRM+9nkohE+NkoXh7EyTwKeqL8nMhJpPYwCk4wI9PW8Nxb/89ophFd+xmWSApN0uihMBYYYj+vBXa4YBTE0hFDFzV8x7RPTCZgS86YEd/7kRdI4Lbtn5Yv782LlZlZHDh2iI2QjF12iCrpDVVRHFD2iZ/SK3qwn68V6tz6m0SVrNnOA/sD6/AGa7puh</latexit>

22https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Recursion dominates

If
for some ,

then

f(n) = O
�
n
logb a�✏

�
<latexit sha1_base64="XgZI1h4QaQa68gZ2jOGzvb2EiAg=">AAACEnicdVDLSgNBEJz1bXxFPXoZDEJyMGx8oAcFwYs3FYwK2RhmJ73JkNmZZaZXCEu+wYu/4sWDIl49efNvnMQIPgsaiqpuurvCRAqLvv/mjYyOjU9MTk3nZmbn5hfyi0vnVqeGQ5Vrqc1lyCxIoaCKAiVcJgZYHEq4CDuHff/iGowVWp1hN4F6zFpKRIIzdFIjX4qKqkT36XEgIcKiusoCqVuNkK0HkFghteoFRrTaWGrkC355c9d3oL9JpewPUCBDnDTyr0FT8zQGhVwya2sVP8F6xgwKLqGXC1ILCeMd1oKao4rFYOvZ4KUeXXNKk0bauFJIB+rXiYzF1nbj0HXGDNv2p9cX//JqKUa79UyoJEVQ/GNRlEqKmvbzoU1hgKPsOsK4Ee5WytvMMI4uxZwL4fNT+j853yhXNsvbp1uFg71hHFNkhaySIqmQHXJAjsgJqRJObsgdeSCP3q137z15zx+tI95wZpl8g/fyDiV5nTE=</latexit>

✏ > 0
<latexit sha1_base64="VVNOaCYljaTB0tHbcR0Rntq3YKQ=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4GmaMYg4iAS8eI5gFMkPo6fQkTXp6mu4eIQz5DS8eFPHqz3jzb+wsguuDgsd7VVTViyRn2njeu1NYWl5ZXSuulzY2t7Z3yrt7LZ1mitAmSXmqOhHWlDNBm4YZTjtSUZxEnLaj0dXUb99RpVkqbs1Y0jDBA8FiRrCxUhBQqRlPBbpEXq9c8dxqzbNAv4nvejNUYIFGr/wW9FOSJVQYwrHWXd+TJsyxMoxwOikFmaYSkxEe0K6lAidUh/ns5gk6skofxamyJQyaqV8ncpxoPU4i25lgM9Q/van4l9fNTFwLcyZkZqgg80VxxpFJ0TQA1GeKEsPHlmCimL0VkSFWmBgbU8mG8Pkp+p+0Tly/6p7dnFbqF4s4inAAh3AMPpxDHa6hAU0gIOEeHuHJyZwH59l5mbcWnMXMPnyD8/oBJ0KRGA==</latexit>

T (n) = ⇥
�
nlogb a

�
<latexit sha1_base64="Hn2XXGq6RUIykRZ76GG4yAL7taY=">AAACDnicdVA9SwNBEN2LXzF+RS1tFoMQm3AxiikUAjaWERIVcjHsbeaSJXt7x+6cEI78Ahv/io2FIrbWdv4bNzGCnw8GHu/NMDPPj6Uw6LpvTmZmdm5+IbuYW1peWV3Lr2+cmyjRHJo8kpG+9JkBKRQ0UaCEy1gDC30JF/7gZOxfXIM2IlINHMbQDllPiUBwhlbq5HcaRbVLj6nX6AMyT0KARXWVejLqdXw28rTo9XG3ky+4pUrVtaC/SbnkTlAgU9Q7+VevG/EkBIVcMmNaZTfGdso0Ci5hlPMSAzHjA9aDlqWKhWDa6eSdEd2xSpcGkbalkE7UrxMpC40Zhr7tDBn2zU9vLP7ltRIMqu1UqDhBUPxjUZBIihEdZ0O7QgNHObSEcS3srZT3mWYcbYI5G8Lnp/R/cr5XKldKB2f7hdrRNI4s2SLbpEjK5JDUyCmpkybh5IbckQfy6Nw6986T8/zRmnGmM5vkG5yXd/f6m3c=</latexit>

f dominates

If
for some , and

for some c < 1
for all n sufficiently large,
then

f(n) = ⌦
�
nlogb a+✏

�
<latexit sha1_base64="wqWXs8NgWg5w/vPWHlhpoUDFnEY=">AAACF3icdVBNSyNBEO1Rdzdmv2b16KUxLCQsDJNV2RwUBC/eVDCJkMmGnk7NpLGne+iuWQhD/oUX/4oXD4p41Zv/xs6H4H49KHi8V0VVvTiXwmIYPnlLyytv3r6rrFbff/j46bP/Za1jdWE4tLmW2pzFzIIUCtooUMJZboBlsYRufH4w9bu/wFih1SmOc+hnLFUiEZyhkwZ+kNRVg+7R6CiDlEUSEqyrn2UkdTqI2bcIciukVpPIiHSEjYFfC4OtVuhA/ybNIJyhRhY4HviP0VDzIgOFXDJre80wx37JDAouYVKNCgs54+cshZ6jimVg++Xsrwn96pQhTbRxpZDO1NcTJcusHWex68wYjuyf3lT8l9crMGn1S6HyAkHx+aKkkBQ1nYZEh8IARzl2hHEj3K2Uj5hhHF2UVRfCy6f0/6TzPWhuBTsn27X93UUcFbJBNkmdNMkPsk8OyTFpE04uyBW5IbfepXft3Xn389YlbzGzTn6D9/AMJHifVw==</latexit>

✏ > 0
<latexit sha1_base64="VVNOaCYljaTB0tHbcR0Rntq3YKQ=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4GmaMYg4iAS8eI5gFMkPo6fQkTXp6mu4eIQz5DS8eFPHqz3jzb+wsguuDgsd7VVTViyRn2njeu1NYWl5ZXSuulzY2t7Z3yrt7LZ1mitAmSXmqOhHWlDNBm4YZTjtSUZxEnLaj0dXUb99RpVkqbs1Y0jDBA8FiRrCxUhBQqRlPBbpEXq9c8dxqzbNAv4nvejNUYIFGr/wW9FOSJVQYwrHWXd+TJsyxMoxwOikFmaYSkxEe0K6lAidUh/ns5gk6skofxamyJQyaqV8ncpxoPU4i25lgM9Q/van4l9fNTFwLcyZkZqgg80VxxpFJ0TQA1GeKEsPHlmCimL0VkSFWmBgbU8mG8Pkp+p+0Tly/6p7dnFbqF4s4inAAh3AMPpxDHa6hAU0gIOEeHuHJyZwH59l5mbcWnMXMPnyD8/oBJ0KRGA==</latexit>

af (n/b)  cf (n)
<latexit sha1_base64="ud5IvhPNJ6kxRKF03XIM6pvPCb0=">AAACE3icdZC7SgNBFIZn4y3G26qlzWAQokXcNYopLAI2lhFMIiQhzE5mkyGzs8vMWSEseQcbX8XGQhFbGzvfxtlkBa8/DPx85xzOnN+LBNfgOO9Wbm5+YXEpv1xYWV1b37A3t5o6jBVlDRqKUF17RDPBJWsAB8GuI8VI4AnW8kbnab11w5TmobyCccS6ARlI7nNKwKCefUCwjzuC+VCSh15H8cEQ9lOAKfYzntGeXXTKlapjhH8bt+xMVUSZ6j37rdMPaRwwCVQQrduuE0E3IQo4FWxS6MSaRYSOyIC1jZUkYLqbTG+a4D1D+tgPlXkS8JR+nUhIoPU48ExnQGCof9ZS+FetHYNf7SZcRjEwSWeL/FhgCHEaEO5zxSiIsTGEKm7+iumQKELBxFgwIXxeiv83zaOyWymfXB4Xa2dZHHm0g3ZRCbnoFNXQBaqjBqLoFt2jR/Rk3VkP1rP1MmvNWdnMNvom6/UDy8Cc3w==</latexit>

T (n) = ⇥ (f (n))
<latexit sha1_base64="qfh3Rt1tG1inzZjpR+k0ACUSEG4=">AAACEnicdVA9SwNBEN2L3/ErammzGISkOS5G0UJBsLFUSFTIHWFvM5cs2ds7dueEEPwNNv4VGwtFbK3s/DdukhP8fLDM470ZZueFqRQGPe/dKUxNz8zOzS8UF5eWV1ZLa+sXJsk0hyZPZKKvQmZACgVNFCjhKtXA4lDCZdg/GfmX16CNSFQDBykEMesqEQnO0ErtUrVRUVV6RP1GD5D5EiKsRJOifC26PazmpV0qe279wLOgv0nN9cYokxxn7dKb30l4FoNCLpkxrZqXYjBkGgWXcFP0MwMp433WhZalisVgguH4pBu6bZUOjRJtn0I6Vr9ODFlszCAObWfMsGd+eiPxL6+VYXQQDIVKMwTFJ4uiTFJM6Cgf2hEaOMqBJYxrYf9KeY9pxtGmWLQhfF5K/ycXO26t7u6d75aPD/M45skm2SIVUiP75JickjPSJJzcknvySJ6cO+fBeXZeJq0FJ5/ZIN/gvH4AdwqcwQ==</latexit>

Both contribute

If , then f(n) = ⇥
�
nlogb a

�
<latexit sha1_base64="pzTaIzsJkhOpOgiZpYKsedSLaxE=">AAACDnicdVA9SwNBEN3zM8avU0ubxRBImnAxiikUAjaWCkaFXAx7m7lkcW/v2J0TwpFfYONfsbFQxNbazn/jJkbw88HA470ZZuYFiRQGPe/NmZqemZ2bzy3kF5eWV1bdtfUzE6eaQ5PHMtYXATMghYImCpRwkWhgUSDhPLg6HPnn16CNiNUpDhJoR6ynRCg4Qyt13GJYUmV6QP3TPiDzJYRYUpeZL+NeJ2BDX4teH8sdt+BVanXPgv4m1Yo3RoFMcNxxX/1uzNMIFHLJjGlVvQTbGdMouIRh3k8NJIxfsR60LFUsAtPOxu8MadEqXRrG2pZCOla/TmQsMmYQBbYzYtg3P72R+JfXSjGstzOhkhRB8Y9FYSopxnSUDe0KDRzlwBLGtbC3Ut5nmnG0CeZtCJ+f0v/J2XalWqvsnuwUGvuTOHJkk2yREqmSPdIgR+SYNAknN+SOPJBH59a5d56c54/WKWcys0G+wXl5BxXZm4k=</latexit>

T (n) = ⇥
�
nlogb a log n

�
<latexit sha1_base64="VxhrRlA0hvOVSUnIesMQ8hzfq9M=">AAACFHicdVDJSgNBEO2Je9yiHr00BiEihIkLelAIePEYIYmBTAw9nZqksadn6K4RwpCP8OKvePGgiFcP3vwbO4vg+qCox3tVdNfzYykMuu67k5manpmdm1/ILi4tr6zm1tbrJko0hxqPZKQbPjMghYIaCpTQiDWw0Jdw6V+fDf3LG9BGRKqK/RhaIesqEQjO0Ert3G61oHboKfWqPUDmSQiwoK5ST0bdts8Gw06Vp0W3hzvtXN4t7h+7FvQ3KRXdEfJkgko79+Z1Ip6EoJBLZkyz5MbYSplGwSUMsl5iIGb8mnWhaaliIZhWOjpqQLet0qFBpG0ppCP160bKQmP6oW8nQ4Y989Mbin95zQSD41YqVJwgKD5+KEgkxYgOE6IdoYGj7FvCuBb2r5T3mGYcbY5ZG8LnpfR/Ut8rlvaLhxcH+fLJJI55skm2SIGUyBEpk3NSITXCyS25J4/kyblzHpxn52U8mnEmOxvkG5zXD3c+nd8=</latexit>

Analysis of parallel algorithms

• You should be able to:

- Compute the work and span given a problem description/code

- Compare parallel algorithms

• Efficient & optimal

• Parallel speedup (Amdhal vs. Gustafson-Baris)

23

Questions?

24

Finally…

• Please fill out the Thermometer survey!

- All constructive feedback is welcome

- https://caracal.uu.nl/35916/Respond

25 Photo by Claudio Piccolo

succes!

me

you

exam

