

Previously...

15:Work & Span

Ivo Gabe de Wolff

Task parallelism

- Explicit threads
- Synchronise via locks, messages, or STM
- Modest parallelism
- Hard to program

Data parallelism

Operate simultaneously on bulk data

2

- Implicit synchronisation
- Massive parallelism
- Easy to program

Performance analysis	RAM	
We want to analyse the cost of a parallel algorithm		
- We will consider asymptotic costs, to compare algorithms in terms of:	When designing and analysing sequential algorithms, we use	т істіогу
• How they scale to larger inputs	the random access machine (RAM) model	
• How they scale (parallelise) over more cores	- All locations in memory can be read from & written to in $\mathcal{O}(1)$	s = 0 for (i = 0n)
- Example: some sorting algorithms are $O(n \log n)$ and others $O(n^2)$ over the size of the input	- Summing an array can be done in linear $\Theta(n)$ time	s := s + arr[i]
- Example: RTX 4090 Ti has 16384 "cores" distributed over 128 multiprocessors		

PRAM

Fold

 The parallel random access machine (PRAM) model is analogous for talking about parallel algorithms

- Shared memory machine with multiple attached processors (cores)
- Ignore details of synchronisation, communication, etc.
- Question: can we sum an array in parallel using this algorithm?

	≓ CPU
Memory	
	CPU
s = 0	
parallel_for (i :	= 0n)

s := s + arr[i]

Binary tree reduction of an array

- I. For even i: arr[i] += arr[i+1]
- 2. For i a multiple of 4: arr[i] += arr[i+2]
- 3. For i a multiple of 8: arr[i] += arr[i+4]
- 4. et cetera...

5

Fold

Fold

· Binary tree reduction of an array

- To calculate step one instantly you need n/2 processors: O(n) operations and the whole algorithm takes $O(\log n)$ time
- The *hardware cost* is thus the number of processor P multiplied by how long you need them: $O(n \log n)$
- So, we can go faster with parallelism but at a higher hardware cost. Can this be improved?
- I. Can we go faster than $O(\log n)$?
- 2. Can we have less hardware cost than $O(n \log n)$?

- Question 1: can we sum an array in sub-logarithmic time?
- Addition is a binary operator
- Parallel execution of binary operators can, after i rounds, produce values that depend on at most 2^i values
- So, no matter what you do in parallel, you can not compute the full sum of n numbers in less than $O(\log n)$ time

Fold

Fold

Question 1: proof by induction

- Induction hypothesis (IH): after *i* rounds values can only depend on at most 2ⁱ inputs
- i=0:After zero rounds we haven't done anything, so a number only "depends" on itself, so on one number which is 2^0
- i+1: In this round you can combine two inputs from round *i*, which according to the IH can only depend on at most $2^i + 2^i = 2^{(i+1)}$ inputs
- Therefore, addition can not be done sub-logarithmically. This holds true for all binary operators, which is why (poly)logarithmic complexity $O(\log^c n)$ is the best possible outcome for parallel execution

• Question 2: can we reduce the hardware cost?

- Split the problem into two steps
- Phase I: divide the input over the P processors in groups of length n/P
- Phase 2: use a binary tree reduction to calculate the total from the ${\cal P}$ partial sums
- Total time $T_p = n/p + \log p$
- If $P \le n / \log n$ then phase one is dominant
- If $P \le n / \log n$ then hardware cost is O(n)

Work & Span

Work & Span

- · We don't want a different optimal calculation when executing for a different number of cores
- Use a description with two parameters, instead of just sequential time
- Let T_p be the running time with P processors available
- Then calculate two extremes: the work and span
- Work = T₁: How long to execute on a single processor
- **Span =** T_{∞} : How long to execute on an infinite number of processors
- The longest dependence chain / critical path length / computational depth
- Example: $O(\log n)$ for summing an array

- Work is the total number of nodes (calculations) in the whole graph
- Span is the number of nodes on the longest path (height of the graph)

Work & Span

Scheduling

• If the work and span are known, you can estimate the time on P processors T_P with:

- $\max(work/P, span) \le T_P \le work/P + span$
- The latter is at most double the former, so:
- $T_P = O(work/P + span)$
- Question: what is the time to execute on 1, 2, or 3 cores?

a b d d

- · Brent proved that greedy scheduling is always two-optimal
- We say a step is ready when all its predecessors (dependencies) have been computed in previous rounds

14

16

- A greedy scheduler does as many steps in a round, but does not care which
- This is two-optimal: Greedy scheduling takes at most twice as long as the optimal schedule
- Say T_P^* is the time for the optimal schedule, then:
- $T_P^* \ge work/P$, because even the best schedule still has P cores available
- $T_P^* \ge span$, because all calculations on a path must be done sequentially

Scheduling

Scheduling

· Greedy scheduling

- Full round: if there are P or more steps ready, do P steps this round; this happens at most work/P times
- Empty round: there are fewer than P steps ready; this happens at most span times, because every round the span decreases by one
- The length of the greedy schedule is:

 $T_P = full + empty$ $\leq work/P + span$ $\leq T_P^* + T_P^*$ $\leq 2T_P^*$

· Greedy scheduling

- Greedy scheduling has length at most twice the length of the optimal one, so is asymptotically optimal
- Because work/P + span and max(work/P, span) are asymptotically equal (differ by a factor of two), we can say that $T_P = max(work/P, span)$

Work & Span

Work & Span

Greedy scheduling

- I. As long as $P \leq work/span$ the first term is dominant and the calculation can be shortened by adding more cores: work bound phase
- If we have P > work/span then the runtime will not get shorter by adding more cores: span bound phase

- When comparing algorithms, low work is better than high work, and low span is better than high span
- What if algorithm one has better work complexity $_{\rm W1} < _{\rm W2}$
- But algorithm 2 has better span complexity $s_1 > s_2$
- Low span is theoretically nice, but since we don't have infinite processors in practice, be careful not to lower span at the cost of too much extra work

18

20

Work & Span

- Calculating work and span is the same as computing the time of an algorithm, as learned in the course data
 structures
- Count the number of instructions/operations
- In the case of a loop, the cost of the body times the number of repetitions
- For recursion, use the Master Theorem
- For the analysis of parallel algorithms:
- You must do this process twice, once each for work and span
- Work is done as you would for a sequential algorithm
- Span takes the maximum of the branches which are performed in parallel

Example: zipWith

- · Pair-wise multiply the elements of two arrays
 - 1 parallel_for (i = 0..n)
 2 r[i] := x[i] * y[i]

Work analysis:

- Doesn't care about parallelism
- Line one says that this is done *n* times, so costs $\Theta(n)$ steps
- · Span analysis:
- The maximum cost of all the branches which are done in parallel
- Loop on line 1 is parallel, so take the longest path of steps: $\Theta(1)$

Example: fold (I)

• Add up all the numbers in an *n* x *n* matrix *A*, with subtotals per row

1 parallel_for (j = 0..n)
2 s[j] = 0
3 for (i = 0..n)
4 s[j] := s[j] + A[i,j]
5 t = 0
6 for (i = 0..n)
7 t := t + s[j]

· Work analysis:

- Loop on line 3-4 costs $\Theta(n)$ steps
- Line one says this will be done n times, so line 1-4 take $\Theta(n^2)$ steps
- Line 6-7 take $\Theta(n)$ steps
- Total is $\Theta(n^2)$ work

Example: fold (I)

• Add up all the numbers in an *n* x *n* matrix *A*, with subtotals per row

1 parallel_for (j = 0..n) 2 s[j] = 0 3 for (i = 0..n) 4 s[j] := s[j] + A[i,j] 5 t = 0 6 for (i = 0..n) 7 t := t + s[j]

· Span analysis:

21

- Loop line 3-4 is sequential, $\Theta(n)$ steps
- Loop line I is parallel, so we take the longest path of steps from line I-4: $\Theta(n)$
- Line 5-7 still have $\Theta(n)$ sequential steps
- Total span is $\Theta(n)$ steps

Example: fold (2)

• Parallel algorithms can often use recursion effectively

- We want a method sum(A, p, q) that calculates the sum of all numbers in A in the range [p,q)
- Using recursion, pretend you already have a clever way to sum n/2 numbers, which you want to use to calculate the sum of n numbers

1 sum (A, p, q)
2 parallel_for (i = 0..(q-p)/2)
3 B[i] = A[p+2*i] + A[p+2*i+1]
4
5 sum (B, 0, (q-p)/2)

- Ignore possibility of uneven number of inputs, base case of recursion, etc...

Master Theorem

- · The master theorem provides a solution to recurrence relations of the form
- For constants $a \ge 1$ and $b \ge 1$ and f asymptotically positive

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

Both contribute

The master theorem has three cases:

Recursion dominates				
$\operatorname{lf} f(n) = O\left(n^{\log_b a - \epsilon}\right)$				
for some $\epsilon > 0$,				
then $T(n) = \Theta\left(n^{\log_b a}\right)$				

If $f(n) = \Theta\left(n^{\log_b a}\right)$, then $T(n) = \Theta\left(n^{\log_b a}\log n\right)$

f dominates

If $f(n) = \Omega\left(n^{\log_b a + \epsilon}\right)$ for some $\epsilon > 0$, and $af(n/b) \le cf(n)$ for some c < 1for all *n* sufficiently large, then $T(n) = \Theta(f(n))$

23 https://en.wikipedia.org/wiki/Master_theorem_(analysis_of_algorithms)

24

Recall: Master Theorem

- · The master theorem provides a solution to recurrence relations of the form
- For constants $a \ge 1$ and $b \ge 1$ and f asymptotically positive

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

· Examples:

- Merge sort: T(n) = 2T(n/2) + nThen case 2 gives (a=2, b=2):

 $T(n) = \Theta(n \log n)$

- Traversing a binary tree: T(n) = 2T(n/2) + O(1)Then case I gives (a=2, b=2, c=1): $T(n) = \Theta(n)$

Example: fold (2)

· Parallel algorithms can often use recursion effectively

1 sum (A, p, q) $parallel_for (i = 0..(q-p)/2)$ 2 B[i] = A[p+2*i] + A[p+2*i+1]3 4 5 sum (B, 0, (q-p)/2)

Work analysis:

- Line 3 is $\Theta(1)$
- Line 2 says it is done n/2 times, so $\Theta(n/2)$
- Line 3 is a recursive call on n/2 inputs. Call the work W(n) and we get $W(n) = W(n/2) + \Theta(n/2)$
- Solve with the master theorem (a=1, b=2, c=1, case 3): $W(n) = \Theta(n)$

Example: fold (2)

- · Parallel algorithms can often use recursion effectively
 - 1 sum (A, p, q) 2 $parallel_for (i = 0..(q-p)/2)$ B[i] = A[p+2*i] + A[p+2*i+1]3 4 5 sum (B, 0, (q-p)/2)

Span analysis:

- Line 2-3 have constant span because they are done in parallel
- This means the span $S(n) = S(n/2) + \Theta(1)$
- Solve with the master theorem (a=1, b=2, case 2): $S(n) = \Theta(\log n)$
- Conclusion: we can sum n numbers in linear work and logarithmic span

Example: scan (1)

· Parallel implementation of prefix sum

input:	[3,4,	4, 4,	4, 3	, 5,	4,	5]
expected:	[3,7,1	1,15,	19,22	,27,3	31,3	36]

26

28

- Split the data over two processors and perform a prefix sum individually on each part

split: [3,4, 4, 4, 4] [3,5, 4, 5] left/right result: [3,7,11,15,19] [3,8,12,17] Pl P2

Example: scan (I)

Efficient & optimal

• Example: recursive implementation of prefix sum:

```
1 prefix_sum (A, p, q)
2  // base case
3
4  m = (p+q)/2
5  prefix_sum(A, p, m)
6  prefix_sum(A, m+1, q)
7  parallel_for (i = m+1..q)
8  A[i] = A[i] + A[m]
```

- Span (a=1, b=2, case 2): $S(n) = S(n/2) + 1 = \Theta(\log n)$
- Work (a=2, b=2, case 2): W(n) = 2 W(n/2) + n = $\Theta(n \log n)$

• The parallelisation overhead of an algorithm is its work divided by the cost of the best sequential algorithm

- For this parallel scan we have to put $O(n \log n)$ work into something which can be done sequentially in linear O(n) time: the overhead is logarithmic

30

32

- A parallel algorithm is:
- Efficient when the span is poly-logarithmic and the overhead is also poly-logarithmic
- Optimal when the span is poly-logarithmic and the overhead is constant

Example: scan (2)

· Let's try a different approach to parallelising scan:

input: [3,4, 4, 4, 4, 3, 5, 4, 5] expected: [3,7,11,15,19,22,27,31,36]

- Pair up neighbours at the even positions:

[7, 8, 7, 9]

- Perform a prefix sum of these values:

[7, 15, 22, 31]

- At the uneven positions add the input value at that position to the output of the previous step on the left:

[3,7,11,15,19,22,27,31,36]

Example: scan (2)

- We can implement this recursively by keeping track of a hop distance
 - 1 prefix_sum (A, d)
 - 2 parallel_for (i = even multiple of d)
 - 3 A[i] += A[i-d]
 - 4 prefix_sum(A, 2*d)
 - 5 parallel_for (i = uneven multiple of d)
 - 6 A[i] += A[i-d]

Work:

- Algorithm does *n*-1 additions and one half-size prefix sum

- Master theorem ($a=1, b=2, \varepsilon=1$, case 3): $W(n) = W(n/2) + n = \Theta(n)$

Example: scan (2)

Summary

33

• We can implement this recursively by keeping track of a hop distance

1 prefix_sum (A, d)

- 2 parallel_for (i = even multiple of d)
- 3 A[i] += A[i-d]
- 4 prefix_sum(A, 2*d)
- 5 parallel_for (i = uneven multiple of d)
- A[i] += A[i-d]

• Span:

- Additions are done in two (parallel) groups, before and after the prefix sum
- Master theorem (*a*=1, *b*=2, case 2): $S(n) = 1 + S(n/2) + 1 = \Theta(\log n)$

6

- Since the span is logarithmic and there is no overhead, this prefix sum is parallelised optimally

- Work and span are used to analyse and compare asymptotic behaviour of parallel algorithms
- Work: total number of steps (computations)
- Span: longest path of steps that need to be done sequentially (steps)
- The PRAM model ignores practical issues such as memory access latency
- Assume uniform costs for all memory access
- Time to perform something on *P* cores: $T_P = \Theta(work/P + span)$
- Compare to the formulation by Amdhal

Next time...

Thursday: Revision lecture

- This will consist of the last lectures presented simultaneously (it is up to you to parallelise your brain before then)
- Send me questions/topics to cover via Teams!

