‘ Utrecht University

(I &
e

Pl P2 P3

B3CC: Concurrency
1 5:Work & Span

Ivo Gabe de Wolff Task parallelism Data parallelism
+ Explicit threads » Operate simultaneously on bulk data
+ Synchronise via locks, messages, or STM « Implicit synchronisation
» Modest parallelism * Massive parallelism
* Hard to program - Easy to program
2
» We want to analyse the cost of a parallel algorithm - -

- We will consider asymptotic costs, to compare algorithms in terms of: - When designing and analysing sequential algorithms, we use

« How they scale to larger inputs the random access machine (RAM) model

. o : ; s =0
« How they scale (parallelise) over more cores All locations in memory can be read from & written to in O(1)]
for (i = 0..n)
- Example: some sorting algorithms are O(n log 1) and others O(n?) over the size of the input - Summing an array can be done in linear ©(r) time s = s + arr[i]

- Example: RTX 4090 Ti has 16384 “cores” distributed over 128 multiprocessors

_—
—

*» The parallel random access machine (PRAM) model is
analogous for talking about parallel algorithms :-

- Shared memory machine with multiple attached processors (cores) 0
S =
- Ignore details of synchronisation, communication, etc. parallel_for (i = 0..n)

s := s + arr[i]
- Question: can we sum an array in parallel using this algorithm?

+ Binary tree reduction of an array

- To calculate step one instantly you need n/2 processors: O(n) operations and the whole algorithm takes
O(log n) time

- The hardware cost is thus the number of processor P multiplied by how long you need them: O(n log n)
- So, we can go faster with parallelism but at a higher hardware cost. Can this be improved?
I. Can we go faster than O(log n) ?

2. Can we have less hardware cost than O(n log n) ?

+ Binary tree reduction of an array

I. For even i:

arr[i] += arr[i+1]

2. For i a multiple of 4:
arr[i] += arr[i+2]

3. For i a multiple of 8:
arr[i] += arr[i+4]

4. etcetera...

+ Question 1: can we sum an array in sub-logarithmic time?
- Addition is a binary operator
- Parallel execution of binary operators can, after i rounds, produce values that depend on at most 2/ values

- So, no matter what you do in parallel, you can not compute the full sum of n numbers in less than O(log) time

.) . » Question 2: can we reduce the hardware cost?
+ Question 1: proof by induction

) - Split the problem into two steps
- Induction hypothesis (IH): after i rounds values can only depend on at most 2i inputs

Phase |:divide the input over the P processors in groups of length n/P
- i=0:After zero rounds we haven’t done anything, so a number only “depends” on itself, so on one number which

is 20

Phase 2: use a binary tree reduction to calculate the total from

the P partial sums
- i+1:In this round you can combine two inputs from round i, which according to the IH can only depend on at

most 2+ 2i = 2(+1) inputs

Total time 7, = n/p + log p

- Therefore, addition can not be done sub-logarithmically. This holds true for all binary operators, which is why * If P<n/logn then phase one is dominant

oly)logarithmic complexity O(loge n) is the best possible outcome for parallel execution
(poly)leg Py P . If P<n/logn then hardware cost is O(n)

+ We don’t want a different optimal calculation when executing for a different number of cores
- Use a description with two parameters, instead of just sequential time

- Let 7}, be the running time with P processors available

» Program can be seen as a dependency graph of the calculation steps
- Then calculate two extremes: the work and span

- Work is the total number of nodes (calculations) in the whole graph
* Work = T1: How long to execute on a single processor

- Span is the number of nodes on the longest path (height of the graph)
* Span = T..: How long to execute on an infinite number of processors
- The longest dependence chain / critical path length / computational depth

- Example: O(log n) for summing an array

n/P

log P

+ Brent proved that greedy scheduling is always two-optimal

- W tep i dy when all it: d d dencies) have b ted i i d
+ If the work and span are known, you can estimate the time on 7 processors T with: e say a step is ready when all its predecessors (dependencies) have been computed in previous rounds

- A dy scheduler d teps i d, but d t hich
- max(worklP, span) < Tr< worklP + span greedy scheduler does as many steps in a round, but does not care whic

. - This is two-optimal:
- The latter is at most double the former, so:

Greedy scheduling takes at most twice as long as the optimal schedule
e Tp = O(worklP + .) .
’ (wor span) + Say Tp* is the time for the optimal schedule, then:

- Question: what is the time to execute on |, 2, or 3 cores?! . .
Q - Tr* > work/P, because even the best schedule still has P cores available

- Tp*>span, because all calculations on a path must be done sequentially

+ Greedy scheduling
- Full round: if there are P or more steps ready, do P steps this round; this happens at most work/P times

- Empty round: there are fewer than P steps ready; this happens at most span times, because every round the + Greedy scheduling

span decreases by one - Greedy scheduling has length at most twice the length of the optimal one, so is asymptotically optimal

- The length of the greedy schedule is: - Because work/P + span and max(work/P, span) are asymptotically equal (differ by a factor of two), we can say

Tp = full + empty that Tp = max(work/P, span)
<work/P + span
<Tp* + Tp*
<2Tp*

+ Greedy scheduling

I. As long as P <workl/span the first term is
dominant and the calculation can be shortened by
adding more cores: work bound phase @

2. If we have P > work/span then the runtime will S 4
not get shorter by adding more cores: span bound

phase y

+ Calculating work and span is the same as computing the time of an algorithm, as learned in the course data

structures
- Count the number of instructions/operations
- In the case of a loop, the cost of the body times the number of repetitions
- For recursion, use the Master Theorem
+ For the analysis of parallel algorithms:
- You must do this process twice, once each for work and span
* Work is done as you would for a sequential algorithm

 Span takes the maximum of the branches which are performed in parallel

» When comparing algorithms, low work is better
than high work, and low span is better than high
span

- What if algorithm one has better work complexity
Wi < W2

- But algorithm 2 has better span complexity s; > s2

- Low span is theoretically nice, but since we don’t
have infinite processors in practice, be careful not
to lower span at the cost of too much extra work

» Pair-wise multiply the elements of two arrays

1 parallel_for (i = 0.
= x[i] * y[i]

2 ri]

+ Work analysis:

- Doesn’t care about parallelism

Waq
Wy Y \
%
St ‘_ \
52." : 2 -
o
LW W W p
5 5, S2
.n)

- Line one says that this is done n times, so costs O(n) steps

+ Span analysis:

- The maximum cost of all the branches which are done in parallel

- Loop on line | is parallel, so take the longest path of steps: ©(1)

» Add up all the numbers in an n x » matrix 4, with subtotals per row » Add up all the numbers in an n x n matrix 4, with subtotals per row

1 parallel _for (j = @..n) 1 parallel _for (j = @..n)
2 s[jl =0 2 s[jl =0
3 for (i = 0..n) 3 for (i = 0..n)
& s[31 = s[j] + Ali,j] & s[31 = s[j] + Al1,3]
5 t=20 5 t=20
6 for (i = 0..n) 6 for (i = 0..n)
7 t =1t + s[j] 7 t =1t + s[j]
+ Work analysis: + Span analysis:
- Loop on line 3-4 costs O(n) steps - Loop line 3-4 is sequential, ©(n) steps
- Line one says this will be done # times, so line |-4 take @(n2) steps - Loop line | is parallel, so we take the longest path of steps from line |-4: ©(n)
- Line 6-7 take O(n) steps - Line 5-7 still have ©(n) sequential steps
- Total is ®(n2) work ” - Total span is ®(n) steps »

» The master theorem provides a solution to recurrence relations of the form

+ Parallel algorithms can often use recursion effectively - For constants a > 1 and b > 1 and fasymptotically positive

T(n) =aT (%) + f(n)

- We want a method sum(A, p, @) that calculates the sum of all numbers in 4 in the range [p,q)

- Using recursion, pretend you already have a clever way to sum 1/2 numbers, which you want to use to calculate

the sum of n numbers
» The master theorem has three cases:

1 sum (A, p, Q) Recursion dominates Both contribute f dominates

2 parallel_for (i = 0..(q-p)/2)

3 B[i] = A[p+2#i] + A[p+2xi+1] If f(n) = O (n'°527°) If f(n) = © (n'°8*) then If f(n) = Q (n'o& 2+<)

g (5. 0, (q4-p)/2) for some € > 0, T(n)=0 (nlogb *log n) for some € > 0,and

sum (B, 0, (qg-
P then T(n) = © (n'*5:%) af (n/b) < cf (n)
for some ¢ <1

- Ignore possibility of uneven number of inputs, base case of recursion, etc... for all n sufficiently large

23 https:/en.wikipedia.org/wiki/Master theorem (analysis of algorithms) then T(n) =6 (f (n)) 24

» The master theorem provides a solution to recurrence relations of the form

- For constants ¢ > 1 and b > 1 and fasymptotically positive

» Examples:

- Merge sort:
Then case 2 gives (a=2, b=2):

- Traversing a binary tree:
Then case | gives (a=2, b=2, e=1):

T(n) =aT (%) + f(n)

T(n)=2T(n/2) + n
T(n) = O(n log n)

T(n)=2T(n/2) + O(1)
T(n) = 0O(n)

+ Parallel algorithms can often use recursion effectively

1
2
3
4
5

+ Span analysis:

sum (A, p, q)
parallel_for (i = 0..(q-p)/2)
B[i] = A[p+2*i] + A[p+2*i+1]

sum (B, 0, (gq-p)/2)

- Line 2-3 have constant span because they are done in parallel

- This means the span S(n) = S(n/2) + ©(1)

- Solve with the master theorem (a=1, b=2, case 2): S(n) = ©(log n)

+ Conclusion: we can sum n numbers in linear work and logarithmic span

1
2
3
4
5

Work analysis:

Line 3 is ©(1)

Parallel algorithms can often use recursion effectively

sum (A, p, q)

parallel_for (i = 0..(q-p)/2)
B[i] = A[p+2*i] + A[p+2*i+1]

sum (B, 0, (g-p)/2)

Line 2 says it is done 7/2 times, so ©(n/2)

Line 3 is a recursive call on n/2 inputs. Call the work W(n) and we get W(n) = W(n/2) + O(n/2)

Solve with the master theorem (a=1, b=2, =1, case 3): W(n) = O(n)

+ Parallel implementation of prefix sum

- Split the data over two processors and perform a prefix sum individually on each part

input: [3,4, &4, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

split: [3,4, 4, 4, 4]
left/right result: [3,7,11,15,19]

Pl

[3,5, 4, 5]
[3,8,12,17]

P2

+ Example: recursive implementation of prefix sum:

1 prefix_sum (A, p, q)

2 // base case

3

A m = (p+q)/2

5 prefix_sum(A, p, m)

6 prefix_sum(A, m+1, q) In paralle
7 parallel_for (i = m+1..q)

8 A[i] = A[i] + A[m]

- Span (a=1, b=2, case 2): S(n)=S(n/2) + 1 =0O(log n)

- Work (a=2, b=2, case 2): W(n) =2 W(n/2) + n= 0(n log n)

« Let’s try a different approach to parallelising scan:

input: [3,4, &, 4, 4, 3, 5, 4, 5]
expected: [3,7,11,15,19,22,27,31,36]

- Pair up neighbours at the even positions:

- Perform a prefix sum of these values:

- At the uneven positions add the input value at that position to the output of the previous step on the left:

[3,7,11,15,19,22,27,31,36]

+» The parallelisation overhead of an algorithm is its work divided by the cost of the best sequential algorithm

- For this parallel scan we have to put O(n log 1) work into something which can be done sequentially in linear
O(n) time: the overhead is logarithmic

- A parallel algorithm is:
* Efficient when the span is poly-logarithmic and the overhead is also poly-logarithmic

» Optimal when the span is poly-logarithmic and the overhead is constant

» We can implement this recursively by keeping track of a hop distance

prefix_sum (A, d)
parallel_for (i = even multiple of d)
A[i] += A[i-d]
prefix_sum(A, 2xd)
parallel_for (i = uneven multiple of d)
A[i] += A[i-d]

oUW N

* Work:
- Algorithm does #-1 additions and one half-size prefix sum

- Master theorem (a=1, b=2, ¢=1, case 3): W(n) = W(n/2) + n = O(n)

Example: scan (2) Summary

» We can implement this recursively by keeping track of a hop distance

1 prefix_sum (A, d)

2 parallel_for (i = even multiple of d) + Work and span are used to analyse and compare asymptotic behaviour of parallel algorithms
3 A[1] += A[i-d]

4 prefix_sum(A, 2xd) - Work: total number of steps (computations)

5 parallel_for (i = uneven multiple of d)

6 A[i] += A[i-d] - Span: longest path of steps that need to be done sequentially (steps)

g » The PRAM model ignores practical issues such as memory access latency
+ Span:

- Assume uniform costs for all memory access
- Additions are done in two (parallel) groups, before and after the prefix sum

+ Time to perform something on P cores: Tp = @(work/P + span)
- Master theorem (a=1, b=2, case 2): S(n) = 1 + S(n/2) + 1 = O(log n)

- Compare to the formulation by Amdhal
- Since the span is logarithmic and there is no overhead, this prefix sum is parallelised optimally

33 34

Next time...

» Thursday: Revision lecture

- This will consist of the last lectures presented simultaneously
(it is up to you to parallelise your brain before then)

- Send me questions/topics to cover via Teams!

35 Photo by Claudio Piccolo

