B3CC: Concurrency
|2: Data Parallelism (1)

‘ Utrecht University

» Concurrency: dealing with lots of things at once

Ivo Gabe de Wolff

Task parallelism
Explicit threads
Synchronise via locks, messages, or STM
Modest parallelism

Hard to program

.

» Parallelism: doing lots of things at once

- Processors are no longer getting faster: limitations in power consumption, memory speed, and instruction-level
parallelism

- Adding more processor cores has been the dominant method for improving processor performance for the last
decade

= - Large applications use a mix of task- and data-parallelism

- There is a difference in how to make use of 2-4 cores vs. 32+ cores

Data parallelism + In the application of parallelism, we would like to achieve:
Operate simultaneously on bulk data - Performance: ease of use, scalability, and predictability
Implicit synchronisation - Productivity: expressivity, correctness, clarity, and maintainability
Massive parallelism - Portability: between different machines, compilers, or architectures

Easy to program

+ Games

- Probably the primary consumer market for teraflop computing applications
+ Image and video editing
+ Scientific computing

- Numeric simulations, modelling, etc.

» Machine learning

+ Patterns also exist in serial code

- We often don't think of serial code in this way, however it helps to name these patterns in order to talk about
these ideas in a parallel context

- Compositional patterns: nesting

- Control-flow patterns: sequence, selection, repetition, and recursion

« Patterns, or algorithmic skeletons

- A pattern is a recurring combination of task distribution and data access

- Patterns provide a vocabulary for [parallel] algorithm design

- These ideas are not tied to a particular hardware architecture

* This distinguishes two important aspects:

- Semantics: what we want to achieve

- Implementation: how to achieve this on a given architecture

» Nesting simply refers to the ability to hierarchically compose patterns

- Including recursive functions

!

‘update_quadtree

‘compute_forces

‘update_positions

do_physics

FETE ETET | [P T
Bl W A [[Tea || b
P W Y
T 1T Sik=a
\
TE SEEIMmiEE
SECCE = I M S
E e \
El i !

recursive

» Tasks executed in a specified order
- We generally assume that the program is executed in the text order
- Modern CPUs violate this (out-of-order execution (instructions & memory))

- Programmer or language specifies iffhow
memory operations may be reordered

(memory_order in c++) f =a+* a
g = a + a
h=Ff-g

https://en.wikipedia.org/wiki/Out-of-order_execution
https://en.wikipedia.org/wiki/Memory_ordering#Runtime memory ordering
https://en.cppreference.com/w/cpp/atomic/memory_order

+ Continually execute a task while some condition is true
- Parallelisation of loops is complicated due to loop-carried dependencies

- There is a lot of research in this area (polyhedral models, loop nests)

- Instead, several parallel patterns exist for specific loop forms: map, reduce, scan, scatter, gather-...

while (c¢) {
f;

https://en.wikipedia.org/wiki/Polytope model

+ Conditionals are pervasive in serial code
- On average one branch every five instructions
- Modern CPUs speculatively execute (far) ahead of when C is known

- TensorFlow (google deep learning framework) always evaluates both branches of conditionals

if (C) { T F
aj;

} else {
b;

9 https://en.wikipedia.org/wiki/Speculative_execution

* The map operation applies the same function to each element of a set
- This is a parallelisation of a loop with a fixed number of iterations

- There must not be any dependencies between loop iterations: the function uses only the input element value
and/or index

for (i = 0; i < len; ++1)

{
x = xs[i];
| v = 003
ys[i] = vy;
}

12

"

Map

» The map operation applies the same function to each element of a set

- The function only has access to a single value

- The number of iterations is dynamic (e.g. size of the array) but fixed at the start of the map: does not vary

based on the loop body

- Note that the order of operations is not specified

Map

In the graphics pipeline, vertex and fragment shaders are a parallel map
- Each shader outputs a single pixel or vertex; no other side effects

- Shaders are also examples of streaming algorithms: data is used exactly
once, so no caching is necessary

» On the CPU, can be implemented via
- Static schedule (like count & list mode of IBAN)
- fork-join

- divide-and-conquer (like search mode of IBAN)

Map

» The map operation applies the same function to each element of a set
- On the GPU this corresponds to one thread per element

- Number of loop iterations is controlled by how many threads the kernel is launched with

- Host code:
map<<<4, 1024>>>(h_xs, h_ys, 4000);
- GPU code:
_global__ void map(float* d_xs, floatx d_ys, int len)
{
int 1 = blockDim.x * blockIdx.x + threadIdx.x;
if (1< len) {
d_ys[i] = f (d_xs[i]);
}
}
14
Stencil

* A map with access to the neighbourhood around each element
- The set of neighbours is fixed, and relative to the element

- Ubiquitous in scientific, engineering, and image processing algorithms

neighbourhood
~

input array
function

output array

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/Data-Array-Accelerate.htmli#g:37 16

+ The stencil pattern

- The set of neighbouring elements used by the stencil function

- The shape of the stencil pattern can be anything: sparse, non-symmetric, etc.

- The pattern of the stencil determines how the stencil operates in an application

_global__ void stencil(float* xs, float* ys, int width, int height)

{
int i
ys[i]

blockDim.x * blockIdx.x + threadIdx.x;

f(

xs[i-width]

, xs[i-11, xs[il,

);

xs[i+width]

» Apply a stencil operation to the inner square

- Treat out-of-bounds elements are zero

- Stencil function: average of the blue squares

A

xs[i+1]

A

» Apply a stencil operation to the inner square

- Treat out-of-bounds elements are zero (we'll come back to this later)

» Apply a stencil operation to the inner square
- Treat out-of-bounds elements are zero

- Stencil function: average of the blue squares

v

44

v

20

» Apply a stencil operation to the inner square
- Treat out-of-bounds elements are zero

- Stencil function: average of the blue squares

A

+ Cellula automaton developed in 1970
- Evolution of the system is determined from an initial state

- Cells live or die based on the population of their surrounding neighbours

oyt

- Turing complete!

https://en.wikipedia.org/wiki/Conway%27s Game of Life
https://github.com/tmcdonell/gameofiife-accelerate

21

23

» Apply a stencil operation to the inner square

- Treat out-of-bounds elements are zero

- Stencil function: average of the blue squares

A

« lterative codes are ones that update their data in steps

44

3,8

» Most commonly found in simulations for scientific & engineering applications

- Often used to solve partial differential equations

hot

V3u

cold

Step 0

=0
_ Wimng F Uiy o1 U

4

Step 200 Step 400

https://en.wikipedia.org/wiki/Stencil code
https://github.com/tmcdonell/fisher-accelerate

Step 600

Step 800

Step 1000

22

24

+ Convolution with a Gaussian function » Gaussian function

- Typically used to reduce image noise - This is a separable convolution:
instead of a single n x n stencil,

- Each pixel becomes the weighted sum of the surrounding pixels . .) .
P 3 g p it can be implemented as an / x n stencil after a n x [stencil

(I®K)(z,y)= E E Iz +i,y +§)K(i,) - This is significant for large n
i J
- Example: 3 x 3 stencil

0.077847 0.123317 0.077847 0.27901
0.123317 0.195346 0.123317| = |0.44198 ><[0,27901 0.44198 0.27901]
0.077847 0.123317 0.077847 0.27901

[=
o005
00
15 o 15
9%x9,0=3
https://en.wikipedia.org/wiki/Gaussian blur
https://github.com/tmcdonell/acc nples/blob/master/examples/canny/src-acc/Canny.hs#L. 82 25 http://dev.theomader.com/gaussian-kernel-calculator 26

+ What happens at the boundary of the computation?

- Each larger box is owned by a thread / processor

+ Ghost cells are one solution to the boundary and
update issues of a stencil computation

+ What to do when the stencil pattern falls outside the bounds of the array?

- At the edges of a simulation, we may need to impose boundary conditions

- Each thread keeps a copy of the neighbour's

* choose a fixed value or derivative (e.g. to impose symmetry) data to use in local computations

* many options are possible... - The ghost cells must be updated after

each iteration of the stencil

» What about between processors?

- The set of ghost cells is called the halo

* A deeper halo can be used to reduce
communication for some redundant work

Stencil optimisations

+ Use a different kernel for the interior and border regions

- In the gaussian blur example of a 512x512 pixel image, 98% of the pixels do not require in-bounds checks

+ Optimise data locality & reuse through tiling

- Strip mining is an optimisation that groups elements in a way that avoids redundant memory access and aligns

accesses with cache lines

4 x (5 reads + | write)

14 reads + 4 writes

Example: LULESH

https://computing \\n\.qov/oroxects/co—deswqn/lulesﬁj\

DB: lulesh_c*silo database
Cycle: 1360 Time:0.0099864

Mesh
Var: mesh

Preudocobr
Var:speed
274

2450
| aY
8185

~0000
Max: 3274
Wi 0000

https://github.com/tmcdonell/lulesh-accelerate

29

31

Stencil optimisations

Without tiling
* When handling row 0, row 1 is loaded in cache.

« First values of row 1 may already be out of cache,
when handling row 1

| —
] >
—

Summary

+ Data-parallelism is a good fit for parallel computing

With tiling
« Previously loaded row is still in cache
« Tile width is usually a power of 2,

on GPUs often the warp size (32

T -
-
=

A >
L=

P el .
L=

|

- Conceptually simple programming model: single logical thread of control

- Separate the pattern (what you want to do) from the implementation (how to do it: optimisations, target

hardware, etc.)

30

32

‘tot ziens

