B3CC: Concurrency
I I:Accelerate

‘ Utrecht University

Tom Smeding

Scaling and Speedup

Leftovers from 09: Parallelism

+ Welcome back!
* The third practical is now available
- Due Friday 26 January @ 23:59

- You may work in pairs

» The performance improvement, or speedup of a parallel application, is:

- Where Tp is the time to execute using P threads/processors

T,
speedup = Sp = —

Tp
* The efficiency of the program is:
) N T,
efficiency = A
P PTp

+ Here, T} can be:
- The parallel algorithm executed on one thread: relative speedup

- An equivalent serial algorithm: absolute speedup

+ The execution time (T;) of a program splits into:
- W, time spent doing (non-parallelisable) serial work

- W, time spent doing parallel work
+ Several factors appear as overhead in parallel computations and limit the speedup of the program

Woar
- Periods when not all processors are performing useful work Tp > Wser + _P
- Extra computations in the parallel version not appearing in the sequential version (example: recompute e
constants locally) « If f=————— is the fraction of serial work to be performed, we get the parallel speedup:

Wser + Wpar
1

Sp<—
f+a@=HIP

- Communication time between processes

* This is called Amdahl’s Law

T T T T T
4 8 12 16 20

Number of processors, p

auwiL

+ The speedup bound is determined by the degree of sequential execution in the program, not the number of » The serial fraction of the program limits the achievable speedup
processors
- Strong scaling (fixed-sized speedup): limp_,oo Sp < 1/f 20 - £=0%
= 16
=
P=1 P=2 P-4 P-8 ‘g 12
Serial work “E_ f=5%
EEEEEEN 3 87
Parallelizable work ‘§_ f=10%
4 f=20%

+ Often the problem size can increase as the number of processes increases

- The proportion of the serial part decreases

- Weak scaling (scaled speedup): S;, = f + (1 —f)P

Serial work

awi|

Task parallelism
Explicit threads
Synchronise via locks, messages, or STM
Modest parallelism

Hard to program

P=1 P=2 P=4 P=-8
Paraezabework| |I |III IIIII||I

[T [
Pl P2 P3
Data parallelism
Operate simultaneously on bulk data
Implicit synchronisation
Massive parallelism

Easy to program

Data parallelism, GPU programming

+ Despite the name, data parallelism is only a programming model
- The key is a single logical thread of control
- It does not actually require the operations to be executed in parallel!

- Today we'll look at a language for data-parallel programming on the GPU

+ Lots of interest to use them for non-graphics tasks

- Can have much higher performance than a traditional CPU

+ Specialised hardware with a specialised programming model
- Caches are software programmable; must be wary of associativity
- Memory management is explicit, with distinct memory spaces

- Thousands of threads running simultaneously, each of which can modify any piece of memory at any time

Performance

Effort

- Machine learning, bioinformatics, data science, weather & climate, medical imaging, computational chemistry, ...

Performance

Effort

T
_—/

Performance

//\ actual /

Effort

’ After expressing available parallelism, | often find that
the code has slowed down. ’
— Jeff Larkin, NVIDIA Developer Technology ’

o)
a‘l»?M e‘l@ed'e/

Performance
Performance

Effort Effort

17 https://devblogs.nvidia.com/getting-started-openacc/ 18

Accelerate

+ Two main difficulties:
I. Structuring the program in a way suitable for GPU parallelisation «—

2. Writing (performant) GPU code

» An embedded language for data-parallel arrays in Haskell
- Takes care of generating the high-performance CPU/GPU code for us
- Computations take place on dense multi-dimensional arrays

- Parallelism is introduced in the form of collective operations on arrays

Copy result back to Haskell

Haskell/Accelerate

program

Compile and run on
Reify and optimise the CPU/GPU

Accelerate program 0 |
Target code |
Y

+ In Haskell (lists):

import Prelude

dotp :: Num a
=> [a]
-> [al
-> a
dotp xs ys = foldl’ (+) 0 (zipWith (*) xs ys)

» Computations take place on arrays
- Parallelism is introduced in the form of collective operations over arrays

- map, zipWith, fold, scan (various kinds); permutations (data movement); etc.

- It is a restricted language: consists only of operations which can be executed efficiently in parallel

- Different types to distinguish parallel computations from scalar expressions

* In Accelerate:

import Data.Array.Accelerate

dotp :: Num a
=> Acc (Vector a)
-> Acc (Vector a)
-> Acc (Scalar a)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

* In Accelerate:

Dimensionality
import Data.Array.Accelerate

Element type
dotp :: Num a /——_—/ Int, Float, (a,b), Maybe a, etc.
=> Acc (Array DIM1 a)
-> Acc (Array DIM1 a)
-> Acc (Array DIMO a)
dotp xs ys = fold (+) 0 (zipWith (*) xs ys)

Scalar a = Array DIMO a = Array Z a
Vector a = Array DIM1 a = Array (Z :. Int) a
Matrix a = Array DIM2 a = Array (Z :. Int :. Int) a
Array DIM3 a = Array (Z :. Int :. Int :. Int) a

oo

25

+ Parallel computations take place on arrays
- A stratified language of parallel (Acc) and scalar (Exp) computations

- Parallel operations consist of many scalar expressions executed in parallel

» Compile and execute an Accelerate program

- The same program can be run on different targets
import Data.Array.Accelerate.Interpreter
-- import Data.Array.Accelerate.LLVM.Native
-- import Data.Array.Accelerate.LLVM.PTX

run :: Arrays a => Acc a -> a

runN :: Afunction f => f -> AfunctionR f

runN :: (..) => Acc a -> a

runN :: (..) => (Acc a -> Acc b) ->a ->b

runN :: (..) => (Acc a -> Acc b -> Acc ¢c) ->a ->b ->c

There’s also runQ, but don’t worry about that

» The map operation:

- A collective operation (Acc) which applies the given scalar function (Exp) to each element of the array in

parallel

- map (\x -> x+1) xs on a one-dimensional array of floats:

Acc

|
|
| int i = blockDim.x * blockIdx.x + threadIdx.x;
if (1< len) {

float x = d_xs[il;

d_ys[il] - X + 1;
}
' Exp

__global__ void map(float* d_xs, float d_ys, int len)

» The map operation:

- A collective operation (Acc) which applies the given scalar function (Exp) to each element of the array in

parallel

"an array index type" "an array element type"

map :: (Shape sh, Elt a, Elt b)

=> (Exp a -> Exp b)
-> Acc (Array sh a)
-> Acc (Array sh b)

+ Consider the following two types:
x :: (Exp Int, Exp Int)
y :: Exp (Int, Int)
- The first is a Haskell pair of embedded expressions on Int
- The second is an embedded expression returning a pair of Ints
+ How to convert between the two?

- The pattern synonym T2

- (legacy: the functions 1ift and unlift (not recommended))

» Accelerate is a language embedded in Haskell
- We reuse much of the syntax, but the semantics are different
« Strict evaluation, unboxed data, no general recursion...
- Actually, Acc and Exp are just data structures!
¢ Have a Show instance
* The Haskell program generates the Accelerate program
* The run operation performs runtime (cross) compilation

- But the integration has some oddities as well...

» We use pattern synonyms for constructing & destructing embedded tuples
- Can’t overload built-in syntax (,), (,,), etc.

- Instead we use T2, T3, etc. at both the Acc and Exp level

result :: Acc (Vector Int, Scalar Int)
result = ..

T2 idx tot = result
-- idx :: Acc (Vector Int)
-- tot :: Acc (Scalar Int)

res = T2 tot idx
-- res :: Acc (Scalar Int, Vector Int)

« Array shapes (& indices) are snoc-lists formed from Z and (: .)
- Zis a zero-dimensional (scalar)

- (:.) adds one inner-most dimension on the right

type DIM1 Z :. Int
type Vector a = Array DIM1 a

» More pattern synonyms for constructing & destructing indices

X :: Exp Int
I1 x :: Exp DIM1I -~ you'll need

+ Unfortunately guard syntax doesn’t work

- Use a regular if-then-else (chain) instead

Exp Int

+ Use the match operator to perform pattern matching in embedded code

- Also note the pattern synonyms for constructing/deconstructing cases

foo :: Exp (Maybe Int) -> Exp Int
foo x = x & match \case

Nothing_ -> 0

Just_y ->y + 1

this one

+ Can’t write recursive embedded functions directly
- Need to use an explicit (tail-recursive) looping combinator instead

- Continue applying the body function (second argument) as long as the predicate function (first argument)
returns true

awhile
: Arrays a
=> (Acc a -> Acc (Scalar Bool))
-> (Acc a -> Acc a)
-> Acc a
-> Acc a

35 36

+ Some trace functions for printf-style debugging
- Output a trace message as well as some arrays to the console before proceeding with the computation

- Useful for inspecting intermediate values
* More information in the documentation

atraceArray - https://ics.uu.nl/docs/vakken/b3cc/resources/acc-head-docs (latest version, used in the Quickhull template)

i: _E_Array‘s_ a, Arrays b) - https://hackage.haskell.org/package/accelerate (released version (older))
‘; AeXt < use "quotes”
- cc a

-> Acc b
-> Acc b

Quickhull

» Implementing a data-parallel program consists of two parts:
- What are the collective (parallel) operations that need to be done?

- What does each individual (sequential) thread need to do?

» An algorithm to determine the small polygon containing a set of points
- You will implement a data-parallel version of the algorithm in Accelerate

- See the specification for details

+ Create initial partition

- Choose two points that are definitely
on the convex hull

- Partition others to either side of that
line (above/left and below/right)

- Points of the same colour are in the
same segment

43

- The goal is to find the smallest polygon

* Initial points

containing all these points

- This is known as the convex hull

Recursively partition each segment

This is done for all points at once,
in data-parallel

The hollow circles are points no longer
under consideration

Orange circles are on the convex hull
Other colours are still undecided.

Same colours are in the same partition

44

Example

+ Continue partitioning each segment...

Photo by

Dzumothesamoyed

/o R —
° .
o © ~
o e
° 500 o
o
o
S . o oo °
o
° 2o °
o0 @
o © ° o o
© o o o o
co © o © 00 o
o o o ©
° o b 8 0 o
o 50 ° °
<3 0o
o 0. o
o] @ o © ° o
< |
° o
o ® Ro O 4
o o
8 ° o
° s o [} °% o
o o °

45

Example

o
°
=]
Y, o 00
°
© oo
o
° o
° o 20
© o, © ®q 4
o o o o
oo © o © ° °
.) . . o ° e B °g ;o °
* ... until no undecided points remain o, o° ® e °
‘ o o ° o9
o] @ o ©
<
o ° 5 ¥o ©
© ° o
° 8 o 0%,
o © o o
. o
. o ©
o
Traditional compiler construction
Environ-
= |__ments
s " S Tables
) 9 g £ 2 g o ~
& e S| Parsing Semantic | Z | Translate | & | Canon- | £ | Instruction | S
=l |2 S| Actions | S [Analysis | §| "™ S Sealize || Selection | 2
3 = 5 s 2 x = =
S I~ Z L - i =]
S < Frame /
A . //
/‘/
— =
v < & H 5 3 3
5 S = = 4
5[conot | S Daa |5] . § | 5
2| Flow S| Fow || Resister |2} Code 3| Assembler || Linker [
Z| Amalysis | = | Analysis £ Allocation | X Emission 2 2| N
' £ < 3 H 3 3
S & Z 2 s
=] - = -
=

FIGURE 1.1. Phases of a compiler, and interfaces between
them

Modern Compiler Implementation in Java, A. Appel and J. Palsberg

46

48

https://msm.runhello.com/p/1003

Parsing
Actions

L £ |

b
Tokens

Reductions

Abstract Syntax

Source Program

FIGURE 1.1. Phases of a compiler, and interfaces between
them

49

