
B3CC: Concurrency
15: Work & Span

Ivo Gabe de Wolff

• Explicit threads

• Synchronise via locks, messages, or STM

• Modest parallelism

• Hard to program

• Operate simultaneously on bulk data

• Implicit synchronisation

• Massive parallelism

• Easy to program

Previously…

2

… n{ { {

P1 P2 P3

…

Task parallelism Data parallelism

Performance analysis

• We want to analyse the cost of a parallel algorithm

- We will consider asymptotic costs, to compare algorithms in terms of:

• How they scale to larger inputs

• How they scale (parallelise) over more cores

- Example: some sorting algorithms are O(n log n) and others O(n2) over the size of the input

- Example: RTX 4090 Ti has 16384 “cores” distributed over 128 multiprocessors

3

• When designing and analysing sequential algorithms, we use 
the random access machine (RAM) model

- All locations in memory can be read from & written to in O(1)

- Summing an array can be done in linear Θ(n) time

RAM

4

s = 0
for (i = 0...n)
 s ::= s + arr[i]

Memory
CPU

• The parallel random access machine (PRAM) model is 
analogous for talking about parallel algorithms

- Shared memory machine with multiple attached processors (cores)

- Ignore details of synchronisation, communication, etc.

- Question: can we sum an array in parallel using this algorithm?

PRAM

5

Memory
CPU

CPU

CPU

CPU

s = 0
parallel_for (i = 0...n)
 s ::= s + arr[i]

Fold

6

• Binary tree reduction of an array

1. For even i:

arr[i] += arr[i+1]

2. For i a multiple of 4:

arr[i] += arr[i+2]

3. For i a multiple of 8:

arr[i] += arr[i+4]

4. et cetera…

x6 x7x4 x5x3x2x1x0 x8

r

?

Fold

• Binary tree reduction of an array

- To calculate step one instantly you need n/2 processors: O(n) operations and the whole algorithm takes
O(log n) time

- The hardware cost is thus the number of processor P multiplied by how long you need them: O(n log n)

- So, we can go faster with parallelism but at a higher hardware cost. Can this be improved?

1. Can we go faster than O(log n) ?

2. Can we have less hardware cost than O(n log n) ?

7

Fold

• Question 1: can we sum an array in sub-logarithmic time?

- Addition is a binary operator

- Parallel execution of binary operators can, after i rounds, produce values that depend on at most 2i values

- So, no matter what you do in parallel, you can not compute the full sum of n numbers in less than O(log n) time

8

Fold

• Question 1: proof by induction

- Induction hypothesis (IH): after i rounds values can only depend on at most 2i inputs

- i=0: After zero rounds we haven’t done anything, so a number only “depends” on itself, so on one number which
is 20

- i+1: In this round you can combine two inputs from round i, which according to the IH can only depend on at
most 2i + 2i = 2(i+1) inputs

- Therefore, addition can not be done sub-logarithmically. This holds true for all binary operators, which is why
(poly)logarithmic complexity O(logc n) is the best possible outcome for parallel execution

9

• Question 2: can we reduce the hardware cost?

- Split the problem into two steps

- Phase 1: divide the input over the P processors in groups of length n/P

- Phase 2: use a binary tree reduction to calculate the total from
the P partial sums

- Total time Tp = n/p + log p

• If P ≤ n / log n then phase one is dominant

• If P ≤ n / log n then hardware cost is O(n)

Fold

10

n/P

log P

Work & Span

• We don’t want a different optimal calculation when executing for a different number of cores

- Use a description with two parameters, instead of just sequential time

- Let Tp be the running time with P processors available

- Then calculate two extremes: the work and span

• Work = T1: How long to execute on a single processor

• Span = T∞: How long to execute on an infinite number of processors

- The longest dependence chain / critical path length / computational depth

- Example: O(log n) for summing an array

11

Work & Span

• Program can be seen as a dependency graph of the calculation steps

- Work is the total number of nodes (calculations) in the whole graph

- Span is the number of nodes on the longest path (height of the graph)

12

Work & Span

• If the work and span are known, you can estimate the time on P processors TP with:

- max(work/P, span) ≤ TP ≤ work/P + span

- The latter is at most double the former, so:

• TP = O(work/P + span)

- Question: what is the time to execute on 1, 2, or 3 cores?

13

d

c

a

e

b

Scheduling

• Brent proved that greedy scheduling is always two-optimal

- We say a step is ready when all its predecessors (dependencies) have been computed in previous rounds

- A greedy scheduler does as many steps in a round, but does not care which

- This is two-optimal:
Greedy scheduling takes at most twice as long as the optimal schedule

• Say TP* is the time for the optimal schedule, then:

- TP* ≥ work/P, because even the best schedule still has P cores available

- TP* ≥ span, because all calculations on a path must be done sequentially

14

Scheduling

• Greedy scheduling

- Full round: if there are P or more steps ready, do P steps this round; this happens at most work/P times

- Empty round: there are fewer than P steps ready; this happens at most span times, because every round the
span decreases by one

- The length of the greedy schedule is:

 TP = full + empty
 ≤ work/P + span
 ≤ TP* + TP*
 ≤ 2TP*

15

Scheduling

• Greedy scheduling

- Greedy scheduling has length at most twice the length of the optimal one, so is asymptotically optimal

- Because work/P + span and max(work/P, span) are asymptotically equal (differ by a factor of two), we can say
that TP = max(work/P, span)

16

Work & Span

• Greedy scheduling

1. As long as P ≤ work/span the first term is
dominant and the calculation can be shortened by
adding more cores: work bound phase

2. If we have P > work/span then the runtime will
not get shorter by adding more cores: span bound
phase

17

Work & Span

• When comparing algorithms, low work is better
than high work, and low span is better than high
span

- What if algorithm one has better work complexity
w1 < w2

- But algorithm 2 has better span complexity s1 > s2

- Low span is theoretically nice, but since we don’t
have infinite processors in practice, be careful not
to lower span at the cost of too much extra work

18

Work & Span

• Calculating work and span is the same as computing the time of an algorithm, as learned in the course data
structures

- Count the number of instructions/operations

- In the case of a loop, the cost of the body times the number of repetitions

- For recursion, use the Master Theorem

• For the analysis of parallel algorithms:

- You must do this process twice, once each for work and span

• Work is done as you would for a sequential algorithm

• Span takes the maximum of the branches which are performed in parallel

19

Example: zipWith

• Pair-wise multiply the elements of two arrays

• Work analysis:

- Doesn’t care about parallelism

- Line one says that this is done n times, so costs Θ(n) steps

• Span analysis:

- The maximum cost of all the branches which are done in parallel

- Loop on line 1 is parallel, so take the longest path of steps: Θ(1)

20

parallel_for (i = 0...n)
 r[i] ::= x[i] * y[i]

1
2

Example: fold (1)

• Add up all the numbers in an n x n matrix A, with subtotals per row

• Work analysis:

- Loop on line 3-4 costs Θ(n) steps

- Line one says this will be done n times, so line 1-4 take Θ(n2) steps

- Line 6-7 take Θ(n) steps

- Total is Θ(n2) work
21

parallel_for (j = 0...n)
 s[j] = 0
 for (i = 0...n)
 s[j] ::= s[j] + A[i,j]
t = 0
for (i = 0...n)
 t ::= t + s[j]

1
2
3
4
5
6
7

Example: fold (1)

• Add up all the numbers in an n x n matrix A, with subtotals per row

• Span analysis:

- Loop line 3-4 is sequential, Θ(n) steps

- Loop line 1 is parallel, so we take the longest path of steps from line 1-4: Θ(n)

- Line 5-7 still have Θ(n) sequential steps

- Total span is Θ(n) steps
22

parallel_for (j = 0...n)
 s[j] = 0
 for (i = 0...n)
 s[j] ::= s[j] + A[i,j]
t = 0
for (i = 0...n)
 t ::= t + s[j]

1
2
3
4
5
6
7

Example: fold (2)

• Parallel algorithms can often use recursion effectively

- We want a method sum(A, p, q) that calculates the sum of all numbers in A in the range [p,q)

- Using recursion, pretend you already have a clever way to sum n/2 numbers, which you want to use to calculate
the sum of n numbers

- Ignore possibility of uneven number of inputs, base case of recursion, etc…

23

sum (A, p, q)
 parallel_for (i = 0...(q-p)/2)
 B[i] = A[p+2*i] + A[p+2*i+1]

 sum (B, 0, (q-p)/2)

1
2
3
4
5

Master Theorem

• The master theorem provides a solution to recurrence relations of the form

- For constants a ≥ 1 and b > 1 and f asymptotically positive

• The master theorem has three cases:

T (n) = aT
⇣n
b

⌘
+ f(n)

<latexit sha1_base64="M7TFTkTi9rmEdhQZJEEoVjGfbbY=">AAACEXicbVDLSgMxFM34rPVVdekmWIQpQpnxgW6EohuXFfqCzlAyaaYNzWSG5I5Qhv6CG3/FjQtF3Lpz59+YPhbaeiBwOOdcbu4JEsE1OM63tbS8srq2ntvIb25t7+wW9vYbOk4VZXUai1i1AqKZ4JLVgYNgrUQxEgWCNYPB7dhvPjCleSxrMEyYH5Ge5CGnBIzUKdg1W5bwNSY1T7AQbC9UhGZylAUjT/FeH0r4BIcm0ykUnbIzAV4k7owU0QzVTuHL68Y0jZgEKojWbddJwM+IAk4FG+W9VLOE0AHpsbahkkRM+9nkohE+NkoXh7EyTwKeqL8nMhJpPYwCk4wI9PW8Nxb/89ophFd+xmWSApN0uihMBYYYj+vBXa4YBTE0hFDFzV8x7RPTCZgS86YEd/7kRdI4Lbtn5Yv782LlZlZHDh2iI2QjF12iCrpDVVRHFD2iZ/SK3qwn68V6tz6m0SVrNnOA/sD6/AGa7puh</latexit>

24https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

Recursion dominates

If
for some ,

then

f(n) = O
�
n
logb a�✏

�
<latexit sha1_base64="XgZI1h4QaQa68gZ2jOGzvb2EiAg=">AAACEnicdVDLSgNBEJz1bXxFPXoZDEJyMGx8oAcFwYs3FYwK2RhmJ73JkNmZZaZXCEu+wYu/4sWDIl49efNvnMQIPgsaiqpuurvCRAqLvv/mjYyOjU9MTk3nZmbn5hfyi0vnVqeGQ5Vrqc1lyCxIoaCKAiVcJgZYHEq4CDuHff/iGowVWp1hN4F6zFpKRIIzdFIjX4qKqkT36XEgIcKiusoCqVuNkK0HkFghteoFRrTaWGrkC355c9d3oL9JpewPUCBDnDTyr0FT8zQGhVwya2sVP8F6xgwKLqGXC1ILCeMd1oKao4rFYOvZ4KUeXXNKk0bauFJIB+rXiYzF1nbj0HXGDNv2p9cX//JqKUa79UyoJEVQ/GNRlEqKmvbzoU1hgKPsOsK4Ee5WytvMMI4uxZwL4fNT+j853yhXNsvbp1uFg71hHFNkhaySIqmQHXJAjsgJqRJObsgdeSCP3q137z15zx+tI95wZpl8g/fyDiV5nTE=</latexit>

✏ > 0
<latexit sha1_base64="VVNOaCYljaTB0tHbcR0Rntq3YKQ=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4GmaMYg4iAS8eI5gFMkPo6fQkTXp6mu4eIQz5DS8eFPHqz3jzb+wsguuDgsd7VVTViyRn2njeu1NYWl5ZXSuulzY2t7Z3yrt7LZ1mitAmSXmqOhHWlDNBm4YZTjtSUZxEnLaj0dXUb99RpVkqbs1Y0jDBA8FiRrCxUhBQqRlPBbpEXq9c8dxqzbNAv4nvejNUYIFGr/wW9FOSJVQYwrHWXd+TJsyxMoxwOikFmaYSkxEe0K6lAidUh/ns5gk6skofxamyJQyaqV8ncpxoPU4i25lgM9Q/van4l9fNTFwLcyZkZqgg80VxxpFJ0TQA1GeKEsPHlmCimL0VkSFWmBgbU8mG8Pkp+p+0Tly/6p7dnFbqF4s4inAAh3AMPpxDHa6hAU0gIOEeHuHJyZwH59l5mbcWnMXMPnyD8/oBJ0KRGA==</latexit>

T (n) = ⇥
�
nlogb a

�
<latexit sha1_base64="Hn2XXGq6RUIykRZ76GG4yAL7taY=">AAACDnicdVA9SwNBEN2LXzF+RS1tFoMQm3AxiikUAjaWERIVcjHsbeaSJXt7x+6cEI78Ahv/io2FIrbWdv4bNzGCnw8GHu/NMDPPj6Uw6LpvTmZmdm5+IbuYW1peWV3Lr2+cmyjRHJo8kpG+9JkBKRQ0UaCEy1gDC30JF/7gZOxfXIM2IlINHMbQDllPiUBwhlbq5HcaRbVLj6nX6AMyT0KARXWVejLqdXw28rTo9XG3ky+4pUrVtaC/SbnkTlAgU9Q7+VevG/EkBIVcMmNaZTfGdso0Ci5hlPMSAzHjA9aDlqWKhWDa6eSdEd2xSpcGkbalkE7UrxMpC40Zhr7tDBn2zU9vLP7ltRIMqu1UqDhBUPxjUZBIihEdZ0O7QgNHObSEcS3srZT3mWYcbYI5G8Lnp/R/cr5XKldKB2f7hdrRNI4s2SLbpEjK5JDUyCmpkybh5IbckQfy6Nw6986T8/zRmnGmM5vkG5yXd/f6m3c=</latexit>

f dominates

If
for some , and

for some c < 1
for all n sufficiently large,
then

f(n) = ⌦
�
nlogb a+✏

�
<latexit sha1_base64="wqWXs8NgWg5w/vPWHlhpoUDFnEY=">AAACF3icdVBNSyNBEO1Rdzdmv2b16KUxLCQsDJNV2RwUBC/eVDCJkMmGnk7NpLGne+iuWQhD/oUX/4oXD4p41Zv/xs6H4H49KHi8V0VVvTiXwmIYPnlLyytv3r6rrFbff/j46bP/Za1jdWE4tLmW2pzFzIIUCtooUMJZboBlsYRufH4w9bu/wFih1SmOc+hnLFUiEZyhkwZ+kNRVg+7R6CiDlEUSEqyrn2UkdTqI2bcIciukVpPIiHSEjYFfC4OtVuhA/ybNIJyhRhY4HviP0VDzIgOFXDJre80wx37JDAouYVKNCgs54+cshZ6jimVg++Xsrwn96pQhTbRxpZDO1NcTJcusHWex68wYjuyf3lT8l9crMGn1S6HyAkHx+aKkkBQ1nYZEh8IARzl2hHEj3K2Uj5hhHF2UVRfCy6f0/6TzPWhuBTsn27X93UUcFbJBNkmdNMkPsk8OyTFpE04uyBW5IbfepXft3Xn389YlbzGzTn6D9/AMJHifVw==</latexit>

✏ > 0
<latexit sha1_base64="VVNOaCYljaTB0tHbcR0Rntq3YKQ=">AAAB83icdVDJSgNBEK2JW4xb1KOXxiB4GmaMYg4iAS8eI5gFMkPo6fQkTXp6mu4eIQz5DS8eFPHqz3jzb+wsguuDgsd7VVTViyRn2njeu1NYWl5ZXSuulzY2t7Z3yrt7LZ1mitAmSXmqOhHWlDNBm4YZTjtSUZxEnLaj0dXUb99RpVkqbs1Y0jDBA8FiRrCxUhBQqRlPBbpEXq9c8dxqzbNAv4nvejNUYIFGr/wW9FOSJVQYwrHWXd+TJsyxMoxwOikFmaYSkxEe0K6lAidUh/ns5gk6skofxamyJQyaqV8ncpxoPU4i25lgM9Q/van4l9fNTFwLcyZkZqgg80VxxpFJ0TQA1GeKEsPHlmCimL0VkSFWmBgbU8mG8Pkp+p+0Tly/6p7dnFbqF4s4inAAh3AMPpxDHa6hAU0gIOEeHuHJyZwH59l5mbcWnMXMPnyD8/oBJ0KRGA==</latexit>

af (n/b) cf (n)
<latexit sha1_base64="ud5IvhPNJ6kxRKF03XIM6pvPCb0=">AAACE3icdZC7SgNBFIZn4y3G26qlzWAQokXcNYopLAI2lhFMIiQhzE5mkyGzs8vMWSEseQcbX8XGQhFbGzvfxtlkBa8/DPx85xzOnN+LBNfgOO9Wbm5+YXEpv1xYWV1b37A3t5o6jBVlDRqKUF17RDPBJWsAB8GuI8VI4AnW8kbnab11w5TmobyCccS6ARlI7nNKwKCefUCwjzuC+VCSh15H8cEQ9lOAKfYzntGeXXTKlapjhH8bt+xMVUSZ6j37rdMPaRwwCVQQrduuE0E3IQo4FWxS6MSaRYSOyIC1jZUkYLqbTG+a4D1D+tgPlXkS8JR+nUhIoPU48ExnQGCof9ZS+FetHYNf7SZcRjEwSWeL/FhgCHEaEO5zxSiIsTGEKm7+iumQKELBxFgwIXxeiv83zaOyWymfXB4Xa2dZHHm0g3ZRCbnoFNXQBaqjBqLoFt2jR/Rk3VkP1rP1MmvNWdnMNvom6/UDy8Cc3w==</latexit>

T (n) = ⇥ (f (n))
<latexit sha1_base64="qfh3Rt1tG1inzZjpR+k0ACUSEG4=">AAACEnicdVA9SwNBEN2L3/ErammzGISkOS5G0UJBsLFUSFTIHWFvM5cs2ds7dueEEPwNNv4VGwtFbK3s/DdukhP8fLDM470ZZueFqRQGPe/dKUxNz8zOzS8UF5eWV1ZLa+sXJsk0hyZPZKKvQmZACgVNFCjhKtXA4lDCZdg/GfmX16CNSFQDBykEMesqEQnO0ErtUrVRUVV6RP1GD5D5EiKsRJOifC26PazmpV0qe279wLOgv0nN9cYokxxn7dKb30l4FoNCLpkxrZqXYjBkGgWXcFP0MwMp433WhZalisVgguH4pBu6bZUOjRJtn0I6Vr9ODFlszCAObWfMsGd+eiPxL6+VYXQQDIVKMwTFJ4uiTFJM6Cgf2hEaOMqBJYxrYf9KeY9pxtGmWLQhfF5K/ycXO26t7u6d75aPD/M45skm2SIVUiP75JickjPSJJzcknvySJ6cO+fBeXZeJq0FJ5/ZIN/gvH4AdwqcwQ==</latexit>

Both contribute

If , then f(n) = ⇥
�
nlogb a

�
<latexit sha1_base64="pzTaIzsJkhOpOgiZpYKsedSLaxE=">AAACDnicdVA9SwNBEN3zM8avU0ubxRBImnAxiikUAjaWCkaFXAx7m7lkcW/v2J0TwpFfYONfsbFQxNbazn/jJkbw88HA470ZZuYFiRQGPe/NmZqemZ2bzy3kF5eWV1bdtfUzE6eaQ5PHMtYXATMghYImCpRwkWhgUSDhPLg6HPnn16CNiNUpDhJoR6ynRCg4Qyt13GJYUmV6QP3TPiDzJYRYUpeZL+NeJ2BDX4teH8sdt+BVanXPgv4m1Yo3RoFMcNxxX/1uzNMIFHLJjGlVvQTbGdMouIRh3k8NJIxfsR60LFUsAtPOxu8MadEqXRrG2pZCOla/TmQsMmYQBbYzYtg3P72R+JfXSjGstzOhkhRB8Y9FYSopxnSUDe0KDRzlwBLGtbC3Ut5nmnG0CeZtCJ+f0v/J2XalWqvsnuwUGvuTOHJkk2yREqmSPdIgR+SYNAknN+SOPJBH59a5d56c54/WKWcys0G+wXl5BxXZm4k=</latexit>

T (n) = ⇥
�
nlogb a log n

�
<latexit sha1_base64="VxhrRlA0hvOVSUnIesMQ8hzfq9M=">AAACFHicdVDJSgNBEO2Je9yiHr00BiEihIkLelAIePEYIYmBTAw9nZqksadn6K4RwpCP8OKvePGgiFcP3vwbO4vg+qCox3tVdNfzYykMuu67k5manpmdm1/ILi4tr6zm1tbrJko0hxqPZKQbPjMghYIaCpTQiDWw0Jdw6V+fDf3LG9BGRKqK/RhaIesqEQjO0Ert3G61oHboKfWqPUDmSQiwoK5ST0bdts8Gw06Vp0W3hzvtXN4t7h+7FvQ3KRXdEfJkgko79+Z1Ip6EoJBLZkyz5MbYSplGwSUMsl5iIGb8mnWhaaliIZhWOjpqQLet0qFBpG0ppCP160bKQmP6oW8nQ4Y989Mbin95zQSD41YqVJwgKD5+KEgkxYgOE6IdoYGj7FvCuBb2r5T3mGYcbY5ZG8LnpfR/Ut8rlvaLhxcH+fLJJI55skm2SIGUyBEpk3NSITXCyS25J4/kyblzHpxn52U8mnEmOxvkG5zXD3c+nd8=</latexit>

Recall: Master Theorem

• The master theorem provides a solution to recurrence relations of the form

- For constants a ≥ 1 and b > 1 and f asymptotically positive

• Examples:

- Merge sort: T(n) = 2T(n/2) + n
Then case 2 gives (a=2, b=2): T(n) = Θ(n log n)

- Traversing a binary tree: T(n) = 2T(n/2) + O(1)
Then case 1 gives (a=2, b=2, ε=1): T(n) = Θ(n)

T (n) = aT
⇣n
b

⌘
+ f(n)

<latexit sha1_base64="M7TFTkTi9rmEdhQZJEEoVjGfbbY=">AAACEXicbVDLSgMxFM34rPVVdekmWIQpQpnxgW6EohuXFfqCzlAyaaYNzWSG5I5Qhv6CG3/FjQtF3Lpz59+YPhbaeiBwOOdcbu4JEsE1OM63tbS8srq2ntvIb25t7+wW9vYbOk4VZXUai1i1AqKZ4JLVgYNgrUQxEgWCNYPB7dhvPjCleSxrMEyYH5Ge5CGnBIzUKdg1W5bwNSY1T7AQbC9UhGZylAUjT/FeH0r4BIcm0ykUnbIzAV4k7owU0QzVTuHL68Y0jZgEKojWbddJwM+IAk4FG+W9VLOE0AHpsbahkkRM+9nkohE+NkoXh7EyTwKeqL8nMhJpPYwCk4wI9PW8Nxb/89ophFd+xmWSApN0uihMBYYYj+vBXa4YBTE0hFDFzV8x7RPTCZgS86YEd/7kRdI4Lbtn5Yv782LlZlZHDh2iI2QjF12iCrpDVVRHFD2iZ/SK3qwn68V6tz6m0SVrNnOA/sD6/AGa7puh</latexit>

25

Example: fold (2)

• Parallel algorithms can often use recursion effectively

• Work analysis:

- Line 3 is Θ(1)

- Line 2 says it is done n/2 times, so Θ(n/2)

- Line 3 is a recursive call on n/2 inputs. Call the work W(n) and we get W(n) = W(n/2) + Θ(n/2)

- Solve with the master theorem (a=1, b=2, ε=1, case 3): W(n) = Θ(n)

26

sum (A, p, q)
 parallel_for (i = 0...(q-p)/2)
 B[i] = A[p+2*i] + A[p+2*i+1]

 sum (B, 0, (q-p)/2)

1
2
3
4
5

Example: fold (2)

• Parallel algorithms can often use recursion effectively

• Span analysis:

- Line 2-3 have constant span because they are done in parallel

- This means the span S(n) = S(n/2) + Θ(1)

- Solve with the master theorem (a=1, b=2, case 2): S(n) = Θ(log n)

• Conclusion: we can sum n numbers in linear work and logarithmic span

27

sum (A, p, q)
 parallel_for (i = 0...(q-p)/2)
 B[i] = A[p+2*i] + A[p+2*i+1]

 sum (B, 0, (q-p)/2)

1
2
3
4
5

Example: scan (1)

• Parallel implementation of prefix sum

- Split the data over two processors and perform a prefix sum individually on each part

28

 split: [3,4, 4, 4, 4] [3,5, 4, 5]
left/right result: [3,7,11,15,19] [3,8,12,17]

 input: [3,4, 4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

P1 P2

Example: scan (1)

• Example: recursive implementation of prefix sum:

- Span (a=1, b=2, case 2): S(n) = S(n/2) + 1 = Θ(log n)

- Work (a=2, b=2, case 2): W(n) = 2 W(n/2) + n = Θ(n log n)

29

prefix_sum (A, p, q)
 /// base case

 m = (p+q)/2
 prefix_sum(A, p, m)
 prefix_sum(A, m+1, q)
 parallel_for (i = m+1...q)
 A[i] = A[i] + A[m]

1
2
3
4
5
6
7
8

In parallel

Efficient & optimal

• The parallelisation overhead of an algorithm is its work divided by the cost of the best sequential algorithm

- For this parallel scan we have to put O(n log n) work into something which can be done sequentially in linear
O(n) time: the overhead is logarithmic

- A parallel algorithm is:

• Efficient when the span is poly-logarithmic and the overhead is also poly-logarithmic

• Optimal when the span is poly-logarithmic and the overhead is constant

30

Example: scan (2)

• Let’s try a different approach to parallelising scan:

- Pair up neighbours at the even positions:

- Perform a prefix sum of these values:

- At the uneven positions add the input value at that position to the output of the previous step on the left:

31

 input: [3,4, 4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

[7, 8, 7, 9]

[7, 15, 22, 31]

[3,7,11,15,19,22,27,31,36]

Example: scan (2)

• We can implement this recursively by keeping track of a hop distance

• Work:

- Algorithm does n-1 additions and one half-size prefix sum

- Master theorem (a=1, b=2, ε=1, case 3): W(n) = W(n/2) + n = Θ(n)

32

prefix_sum (A, d)
 parallel_for (i = even multiple of d)
 A[i] += A[i-d]
 prefix_sum(A, 2*d)
 parallel_for (i = uneven multiple of d)
 A[i] += A[i-d]

1
2
3
4
5
6

Example: scan (2)

• We can implement this recursively by keeping track of a hop distance

• Span:

- Additions are done in two (parallel) groups, before and after the prefix sum

- Master theorem (a=1, b=2, case 2): S(n) = 1 + S(n/2) + 1 = Θ(log n)

- Since the span is logarithmic and there is no overhead, this prefix sum is parallelised optimally

33

prefix_sum (A, d)
 parallel_for (i = even multiple of d)
 A[i] += A[i-d]
 prefix_sum(A, 2*d)
 parallel_for (i = uneven multiple of d)
 A[i] += A[i-d]

1
2
3
4
5
6

Summary

• Work and span are used to analyse and compare asymptotic behaviour of parallel algorithms

- Work: total number of steps (computations)

- Span: longest path of steps that need to be done sequentially (steps)

• The PRAM model ignores practical issues such as memory access latency

- Assume uniform costs for all memory access

• Time to perform something on P cores: TP = Θ(work/P + span)

- Compare to the formulation by Amdhal

34

Next time…

• Thursday: Revision lecture

- This will consist of the last lectures presented simultaneously
(it is up to you to parallelise your brain before then)

- Send me questions/topics to cover via Teams!

35 Photo by Claudio Piccolo

tot ziens

