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• Explicit threads


• Synchronise via locks, messages, or STM


• Modest parallelism


• Hard to program


• Operate simultaneously on bulk data


• Implicit synchronisation


• Massive parallelism


• Easy to program

Previously…
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Performance analysis

• We want to analyse the cost of a parallel algorithm


- We will consider asymptotic costs, to compare algorithms in terms of:

• How they scale to larger inputs

• How they scale (parallelise) over more cores

- Example: some sorting algorithms are O(n log n) and others O(n2) over the size of the input

- Example: RTX 4090 Ti has 16384 “cores” distributed over 128 multiprocessors
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• When designing and analysing sequential algorithms, we use 
the random access machine (RAM) model


- All locations in memory can be read from & written to in O(1)

- Summing an array can be done in linear Θ(n) time 

RAM
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s = 0 
for (i = 0...n) 
  s ::= s + arr[i]

Memory
CPU



• The parallel random access machine (PRAM) model is 
analogous for talking about parallel algorithms


- Shared memory machine with multiple attached processors (cores)

- Ignore details of synchronisation, communication, etc.

- Question: can we sum an array in parallel using this algorithm?

PRAM
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s = 0 
parallel_for (i = 0...n) 
  s ::= s + arr[i]

Fold
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• Binary tree reduction of an array


1. For even i: 

arr[i] += arr[i+1]

2. For i a multiple of 4: 

arr[i] += arr[i+2]

3. For i a multiple of 8: 

arr[i] += arr[i+4]

4. et cetera…
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Fold

• Binary tree reduction of an array


- To calculate step one instantly you need n/2 processors: O(n) operations and the whole algorithm takes 
O(log n) time

- The hardware cost is thus the number of processor P multiplied by how long you need them: O(n log n)

- So, we can go faster with parallelism but at a higher hardware cost. Can this be improved?

1. Can we go faster than O(log n) ?

2. Can we have less hardware cost than O(n log n) ?
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Fold

• Question 1: can we sum an array in sub-logarithmic time?


- Addition is a binary operator

- Parallel execution of binary operators can, after i rounds, produce values that depend on at most 2i values

- So, no matter what you do in parallel, you can not compute the full sum of n numbers in less than O(log n) time

8



Fold

• Question 1: proof by induction


- Induction hypothesis (IH): after i rounds values can only depend on at most 2i inputs

- i=0: After zero rounds we haven’t done anything, so a number only “depends” on itself, so on one number which 
is 20

- i+1: In this round you can combine two inputs from round i, which according to the IH can only depend on at 
most 2i + 2i = 2(i+1) inputs

- Therefore, addition can not be done sub-logarithmically. This holds true for all binary operators, which is why 
(poly)logarithmic complexity O(logc n) is the best possible outcome for parallel execution
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• Question 2: can we reduce the hardware cost?


- Split the problem into two steps

- Phase 1: divide the input over the P processors in groups of length n/P

- Phase 2: use a binary tree reduction to calculate the total from 
the P partial sums

- Total time Tp = n/p + log p

• If P ≤ n / log n then phase one is dominant

• If P ≤ n / log n then hardware cost is O(n)

Fold
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n/P

log P

Work & Span

• We don’t want a different optimal calculation when executing for a different number of cores


- Use a description with two parameters, instead of just sequential time

- Let Tp be the running time with P processors available

- Then calculate two extremes: the work and span

• Work = T1:  How long to execute on a single processor


• Span = T∞: How long to execute on an infinite number of processors 


- The longest dependence chain / critical path length / computational depth

- Example: O(log n) for summing an array
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Work & Span

• Program can be seen as a dependency graph of the calculation steps


- Work is the total number of nodes (calculations) in the whole graph

- Span is the number of nodes on the longest path (height of the graph)
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Work & Span

• If the work and span are known, you can estimate the time on P processors TP with:


- max(work/P, span) ≤ TP ≤ work/P + span

- The latter is at most double the former, so:

• TP = O(work/P + span)

- Question: what is the time to execute on 1, 2, or 3 cores?
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Scheduling

• Brent proved that greedy scheduling is always two-optimal


- We say a step is ready when all its predecessors (dependencies) have been computed in previous rounds

- A greedy scheduler does as many steps in a round, but does not care which

- This is two-optimal: 
Greedy scheduling takes at most twice as long as the optimal schedule

• Say TP* is the time for the optimal schedule, then:


- TP* ≥ work/P, because even the best schedule still has P cores available

- TP* ≥ span, because all calculations on a path must be done sequentially
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Scheduling

• Greedy scheduling


- Full round: if there are P or more steps ready, do P steps this round; this happens at most work/P times

- Empty round: there are fewer than P steps ready; this happens at most span times, because every round the 
span decreases by one

- The length of the greedy schedule is:

    TP = full + empty 
  ≤ work/P + span 
  ≤ TP* + TP* 
  ≤ 2TP*
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Scheduling

• Greedy scheduling


- Greedy scheduling has length at most twice the length of the optimal one, so is asymptotically optimal

- Because work/P + span and max(work/P, span) are asymptotically equal (differ by a factor of two), we can say 
that TP = max(work/P, span)
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Work & Span

• Greedy scheduling


1. As long as P ≤ work/span the first term is 
dominant and the calculation can be shortened by 
adding more cores: work bound phase

2. If we have P > work/span then the runtime will 
not get shorter by adding more cores: span bound 
phase
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Work & Span

• When comparing algorithms, low work is better 
than high work, and low span is better than high 
span


- What if algorithm one has better work complexity 
w1 < w2

- But algorithm 2 has better span complexity s1 > s2

- Low span is theoretically nice, but since we don’t 
have infinite processors in practice, be careful not 
to lower span at the cost of too much extra work

18

Work & Span

• Calculating work and span is the same as computing the time of an algorithm, as learned in the course data 
structures


- Count the number of instructions/operations

- In the case of a loop, the cost of the body times the number of repetitions

- For recursion, use the Master Theorem

• For the analysis of parallel algorithms:


- You must do this process twice, once each for work and span

• Work is done as you would for a sequential algorithm

• Span takes the maximum of the branches which are performed in parallel
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Example: zipWith

• Pair-wise multiply the elements of two arrays


• Work analysis:


- Doesn’t care about parallelism

- Line one says that this is done n times, so costs Θ(n) steps

• Span analysis:


- The maximum cost of all the branches which are done in parallel

- Loop on line 1 is parallel, so take the longest path of steps: Θ(1)
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parallel_for (i = 0...n) 
  r[i] ::= x[i] * y[i]

1 
2



Example: fold (1)

• Add up all the numbers in an n x n matrix A, with subtotals per row


• Work analysis:


- Loop on line 3-4 costs Θ(n) steps

- Line one says this will be done n times, so line 1-4 take Θ(n2) steps

- Line 6-7 take Θ(n) steps

- Total is Θ(n2) work
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parallel_for (j = 0...n) 
  s[j] = 0 
  for (i = 0...n) 
    s[j] ::= s[j] + A[i,j] 
t = 0 
for (i = 0...n) 
  t ::= t + s[j]
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Example: fold (1)

• Add up all the numbers in an n x n matrix A, with subtotals per row


• Span analysis:


- Loop line 3-4 is sequential, Θ(n) steps

- Loop line 1 is parallel, so we take the longest path of steps from line 1-4: Θ(n)

- Line 5-7 still have Θ(n) sequential steps

- Total span is Θ(n) steps
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parallel_for (j = 0...n) 
  s[j] = 0 
  for (i = 0...n) 
    s[j] ::= s[j] + A[i,j] 
t = 0 
for (i = 0...n) 
  t ::= t + s[j]
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Example: fold (2)

• Parallel algorithms can often use recursion effectively


- We want a method sum(A, p, q) that calculates the sum of all numbers in A in the range [p,q)

- Using recursion, pretend you already have a clever way to sum n/2 numbers, which you want to use to calculate 
the sum of n numbers

- Ignore possibility of uneven number of inputs, base case of recursion, etc…
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sum (A, p, q) 
  parallel_for (i = 0...(q-p)/2) 
    B[i] = A[p+2*i] + A[p+2*i+1] 

  sum (B, 0, (q-p)/2)

1 
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Master Theorem

• The master theorem provides a solution to recurrence relations of the form


- For constants a ≥ 1 and b > 1 and f asymptotically positive

• The master theorem has three cases:

T (n) = aT
⇣n
b

⌘
+ f(n)
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Recall: Master Theorem

• The master theorem provides a solution to recurrence relations of the form


- For constants a ≥ 1 and b > 1 and f asymptotically positive

• Examples:


- Merge sort: T(n) = 2T(n/2) + n 
Then case 2 gives (a=2, b=2): T(n) = Θ(n log n)

- Traversing a binary tree: T(n) = 2T(n/2) + O(1) 
Then case 1 gives (a=2, b=2, ε=1): T(n) = Θ(n)

T (n) = aT
⇣n
b

⌘
+ f(n)
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Example: fold (2)

• Parallel algorithms can often use recursion effectively


• Work analysis:


- Line 3 is Θ(1)

- Line 2 says it is done n/2 times, so Θ(n/2)

- Line 3 is a recursive call on n/2 inputs. Call the work W(n) and we get W(n) = W(n/2) + Θ(n/2)

- Solve with the master theorem (a=1, b=2, ε=1, case 3): W(n) = Θ(n)
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sum (A, p, q) 
  parallel_for (i = 0...(q-p)/2) 
    B[i] = A[p+2*i] + A[p+2*i+1] 

  sum (B, 0, (q-p)/2)

1 
2 
3 
4 
5

Example: fold (2)

• Parallel algorithms can often use recursion effectively


• Span analysis:


- Line 2-3 have constant span because they are done in parallel

- This means the span S(n) = S(n/2) + Θ(1)

- Solve with the master theorem (a=1, b=2, case 2): S(n) = Θ(log n)

• Conclusion: we can sum n numbers in linear work and logarithmic span
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sum (A, p, q) 
  parallel_for (i = 0...(q-p)/2) 
    B[i] = A[p+2*i] + A[p+2*i+1] 

  sum (B, 0, (q-p)/2)
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Example: scan (1)

• Parallel implementation of prefix sum


- Split the data over two processors and perform a prefix sum individually on each part

28

       split: [3,4, 4, 4, 4]   [3,5, 4, 5] 
left/right result: [3,7,11,15,19]   [3,8,12,17]

       input: [3,4, 4, 4, 4, 3, 5, 4, 5] 
expected: [3,7,11,15,19,22,27,31,36]

P1 P2



Example: scan (1)

• Example: recursive implementation of prefix sum:


- Span (a=1, b=2, case 2):  S(n) = S(n/2) + 1 = Θ(log n)

- Work (a=2, b=2, case 2): W(n) = 2 W(n/2) + n = Θ(n log n)
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prefix_sum (A, p, q) 
  /// base case 

  m = (p+q)/2 
  prefix_sum(A, p,   m) 
  prefix_sum(A, m+1, q) 
  parallel_for (i = m+1...q) 
    A[i] = A[i] + A[m]

1 
2 
3 
4 
5 
6 
7 
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In parallel

Efficient & optimal

• The parallelisation overhead of an algorithm is its work divided by the cost of the best sequential algorithm


- For this parallel scan we have to put O(n log n) work into something which can be done sequentially in linear 
O(n) time: the overhead is logarithmic

- A parallel algorithm is:

• Efficient when the span is poly-logarithmic and the overhead is also poly-logarithmic

• Optimal when the span is poly-logarithmic and the overhead is constant
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Example: scan (2)

• Let’s try a different approach to parallelising scan:


- Pair up neighbours at the even positions:

- Perform a prefix sum of these values:

- At the uneven positions add the input value at that position to the output of the previous step on the left:
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       input: [3,4, 4, 4, 4, 3, 5, 4, 5] 
expected: [3,7,11,15,19,22,27,31,36]

[  7,    8,    7,    9   ]

[  7,   15,   22,   31   ]

[3,7,11,15,19,22,27,31,36]

Example: scan (2)

• We can implement this recursively by keeping track of a hop distance


• Work:


- Algorithm does n-1 additions and one half-size prefix sum

- Master theorem (a=1, b=2, ε=1, case 3): W(n) = W(n/2) + n = Θ(n)
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prefix_sum (A, d) 
  parallel_for (i = even multiple of d) 
    A[i] += A[i-d] 
  prefix_sum(A, 2*d) 
  parallel_for (i = uneven multiple of d) 
    A[i] += A[i-d]

1 
2 
3 
4 
5 
6



Example: scan (2)

• We can implement this recursively by keeping track of a hop distance


• Span:


- Additions are done in two (parallel) groups, before and after the prefix sum

- Master theorem (a=1, b=2, case 2): S(n) = 1 + S(n/2) + 1 = Θ(log n)

- Since the span is logarithmic and there is no overhead, this prefix sum is parallelised optimally
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prefix_sum (A, d) 
  parallel_for (i = even multiple of d) 
    A[i] += A[i-d] 
  prefix_sum(A, 2*d) 
  parallel_for (i = uneven multiple of d) 
    A[i] += A[i-d]

1 
2 
3 
4 
5 
6

Summary

• Work and span are used to analyse and compare asymptotic behaviour of parallel algorithms


- Work: total number of steps (computations)

- Span: longest path of steps that need to be done sequentially (steps)

• The PRAM model ignores practical issues such as memory access latency


- Assume uniform costs for all memory access

• Time to perform something on P cores: TP = Θ(work/P + span)

- Compare to the formulation by Amdhal
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Next time…

• Thursday: Revision lecture


- This will consist of the last lectures presented simultaneously 
(it is up to you to parallelise your brain before then)

- Send me questions/topics to cover via Teams!
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