
B3CC: Concurrency
13: Data Parallelism (2)

Ivo Gabe de Wolff

Recap

• Data parallelism: well understood & supported approach to massive parallelism


- Single point of concurrency

- Easy to implement: well supported (Fortran, MPI, OpenMP…), scales to large number of processors, etc.

- Good cost model (work & span): conceptually very simple!

- BUT! the “something” has to be sequential

2

parallel_for (i = 1..N) { 
    //... do something to xs[i] 
}

… n{ { {

P1 P2 P3

…

xs

Recap

• The map operation applies the same function to each element of a set


- This is a parallelisation of a loop with a fixed number of iterations

- There must not be any dependencies between loop iterations: the function uses only the input element value 
and/or index

3

1 2 3 4 5 6 7 … n

+1 +1 +1 +1 +1 +1 +1 +1

2 3 4 5 6 7 8 … n+1

for (i = 0; i < len; ++i)  
{ 
   x = xs[i]; 
   y = f(x); 
   ys[i] = y; 
}

Recap

• A map with access to the neighbourhood around each element


- The set of neighbours is fixed, and relative to the element

- Ubiquitous in scientific, engineering, and image processing algorithms

4

i-1 i i+1 ?

f f f f f f f

?

neighbourhood{

input array

function

output array



Data parallelism on CPUs

• Distribute work via


- Static schedule (like count & list mode of IBAN)

- fork-join

- divide-and-conquer (like search mode of IBAN)

- …

5

0 1 2 3

6

[0,4)

[0,2) [2,4) [4,6) [6,9)

[6,7) [7,9)

7 8

54

[4,9)

[0,9)

Data parallelism on GPUs

• A GPU program consists of the kernel that runs on the GPU


- Kernel functions are executed n times in parallel by n different threads

- Each thread executes the same sequential program

- Each thread can distinguish itself from all others only by it’s thread identifier

• Any information a thread needs should be directly derivable from this ID

6

__global__ void kernel( float* xs, float* ys, int n, ...) 
{ 
   int idx = blockDim.x * blockIdx.x + threadIdx.x; 
   if ( idx < n ) { 
      // do something 
   } 
}

More parallel patterns

• We have seen:


- Map

- Stencil

• We will discuss today and next time:


- Gather or backwards permute: random reads

- Scatter or permutation: random writes

- Fold or reduction: combined value of all items

- Scan prefix sum: at each index, combined value of all prior elements

7

Gather

• The gather pattern performs independent random reads in parallel


- Also known as a backwards permutation

- Collects all the data from a source array at the given locations

8https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:29

x0 x1 x2 x3 x4 x5 x6values

3 2 0 7 3 5 6 4

x7

indices

x3 x2 x0 x7 x3 x5 x6 x4result

for (i = 0; i < len; ++i)  
{ 
   idx = indices[i]; 
   val = values[idx]; 
   result[i] = val; 
}



Gather

• The gather pattern performs independent random reads in parallel


- Requires a function from output index to input index

- Not all input values have to be read

- Some values may be read twice

- Input and output may have different dimensions

9

x0 x1 x2 x3 x4 x5 x6

3 2 0 7

x7

x3 x2 x0 x7

x1

x3

x2

x4

(0,0) (1,1) (2,2) (3,3)

x1 x2 x3 x4

Example: matrix transpose

10

1 2 3 4
5 6 7 8
9 10 11 12

1 5 9
2 6 10
3 7 11
4 8 15

• Transpose rows and columns of a matrix

Example: matrix transpose

• Transpose the rows and columns of a matrix

11

transpose :: Elt a => Acc (Matrix a) -> Acc (Matrix a) 
transpose xs = 
  let I2 rows cols = shape xs 
   in backpermute (I2 cols rows) (\(I2 y x) -> I2 x y) xs

__global__ void transpose( float* xs, float* ys, int rows, int cols) 
{ 
   int idx = blockDim.x * blockIdx.x + threadIdx.x; 
   if ( idx < n ) { 
      int row = idx / rows; 
      int col = idx % cols; 
      ... 
   } 
}

Example: matrix transpose

12

1 2 3 4
5 6 7 8
9 10 11 12

1 5 9
2 6 10
3 7 11
4 8 15

1 2 3 4 5 6 7 8 9 10 11 12 1 5 9 2 6 10 3 7 11 4 8 15

• In memory, this is stored as:



• To write one row of the output, 
we read one column of the input

Example: matrix transpose

13

1 2 3 4
5 6 7 8
9 10 11 12

1 5 9
2 6 10
3 7 11
4 8 15

1 2 3 4 5 6 7 8 9 10 11 12 1 5 9 2 6 10 3 7 11 4 8 15

Example: matrix transpose

• The memory access pattern for transpose is not ideal


- On the CPU work in tiles to improve cache behaviour

- On the GPU use shared memory explicitly to do coalesced reads & writes

14

Example: matrix vector multiply

• The dense matrix-vector multiply


- Perform a dot-product of each row of the matrix against the vector

- Can be parallelised in different ways

15

for (r = 0; r < rows; ++r) { 
  result[r] = 0; 
  for (c = 0; c < cols; ++c) { 
    // dot product of this row with the vector 
    result[r] += matrix[r][c] * vector[c]; 
  } 
}

Example: sparse-matrix vector multiply

16

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

3
1
0
2
1

4
11
0
1
9

=⋅( ( () ) )



Example: sparse-matrix vector multiply

17

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

3
1
0
2
1

4
11
0
1
9

=⋅( ( () ) )
Example: sparse-matrix vector multiply

• Multiply a sparse matrix by a dense vector


- Example: Hardesty3 dataset

• Matrix size is 8.2M x 7.6M

• Only 40M non-zero entries (0.000065%)

- Want to store only the non-zero entries, as 
only these will contribute to the result

- Together with the row/column index of each 
element (various encodings possible)

18https://sparse.tamu.edu/Hardesty/Hardesty3

Example: sparse-matrix vector multiply

• Store matrix in compressed sparse row format (CSR)


- Stores only the non-zero elements together with their column index

- Also need the number of non-zero elements in each row

- …corresponds to:

19

[ (0, 1.0), (1, 1.0), (1, 7.0), (2, 3.0), (3, 2.0) 
, (1, 1.0), (3, 3.0), (4, 4.0) ]

segment descriptor

index-value pairs

[ 2, 3, 0, 1, 2 ]

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

( )

Example: sparse-matrix vector multiply

• Store matrix in compressed sparse row format (CSR)


- Stores only the non-zero elements together with their column index

- Also need the number of non-zero elements in each row

- …corresponds to:

20

[ (0, 1.0), (1, 1.0), (1, 7.0), (2, 3.0), (3, 2.0) 
, (1, 1.0), (3, 3.0), (4, 4.0) ]

segment descriptor

index-value pairs

[ 2, 3, 0, 1, 2 ]

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

( )



Example: sparse-matrix vector multiply

• Store matrix in compressed sparse row format (CSR) 

• The sparse-matrix dense-vector multiply is then:


1. gather the values from the input vector at the column indices

2. pair-wise multiply (1) with the matrix values (zipWith)

3. segmented reduction of (2) with the matrix segment descriptor

- … more on reductions and segmented operations next time!

21https://github.com/tmcdonell/accelerate-examples/tree/master/examples/smvm

[ 0,   1,   1,   2,   3,   1,   3,   4 ]

segment descriptor

indices

[ 2, 3, 0, 1, 2 ]

1 1 0 0 0
0 7 3 2 0
0 0 0 0 0
0 1 0 0 0
0 0 0 3 3

( )
vector [ 3, 1, 0, 2, 1 ]

[ 1.0, 1.0, 7.0, 3.0, 2.0, 1.0, 3.0, 3.0 ]values

Example: sparse-matrix vector multiply

• This can be viewed as a kind of nested data-parallel computation: parallel computations which spawn further 
parallel work


- More difficult to parallelise (for both hardware and software)

- Segmented operators allow us to convert nested parallel computations into flat parallel computations

22

3 1 7 0 4 1 6 3

2 3 0 1 2

values

segment descriptor

4 11 0 1 9segmented fold 

Gather

• Gather or backwards permutation transforms indices in the output array to indices in the input array


- But; arbitrary memory access patterns are slow (especially on the GPU)

- Simple pattern; many common cases which can be made more efficient

• Next is scatter, forward permutation, which transforms indices in the input array to indices in the output array

23

Scatter

• The scatter pattern performs independent random writes in parallel


- Also known as forward permutation

- Puts data from the source array into the specified locations

24https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#g:28

x0 x1 x2 x3 x4 x5 x6values

2 4 1 0 7 6 5 3

x7

indices

x3 x2 x0 x7 x1 x5 x6 x4result

for (i = 0; i < len; ++i)  
{ 
   val = values[i]; 
   idx = indices[i]; 
   result[idx] = val; 
}



Scatter

• The scatter pattern performs independent random writes in parallel


- Analogously to gather, we can consider scatter as an index mapping f 
transforming indices in the input (source) array to indices in the output (destination) array

- More complex than gather, especially if

• f is not surjective: the range of f might not cover the entire codomain

• f is not injective: distinct indices in the domain may map to the same index in the codomain

• f is partial: elements in the domain may be ignored

25

• The index permutation might not cover every element in the output


- We need to first initialise the output array

Scatter

26

x0 x1 x2 x3

x2 x3 x0 x1

2 4 0 1

Collisions

• Multiple values may map to the same output index


- Possible strategies to handle collisions:

• Disallow

• Non-deterministically, one write succeeds

• Merge values with a given associative and commutative operation

27

x0 x1 x2 x3

?? x0 x1

2 4 1 1

Collisions: atomic instructions

Possible strategies to handle collisions:


1. Non-deterministically, one write succeeds


- Requires atomic writes

- Writes of single words are typically atomic, but that depends on architecture

2. Merge values with a given associative and commutative operation


- Use an atomic read-modify-write instruction (e.g. atomic_fetch_add), if it exists for this operation

- Use an atomic compare-and-swap loop, if a value is a single word

• Maximal size of a word for compare-and-swap depends on the architecture

3. Use (per element) locks otherwise
28



Collisions: locks

• A general merge function might need to implement some locking strategy


- If no atomic instruction exists; or multiple words are updated

- Recall: this classic spin lock executed on the GPU can deadlock:

29

do { 
  old = atomic_exchange(&lock[i], 1); 
} while (old == 1); 

/* critical section */ 

atomic_exchange(&lock[i], 0);

Example: histogram

• Computing a histogram requires merging writes to the same location


• Sample data:

30https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:permute

[0,0,1,2,1,1,2,4,8,3,4,9,8,3,2,5,5,3,1,2]

8 3 2 5 5 3 1 21 1 2 4 8 3 4 90 0 1 2

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1values

indices

result 0 0 0 0 0 00 0 0 0

atomic_add()

1

atomic_add()

1

atomic_add()

2 2 2 0 0 2 12 4 4 3

Example: filter (compact)

• Return only those elements of the array which pass a predicate


1. map the predicate function over the 
values to determine which to keep

2. exclusive scan the boolean flags to 
determine the output locations and 
number of elements to keep

3. permute the values into the position given 
by (2) if (1) is true

31https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.html#v:filter

x0 x1 x2 x3 x4 x5 x6 x7

1 1 0 0 1 0 1 0

0 1 2 2 2 3 3 4

x0 x1 x4 x6

4

Scatter

• Scatter is more expensive than gather for a number of reasons


- Not only to handle collisions!

- Due to the behaviour of caches, there is inter-core communication when threads access the same cache line, 
even if there is no actual collision

- If the target locations are known in advance, scatter can be converted into a gather operation (this may require 
extra processing)

32



Scatter

• Reframing an algorithm can be key to converting scatter to gather


- As always, there are different tradeoffs in computation vs. communication

- Per element: scatter

- Per node: gather

33

element&

node&

Figure 1.2. Variables on a staggered mesh. Thermodynamic variables are represented at element

centers. Kinematic variables are represented at nodes. The figure shows a two-dimensional mesh

for simplicity; a three-dimensional mesh representation is the obvious extension.

point at the element center. Kinematic variables such as �!X and �!
U are defined at the element nodes.

The single-point quadrature mesh elements used in the challenge problem implementation, while less
accurate than alternatives, have a long history of demonstrated robustness for modeling realistic prob-
lems involving plastic flow and shock discontinuities. The spatial relationships among these variables
are illustrated in Fig. 1.2. Spatial gradients are computed using finite element approximations. The
reference code (see Section 1.3) uses specific computational operations to perform the finite element
approximations that are employed in production hydrocodes.
1.2.3 Numerical Time Integration

After setting the initial values of the solution variables on the mesh and defining appropriate bound-
ary conditions, the solution evolves by integrating the equations in time. As is common in hydrody-
namics simulations, the challenge problem implementation uses an explicit time stepping algorithm
to advance the solution through a sequence of discrete time increments. That is, the solution at time
t
n is advanced to time t

n+1 = t
n +�t

n, where n is the step number and �t
n = t

n+1 � t
n is the time

increment.
An accurate and robust Lagrangian time integration algorithm requires that several issues be ad-

dressed: time increment selection, artificial viscosity, and an hourglass filter. Production Lagrangian
hydrocodes treat these concerns in various ways all of which adds to algorithm and code complexity.
The inclusion of these mechanisms in our challenge problem code allows us to maintain essential
features of production hydrocodes.

The Courant-Friedrichs-Lewy (CFL) condition determines the maximum size of each time incre-
ment based on the shortest distance across any mesh element and the sound speed of the material
in the element [4]. The stability condition insures that the simulation does not propagate information
faster in the numerical approximation than is dictated by the governing equations. Since the same time
increment is used to advance the solution over the entire mesh, the determination of the maximum
allowable increment usually requires a collective communication operation.

To model the entropy-conserving properties of the governing equations properly, the discrete equa-
tions must be augmented with a dissipation mechanism. In reality, physical viscosity has a dissipation
length scale of a few molecular mean free paths which cannot be represented at the length scale of

7

element&

node&

Figure 1.2. Variables on a staggered mesh. Thermodynamic variables are represented at element

centers. Kinematic variables are represented at nodes. The figure shows a two-dimensional mesh

for simplicity; a three-dimensional mesh representation is the obvious extension.

point at the element center. Kinematic variables such as �!X and �!
U are defined at the element nodes.

The single-point quadrature mesh elements used in the challenge problem implementation, while less
accurate than alternatives, have a long history of demonstrated robustness for modeling realistic prob-
lems involving plastic flow and shock discontinuities. The spatial relationships among these variables
are illustrated in Fig. 1.2. Spatial gradients are computed using finite element approximations. The
reference code (see Section 1.3) uses specific computational operations to perform the finite element
approximations that are employed in production hydrocodes.
1.2.3 Numerical Time Integration

After setting the initial values of the solution variables on the mesh and defining appropriate bound-
ary conditions, the solution evolves by integrating the equations in time. As is common in hydrody-
namics simulations, the challenge problem implementation uses an explicit time stepping algorithm
to advance the solution through a sequence of discrete time increments. That is, the solution at time
t
n is advanced to time t

n+1 = t
n +�t

n, where n is the step number and �t
n = t

n+1 � t
n is the time

increment.
An accurate and robust Lagrangian time integration algorithm requires that several issues be ad-

dressed: time increment selection, artificial viscosity, and an hourglass filter. Production Lagrangian
hydrocodes treat these concerns in various ways all of which adds to algorithm and code complexity.
The inclusion of these mechanisms in our challenge problem code allows us to maintain essential
features of production hydrocodes.

The Courant-Friedrichs-Lewy (CFL) condition determines the maximum size of each time incre-
ment based on the shortest distance across any mesh element and the sound speed of the material
in the element [4]. The stability condition insures that the simulation does not propagate information
faster in the numerical approximation than is dictated by the governing equations. Since the same time
increment is used to advance the solution over the entire mesh, the determination of the maximum
allowable increment usually requires a collective communication operation.

To model the entropy-conserving properties of the governing equations properly, the discrete equa-
tions must be augmented with a dissipation mechanism. In reality, physical viscosity has a dissipation
length scale of a few molecular mean free paths which cannot be represented at the length scale of

7

Summary

• Performance is often more limited by data movement than computation


- Transferring data across memory layers is costly

- Data organisation and layout can help to improve locality & minimise access times

- Design the application around the data movement

• Similar consistency issues arise as when dealing with computation parallelism


• Might involve the creation of additional intermediate data structures


• Some applications are all about data movement: searching, sorting…

34

Photo by ipet photo

tot ziens


