
B3CC: Concurrency
11: Accelerate

Tom Smeding

Announcement

• Welcome back!

• The third practical is now available

- Due Friday 26 January @ 23:59

- You may work in pairs

�2

Scaling and Speedup

Leftovers from 09: Parallelism

�3

Speedup

• The performance improvement, or speedup of a parallel application, is:

- Where TP is the time to execute using P threads/processors

• The efficiency of the program is:

• Here, � can be:

- The parallel algorithm executed on one thread: relative speedup

- An equivalent serial algorithm: absolute speedup

T1

�4

speedup = SP =
T1

TP

efficiency =
SP

P
=

T1

P TP

Maximum speedup

• Several factors appear as overhead in parallel computations and limit the speedup of the program

- Periods when not all processors are performing useful work

- Extra computations in the parallel version not appearing in the sequential version (example: recompute
constants locally)

- Communication time between processes

�5

Amdahl

• The execution time (�) of a program splits into:

- : time spent doing (non-parallelisable) serial work

- : time spent doing parallel work

• If is the fraction of serial work to be performed, we get the parallel speedup:

• This is called Amdahl’s Law

T1

Wser

Wpar

�6

TP ≥ Wser +
Wpar

P

SP ≤
1

f + (1 − f)/P

f =
Wser

Wser + Wpar

Amdahl

• The speedup bound is determined by the degree of sequential execution in the program, not the number of
processors

- Strong scaling (fixed-sized speedup):

�7

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 59 — #59

2.5 Performance Theory 59

Amdahl argued that the execution time T1 of a program falls into two categories:

• Time spent doing non-parallelizable serial work
• Time spent doing parallelizable work

Call these Wser and Wpar, respectively. Given P workers available to do the parallelizable work, the
times for sequential execution and parallel execution are:

T1 = Wser + Wpar,

TP � Wser + Wpar/P.

The bound on TP assumes no superlinear speedup, and is an exact equality only if the paralleliz-
able work can be perfectly parallelized. Plugging these relations into the definition of speedup yields
Amdahl’s Law:

SP 
Wser + Wpar

Wser + Wpar/P
. (2.3)

Figure 2.4 visualizes this bound.
Amdahl’s Law has an important corollary. Let f be the non-parallelizable serial fraction of the total

work. Then the following equalities hold:

Wser = f T1,

Wpar = (1 � f)T1.

Substitute these into Equation 2.3 and simplify to get:

SP  1
f + (1 � f)/P

. (2.4)

T
im

e

Serial work

Parallelizable work

P = 1 P = 2 P = 4 P = 8

FIGURE 2.4

Amdahl’s Law. Speedup is limited by the non-parallelizable serial portion of the work.

limP!1 SP  1/f
<latexit sha1_base64="kssmcsTmUvrC5s98zwN82SPjWfE=">AAACCnicdVC7TsMwFL0pr1JeAUYWQ4XEVBIY6FiJhbEV9CE1VeS4TmvVcSLbQYqiziz8CgsDCLHyBWxsjHwGbgsSzyNZOj7nXtnnBAlnSjvOi1WYm19YXCoul1ZW19Y37M2tlopTSWiTxDyWnQArypmgTc00p51EUhwFnLaD0enEb19SqVgsLnSW0F6EB4KFjGBtJN/e9TiL/LyOPB0jj4lQZ2N07ps7p8hFhyj07bJTOa46Bug3cSvOFOUaary9AkDdt5+9fkzSiApNOFaq6zqJ7uVYakY4HZe8VNEEkxEe0K6hAkdU9fJplDHaN0ofhbE0R2g0Vb9u5DhSKosCMxlhPVQ/vYn4l9dNdVjt5UwkqaaCzB4KU45M7EkvqM8kJZpnhmAimfkrIkMsMdGmvZIp4TMp+p+0jiqu4Q23XKvBDEXYgT04ABdOoAZnUIcmELiCG7iDe+vaurUerMfZaMH62NmGb7Ce3gEIGptp</latexit><latexit sha1_base64="gFh/2lH8FHMrjDZAqOKc4u3OPAs=">AAACCnicdVDLSgMxFM3UR2t9jbp0Ey2CqzqjiF0W3Lhs0T6gMwyZNNOGJpkhyQjD0LUbf8WNC0Xc+gXu/AHxM0xbBZ8HAifn3EtyTpgwqrTjvFiFufmFxWJpqby8srq2bm9stlWcSkxaOGax7IZIEUYFaWmqGekmkiAeMtIJR6cTv3NJpKKxuNBZQnyOBoJGFCNtpMDe8RjlQd6Ano6hR0WkszE8D8ydEejCAxgFdsWpHtUcA/ibuFVnikodNt9eS8XjRmA/e/0Yp5wIjRlSquc6ifZzJDXFjIzLXqpIgvAIDUjPUIE4UX4+jTKGe0bpwyiW5ggNp+rXjRxxpTIemkmO9FD99CbiX14v1VHNz6lIUk0Enj0UpQya2JNeYJ9KgjXLDEFYUvNXiIdIIqxNe2VTwmdS+D9pH1Zdw5tupV4HM5TANtgF+8AFJ6AOzkADtAAGV+AG3IF769q6tR6sx9lowfrY2QLfYD29A2rVm7M=</latexit><latexit sha1_base64="gFh/2lH8FHMrjDZAqOKc4u3OPAs=">AAACCnicdVDLSgMxFM3UR2t9jbp0Ey2CqzqjiF0W3Lhs0T6gMwyZNNOGJpkhyQjD0LUbf8WNC0Xc+gXu/AHxM0xbBZ8HAifn3EtyTpgwqrTjvFiFufmFxWJpqby8srq2bm9stlWcSkxaOGax7IZIEUYFaWmqGekmkiAeMtIJR6cTv3NJpKKxuNBZQnyOBoJGFCNtpMDe8RjlQd6Ano6hR0WkszE8D8ydEejCAxgFdsWpHtUcA/ibuFVnikodNt9eS8XjRmA/e/0Yp5wIjRlSquc6ifZzJDXFjIzLXqpIgvAIDUjPUIE4UX4+jTKGe0bpwyiW5ggNp+rXjRxxpTIemkmO9FD99CbiX14v1VHNz6lIUk0Enj0UpQya2JNeYJ9KgjXLDEFYUvNXiIdIIqxNe2VTwmdS+D9pH1Zdw5tupV4HM5TANtgF+8AFJ6AOzkADtAAGV+AG3IF769q6tR6sx9lowfrY2QLfYD29A2rVm7M=</latexit><latexit sha1_base64="L21ie50RyOMlNX/TmtDJ/4rg6i8=">AAACCnicdVC7TsMwFL0pr1JeAUYWQ4XEVBIY6FiJhbEI+pCaKHJcp7XqOJHtIEVRZxZ+hYUBhFj5Ajb+BveBxPNIlo7PuVf2OWHKmdKO826VFhaXllfKq5W19Y3NLXt7p62STBLaIglPZDfEinImaEszzWk3lRTHIaedcHQ+8Ts3VCqWiGudp9SP8UCwiBGsjRTY+x5ncVA0kacT5DER6XyMrgJz5xS56BhFgV11aqd1xwD9Jm7NmaIKczQD+83rJySLqdCEY6V6rpNqv8BSM8LpuOJliqaYjPCA9gwVOKbKL6ZRxujQKH0UJdIcodFU/bpR4FipPA7NZIz1UP30JuJfXi/TUd0vmEgzTQWZPRRlHJnYk15Qn0lKNM8NwUQy81dEhlhiok17FVPCZ1L0P2mf1FzDL91qozGvowx7cABH4MIZNOACmtACArdwD4/wZN1ZD9az9TIbLVnznV34Buv1A7JcmPA=</latexit>

Amdahl

�8

• The serial fraction of the program limits the achievable speedup

Gustafson-Barsis

• Often the problem size can increase as the number of processes increases

- The proportion of the serial part decreases

- Weak scaling (scaled speedup):

�9

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

McCool — e9780124159938 — 2012/6/6 — 23:09 — Page 62 — #62

62 CHAPTER 2 Background

T
im

e

Serial work

Parallelizable work

P =1 P =2 P =4 P =8

FIGURE 2.7

Gustafson-Barsis’ Law. If the problem size increases with P while the serial portion grows slowly or remains
fixed, speedup grows as workers are added.

Both Amdahl’s and Gustafson-Barsis’ Laws are correct. It is a matter of “glass half empty” or
“glass half full.” The difference lies in whether you want to make a program run faster with the same
workload or run in the same time with a larger workload. History clearly favors programs getting more
complex and solving larger problems, so Gustafson’s observations fit the historical trend. Nevertheless,
Amdahl’s Law still haunts you when you need to make an application run faster on the same workload
to meet some latency target.

Furthermore, Gustafson-Barsis’ observation is not a license for carelessness. In order for it to
hold it is critical to ensure that serial work grows much more slowly than parallel work, and that
synchronization and other forms of overhead are scalable.

2.5.6 Work-Span Model
This section introduces the work-span model for parallel computation. The work-span model is much
more useful than Amdahl’s law for estimating program running times, because it takes into account
imperfect parallelization. Furthermore, it is not just an upper bound as it also provides a lower bound.
It lets you estimate TP from just two numbers: T1 and T1.

In the work-span model, tasks form a directed acyclic graph. A task is ready to run if all of its
predecessors in the graph are done. The basic work-span model ignores communication and mem-
ory access costs. It also assumes task scheduling is greedy, which means the scheduler never lets a
hardware worker sit idle while there is a task ready to run.

The extreme times for P = 1 and P = 1 are so important that they have names. Time T1 is called
the work of an algorithm. It is the time that a serialization of the algorithm would take and is simply
the total time it would take to complete all tasks. Time T1 is called the span of an algorithm. The span
is the time a parallel algorithm would take on an ideal machine with an infinite number of processors.
Span is equivalent to the length of the critical path. The critical path is the longest chain of tasks
that must be executed one after each other. Synonyms for span in the literature are step complexity or
depth.

Figure 2.8 shows an example. Each box represents a task taking unit time, with arrows showing
dependencies. The work is 18, because there are 18 tasks. The span is 6, because the longest chain of

S′�P = f + (1 − f)P
Data parallelism, GPU programming

�10

• Explicit threads

• Synchronise via locks, messages, or STM

• Modest parallelism

• Hard to program

• Operate simultaneously on bulk data

• Implicit synchronisation

• Massive parallelism

• Easy to program

Recap

�11

… n{ { {

P1 P2 P3

…

Task parallelism Data parallelism

Recap

• Despite the name, data parallelism is only a programming model

- The key is a single logical thread of control

- It does not actually require the operations to be executed in parallel!

- Today we’ll look at a language for data-parallel programming on the GPU

�12

GPU (graphics processing unit)

• Lots of interest to use them for non-graphics tasks

- Machine learning, bioinformatics, data science, weather & climate, medical imaging, computational chemistry, …

- Can have much higher performance than a traditional CPU

• Specialised hardware with a specialised programming model

- Caches are software programmable; must be wary of associativity

- Memory management is explicit, with distinct memory spaces

- Thousands of threads running simultaneously, each of which can modify any piece of memory at any time

�13

GPU programming

�14

Pe
rf

or
m

an
ce

Effort

GPU programming

�15

Pe
rf

or
m

an
ce

Effort

expected

GPU programming

�16

Pe
rf

or
m

an
ce

Effort

expected

actual

GPU programming

�17

Pe
rf

or
m

an
ce

Effort

expected

actual

desired

GPU programming

�18https://devblogs.nvidia.com/getting-started-openacc/

Pe
rf

or
m

an
ce

Effort

expected

actual

desired

After expressing available parallelism, I often find that
the code has slowed down.

— Jeff Larkin, NVIDIA Developer Technology

GPU programming

• Two main difficulties:

1. Structuring the program in a way suitable for GPU parallelisation

2. Writing (performant) GPU code

�19

←

Accelerate

�20

Accelerate

• An embedded language for data-parallel arrays in Haskell

- Takes care of generating the high-performance CPU/GPU code for us

- Computations take place on dense multi-dimensional arrays

- Parallelism is introduced in the form of collective operations on arrays

�21

Haskell/Accelerate
program

Target code

Compile and run on
the CPU/GPU

Copy result back to Haskell

Reify and optimise
Accelerate program

Accelerate

• Computations take place on arrays

- Parallelism is introduced in the form of collective operations over arrays

- map, zipWith, fold, scan (various kinds); permutations (data movement); etc.

- It is a restricted language: consists only of operations which can be executed efficiently in parallel

- Different types to distinguish parallel computations from scalar expressions

�22

Example: dot product

• In Haskell (lists):

�23

import Prelude

dotp :: Num a
 => [a]
 -> [a]
 -> a
dotp xs ys = foldl’ (+) 0 (zipWith (*) xs ys)

Example: dot product

• In Accelerate:

�24

import Data.Array.Accelerate

dotp :: Num a
 => Acc (Vector a)
 -> Acc (Vector a)
 -> Acc (Scalar a)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Example: dot product

• In Accelerate:

�25

import Data.Array.Accelerate

dotp :: Num a
 => Acc (Array DIM1 a)
 -> Acc (Array DIM1 a)
 -> Acc (Array DIM0 a)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Scalar a = Array DIM0 a
Vector a = Array DIM1 a
Matrix a = Array DIM2 a
 Array DIM3 a
 ...

Dimensionality

Element type

= Array Z a
= Array (Z :. Int) a
= Array (Z :. Int :. Int) a
= Array (Z :. Int :. Int :. Int) a

Int, Float, (a,b), Maybe a, etc.

Accelerate

• Compile and execute an Accelerate program

- The same program can be run on different targets

�26There’s also runQ, but don’t worry about that

import Data.Array.Accelerate.Interpreter
-- import Data.Array.Accelerate.LLVM.Native
-- import Data.Array.Accelerate.LLVM.PTX

run :: Arrays a => Acc a -> a
runN :: Afunction f => f -> AfunctionR f

runN :: (…) => Acc a -> a
runN :: (…) => (Acc a -> Acc b) -> a -> b
runN :: (…) => (Acc a -> Acc b -> Acc c) -> a -> b -> c
-- ...

Accelerate

• Parallel computations take place on arrays

- A stratified language of parallel (Acc) and scalar (Exp) computations

- Parallel operations consist of many scalar expressions executed in parallel

�27

Accelerate

• The map operation:

- A collective operation (Acc) which applies the given scalar function (Exp) to each element of the array in
parallel

- map (\x -> x+1) xs on a one-dimensional array of floats:

�28

__global__ void map(float* d_xs, float* d_ys, int len)
{
 int i = blockDim.x * blockIdx.x + threadIdx.x;
 if (i < len) {
 float x = d_xs[i];
 d_ys[i] = x + 1;
 }
}

Acc

Exp

Accelerate

• The map operation:

- A collective operation (Acc) which applies the given scalar function (Exp) to each element of the array in
parallel

�29

map :: (Shape sh, Elt a, Elt b)
 => (Exp a -> Exp b)
 -> Acc (Array sh a)
 -> Acc (Array sh b)

"an array index type" "an array element type"

Oddities

• Accelerate is a language embedded in Haskell

- We reuse much of the syntax, but the semantics are different

• Strict evaluation, unboxed data, no general recursion…

- Actually, Acc and Exp are just data structures!

• Have a Show instance

• The Haskell program generates the Accelerate program

• The run operation performs runtime (cross) compilation

- But the integration has some oddities as well…

�30

Lifting & Unlifting

• Consider the following two types:

- The first is a Haskell pair of embedded expressions on Int

- The second is an embedded expression returning a pair of Ints

• How to convert between the two?

- The pattern synonym T2

- (legacy: the functions lift and unlift (not recommended))

�31

x :: (Exp Int, Exp Int)
y :: Exp (Int, Int)

Pattern synonyms

• We use pattern synonyms for constructing & destructing embedded tuples

- Can’t overload built-in syntax (,), (,,), etc.

- Instead we use T2, T3, etc. at both the Acc and Exp level

�32

result :: Acc (Vector Int, Scalar Int)
result = …

T2 idx tot = result
 -- idx :: Acc (Vector Int)
 -- tot :: Acc (Scalar Int)

res = T2 tot idx
 -- res :: Acc (Scalar Int, Vector Int)

Shapes

• Array shapes (& indices) are snoc-lists formed from Z and (:.)

- Z is a zero-dimensional (scalar)

- (:.) adds one inner-most dimension on the right

• More pattern synonyms for constructing & destructing indices

�33

type DIM1 = Z :. Int
type Vector a = Array DIM1 a

x :: Exp Int
I1 x :: Exp DIM1 -- you’ll need this one

Pattern matching

• Use the match operator to perform pattern matching in embedded code

- Also note the pattern synonyms for constructing/deconstructing cases

�34

foo :: Exp (Maybe Int) -> Exp Int
foo x = x & match \case
 Nothing_ -> 0
 Just_ y -> y + 1

Guards

• Unfortunately guard syntax doesn’t work

- Use a regular if-then-else (chain) instead

�35

nope :: Exp Int -> Exp Int
nope x
 | x < 0 = ...
 | otherwise = ...

Looping

• Can’t write recursive embedded functions directly

- Need to use an explicit (tail-recursive) looping combinator instead

- Continue applying the body function (second argument) as long as the predicate function (first argument)
returns true

�36

awhile
 :: Arrays a
 => (Acc a -> Acc (Scalar Bool))
 -> (Acc a -> Acc a)
 -> Acc a
 -> Acc a

Debugging

• Some trace functions for printf-style debugging

- Output a trace message as well as some arrays to the console before proceeding with the computation

- Useful for inspecting intermediate values

�37

atraceArray
 :: (Arrays a, Arrays b)
 => Text
 -> Acc a
 -> Acc b
 -> Acc b

use "quotes"

Documentation

• More information in the documentation

- https://ics.uu.nl/docs/vakken/b3cc/resources/acc-head-docs (latest version, used in the Quickhull template)

- https://hackage.haskell.org/package/accelerate (released version (older))

�38

Accelerate

• Implementing a data-parallel program consists of two parts:

- What are the collective (parallel) operations that need to be done?

- What does each individual (sequential) thread need to do?

�39

Quickhull

�40

Quickhull

• An algorithm to determine the small polygon containing a set of points

- You will implement a data-parallel version of the algorithm in Accelerate

- See the specification for details

�41

• Initial points

- The goal is to find the smallest polygon 
containing all these points

- This is known as the convex hull

Example

�42

• Create initial partition

- Choose two points that are definitely 
on the convex hull

- Partition others to either side of that  
line (above/left and below/right)

- Points of the same colour are in the 
same segment

Example

�43

• Recursively partition each segment

- This is done for all points at once,  
in data-parallel

- The hollow circles are points no longer  
under consideration

- Orange circles are on the convex hull

- Other colours are still undecided.

- Same colours are in the same partition

Example

�44

Example

• Continue partitioning each segment…

�45

Example

• … until no undecided points remain

�46

Photo by @zumothesamoyed

tot ziens Traditional compiler construction

�48Modern Compiler Implementation in Java, A. Appel and J. Palsberg

Modern compiler construction

�49https://msm.runhello.com/p/1003

