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Announcement

• Mid-term exam next week


- Tuesday 19-12-2023 @ 13:00 – 15:00 in Olympos Hal 2

- Covers all the material up to and including STM

- Excluding Delta-stepping
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Announcement

• “Minder massaal” exam


- Only for students with permission

- Ruppert D, 13:00 - 15:00

- Room and time changed!
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Recap

4https://en.wikichip.org/wiki/amd/ryzen_7/1800x

Multi-core
NUMA: Non-uniform memory access

Out-of-order/
speculative execution

Accelerators

Increase IPCSMT

SIMD

Hide latency

Distributed

GPU/DPU/SmartNIC/FPGA/…

Multi-socket

Bluefield-2 DPU (8 core)

Ryzen 7 1800X CPU (8 core)

A100 GPU (6912 core)

Fugaku (158,976 x 48 core)



• Explicit threads


• Synchronise via locks, messages, or STM


• Modest parallelism


• Hard to program


• Operate simultaneously on bulk data


• Implicit synchronisation


• Massive parallelism


• Easy to program

Recap
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Task parallelism Data parallelism

Data parallelism

• Despite the name, data parallelism is only a programming model


- The key is a single logical thread of control

- It does not actually require the operations to be executed in parallel!

- Today: let’s look at how you would actually implement data-parallel operations, in parallel, on the GPU
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CPU vs. GPU

• Traditional CPU designs optimise for single-threaded performance


- Branch prediction, out-of-order execution, large caches, etc.

- Much of the available die area is dedicated to non-computation resources

- CPUs are designed to optimise latency of an individual thread's results

- Must be good at everything, parallel or not

7https://www.anandtech.com/show/16261/investigating-performance-of-multithreading-on-zen-3-and-amd-ryzen-5000

CPU vs. GPU

• GPUs are designed to accelerate graphics processing (rasterisation)


- This is an inherently data-parallel task

- GPUs are designed to maximise bandwidth: the time to process as single pixel is less important than the number 
of pixels processed per second

- Specialised for compute intensive, highly parallel computation
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CPU vs. GPU

• CPU


- Multiple tasks = multiple threads

- Tasks run different instructions

- 10s of complex threads execute on a few cores

- Threads managed explicitly

- Expensive to create & manage threads 

• GPU


- SIMD: single instruction, multiple data

- 10s of thousands of lightweight threads

- Threads are managed and scheduled by the 
hardware

- Cheap to create many threads
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CPU vs. GPU

• Horizontal parallelism: 
increase throughput


- More execution units 
working in parallel

• Vertical parallelism: 
hide latency


- Keep functional units busy 
when waiting for 
dependencies, memory, etc.

10https://en.wikipedia.org/wiki/IP_over_Avian_Carriers
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CPU vs. GPU

11https://en.wikichip.org/wiki/amd/microarchitectures/zen
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12NVIDIA GA102

Ampere GPU Architecture In-Depth 

 

NVIDIA Ampere GA102 GPU Architecture 10 

 

 
Figure 3. GA10x Streaming Multiprocessor (SM) 

2x FP32 Throughput 
In the Turing generation, each of the four SM processing blocks (also called partitions) had two 
primary datapaths, but only one of the two could process FP32 operations. The other datapath 
was limited to integer operations. GA10X includes FP32 processing on both datapaths, doubling 
the peak processing rate for FP32 operations. One datapath in each partition consists of 16 



GPU architecture

• The CPU spends a lot of resources to avoid latency


• The GPU instead uses parallelism to hide latency


- No branch prediction

- One task (kernel) at a time

- No context switching

- Limited super-scalar pipeline

- No out-of-order execution

- Very low clock speed
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GPU architecture

• Each GPU has…


- A number of streaming multiprocessors (comparable to CPU cores)

- Each core executes a number of warps (comparable to a CPU thread)

- Each warp consists of 32 “threads” that run in lockstep* (comparable to a single lane of a SIMD execution unit)

14*not so for Volta architecture and onwards… http://www.catb.org/jargon/html/W/wheel-of-reincarnation.html

GPU architecture

• Each streaming multiprocessor (SM) executes a number of warps


- The SM has a number of active threads (e.g. Ampere has up to 2048 per SM)

- The core will switch warps whenever there is a stall in execution (e.g. waiting for memory)

- Latency is thus hidden by having many active threads; this is only possible if you can feed the GPU enough work
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GPU architecture

• There are many similarities between the CPU and GPU


- Multiple cores

- A memory hierarchy

- SIMD vector instructions

• But there are also fundamental differences


- Each SM executes up to 64 warps, instead of two threads (with SMT2)

- The memory hierarchy is explicit on the GPU (software managed cache)

- CPU uses thread (SMTx) and instruction level parallelism to saturate ALUs

- GPU SIMD is implicit (SIMT model)
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Execution model

• The GPU is a co-processor controlled by a host program


- The host (CPU) and device (GPU) have separate memory spaces

- The host program controls data management on the device (allocation, transfer) as well as launching kernels
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Using cudaMemCpy() 

!  cudaMemcpy() invokes a DMA copy engine 
!  Minimize the number of copies 
!  Use data as long as possible in a given place 
!  PCIe gen2 peak bandwidth = 6 GB/s 
!  GPU load/store DRAM peak bandwidth = 150 GB/s 

SM
EM

)

SM
EM

)

SM
EM

)

SM
EM

)

Device Memory 
PCIe)

Bridge 

CPU 

Host 
Memory 

cudaMemcpy() 

Introduction to Parallel Computing, University of Oregon, IPCC 
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Hierarchy of Concurrent Threads 
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…

grid of thread blocks

• The GPU kernels execute multiple thread blocks over the SMs


- All threads execute the same sequential program

- Thread instructions are executed in logical SIMD groups (warps)
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Execution model
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Thread
registers,
per-thread

local memory

per-application
global memory
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per-block
shared

memory

Block

Programming model

• The CUDA (and OpenCL, Vulkan and Metal) programming model provides


- A thread abstraction to deal with SIMD

- Synchronisation and data sharing between small groups of threads (100s)

- A scalable programming model to deal with lots of threads (10,000s)

- A C-like language for device code

• The similarity is only superficial; it is heavily influenced by the underlying hardware model because people feel more 

comfortable if there are braces and semicolons ._.
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Programming model

• A GPU program consists of the kernel run on the GPU


- Kernels are functions which are executed n times in parallel by n different threads on the device

- Each thread executes the same sequential program

• We can not execute different code in parallel

• … together with a program on the CPU to launch the kernel and control GPU device operations

20



Kernels

• Example: element-wise add two vectors


- Sequential version:

- CUDA kernel:

21

5 6 7 8B …

1 2 3 4A …

++ + +

void vector_add( float* A, float* B, float* C, int n ) 
{ 
   for ( int i = 0; i < n; ++i ) { 
      C[i] = A[i] + B[i]; 
   } 
}

__global__ void vector_add( float* A, float* B, float* C, int n ) 
{ 
   int i = blockDim.x * blockIdx.x + threadIdx.x; 
   if ( i < n ) { 
      C[i] = A[i] + B[i]; 
   } 
}

Threads

• A kernel consists of multiple copies of the code executed in parallel


- Each thread has its own registers

- Each warp or each thread has its own program counter*

- The order in which threads are executed is not specified

• Threads are very fine-grained


- Launching threads on the GPU is cheap compared to on the CPU

22* Pre-Volta there is one PC per warp; post-Volta each thread has its own PC

Threads

• Threads execute in a single-instruction multiple-thread model (SIMT)


- In a SIMD model the vector width is explicit

- In SIMT this is left unspecified

- Greatly simplifies the programming model

23

1 2 3 4A

5 6 7 8B

+

__m128 a = _mm_set_ps(4, 3, 2, 1); 
__m128 b = _mm_set_ps(8, 7, 6, 5); 
__m128 c = _mm_add_ps(a, b)

SIMD SIMT

1 2 3 4A

B 5 6 7 8

+ + + +

__global__ void vector_add(...) { 
	 // as before 
}

Threads

• Threads execute in a single-instruction multiple-thread (SIMT) model


- Understanding how this is mapped to the underlying hardware is important

- In CUDA threads execute in groups of 32 called a warp

- This is the logical vector width

• Performance considerations


- Threads in a warp share the same program counter

- Good code will try to keep all threads convergent within a warp

24



Threads

• The scalar (kernel) code is mapped onto the hardware SIMD execution


- Hardware handles control flow divergence and convergence

- Divergent control flow between warp threads is handled via an active mask

25

if ( threadIdx.x < 8 ) { 
  for ( int i = 0; i < threadIdx.x; ++i ) { 
    // ... 
  } 
} 
else 
{ 
  if ( answer == 42 ) { 
    // ... 
  } 
  else { 
    // ... 
  } 
}

Threads

• Divergent control flow is handled by predicated execution


- At each cycle all threads in a warp must execute the same instruction

- Conditional code is handled by temporarily disabling threads for which the condition is not true (alternatively; 
false)

- If-then-else blocks are sequentially executing the ‘if ’ and ‘else’ branches

• The GPU is therefore a very wide vector processor

26

Threads

• Divergent control flow is handled by predicated execution


- Can lead to subtle deadlocks…

- Consider the canonical implementation of a spin-lock (for the CPU):

27

do { 
    old = atomic_exchange(&lock[i], 1); 
} while (old == 1); 

/* critical section */ 

atomic_exchange(&lock[i], 0);

Threads

• Benefits of SIMT vs. SIMD


- Similar to regular scalar code, easier to read and write

• Drawbacks of SIMT vs. SIMD


- The (logical) vector width is always 32, regardless of the data size

- Scattered memory access and control flow are not discouraged

28



Thread hierarchy

• Parallel kernels are composed of many threads


- Executing the same sequential program

- Each thread has a unique identifier

• Threads are grouped into blocks


- Threads in the same block can cooperate

• A grid of thread blocks is the collection of 
threads which will execute a given kernel


- Thread blocks will be scheduled onto 
the SMs of the GPU for execution

29

Thread hierarchy

• Individual threads are grouped into thread blocks


- Each thread block constitutes an independent data-parallel task

- Threads in the same block can cooperate and synchronise with each other

- Threads in different thread blocks can not cooperate

- The program must be valid for any interleaving of thread blocks

• This independence requirement ensures scalability

30

Thread hierarchy

• Each thread block is mapped onto a SM of the GPU to be executed


- The hardware is free to assign blocks to any processor (SM) at any time

- A kernel scales across any number of parallel processors

- Each block executes in any order relative to other blocks

31Lecture 17 – Manycore Computing and GPUs 

Transparent Scalability 
!  Hardware is free to assigns blocks to any processor 

at any time 
� A kernel scales across any number of parallel 

processors 
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Thread hierarchy

• Each GPU thread is individually very weak


- Hardware multithreading is required to hide latency

- This means that performance depends on the number of thread blocks which can be allocated onto each SM

- This is limited by the set of registers and shared memory on the SM which are shared between all threads 
executing on that processor

• Therefore, per-thread resource usage costs performance


- More registers => fewer thread blocks

- More shared (local) memory usage => fewer thread blocks

32



Occupancy

• The multiprocessor occupancy is the number of kernel threads which can run simultaneously on each SM, 
compared to the maximum possible


- Example: Constants for Turing architecture (RTX 2080 and similar)

• Simultaneous thread blocks (B) ≤ 16

• Warps per thread block (T) ≤ 32

• Maximum resident warps: B × T ≤ 32

• 32-bit registers per thread: B × T × 32 ≤ 65536

• Shared memory per block (bytes) × B ≤ 65536*

• Occupancy: B × T / 48

33

Thread blocks

• Threads in a thread block can communicate and synchronise


- Example: reverse a vector

- Question: Does this work?

34

__global__ void reverse( float* arr, int n ) 
{ 
    __shared__ float tmp[blockDim.x]; 
    int gid = blockDim.x * blockIdx.x + threadIdx.x; 

    if ( gid < n ) 
    { 
        tmp[threadIdx.x] = arr[gid]; 
        __syncthreads(); 
        arr[n - gid - 1] = tmp[blockDim.x - threadIdx.x - 1]; 
    } 
}

Memory hierarchy

• A many-core processor is a device for turning a compute 
bound problem into a memory bound problem


- Lots of processors (ALUs)

- Memory concerns dominate performance tuning

- Only global memory is persistent across kernel launches

35

Memory hierarchy

• Global memory is accessed in 32-, 64-, or 128-byte transactions


- Similar to how a CPU reads a cache line at a time

- The GPU has a "coalescer" which examines the memory requests from threads in the warp, and issues one or 
more global memory transactions

• To use bandwidth effectively, threads should read/write in dense blocks

36



GPGPU

• A typical GPU program


1. Set up input data on the CPU

2. Transfer input data to the GPU

3. Operate on the data

4. Transfer results back to the CPU

5. …

6. profit

37

Summary

• GPU excels at executing many parallel threads


- Scalable parallel execution

- High bandwidth parallel memory access

• CPU excels at executing a few serial threads


- Fast sequential execution

- Low latency cached memory access
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Summary

• GPUs excel when…


- The calculation is data-parallel and the control-flow is regular

- The calculation is large (compute/memory bound)

• CPUs excel when…


- The calculation is largely serial and the control-flow is irregular

- The programmer is lazy

39 Photo by Ramiz Dedaković
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Extra slides

• NVIDIA programming guides


• Intel intrinsics guide
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