B3CC: Concurrency
09: GPGPU

%’% Ui Unversiy ANNOUNCEMenNt

+ Mid-term exam next week

Ivo Gabe de Wolff

Annhouncement

* “Minder massaal” exam
- Only for students with permission
- Ruppert D, 13:00 - 15:00

- Room and time changed!

- Tuesday 19-12-2023 @ 13:00 — |

5:00 in Olympos Hal 2

- Covers all the material up to and including STM
- Excluding Delta-stepping
Recap
A

Distributed

Accelerators

Multi-core
Multi-socket

Out-of-order/
speculative execution

SMT

SIMD
v

3 https://en.wikichip.org/wiki/amd/ryzen 7/1800x

GPU/DPU/SmartNIC/FPGA/...

NUMA: Non-uniform memory access
Bluefield-2 DPU (8 vt 00 GPY (6912 core)

Hide latency

Increase IPC

Ryzen 7 I80 ‘ (8 core) ]



+ Traditional CPU designs optimise for single-threaded performance

https://www.anandtech.com/show/16261/investigating-performance-of-multithreading-on-zen-3-and-amd-ryzen-5000 7

» Despite the name, data parallelism is only a programming model

Task parallelism Data parallelism - The key is a single logical thread of control
Explicit threads + Operate simultaneously on bulk data - It does not actually require the operations to be executed in parallel!
Synchronise via locks, messages, or STM « Implicit synchronisation - Today: let’s look at how you would actually implement data-parallel operations, in parallel, on the GPU
Modest parallelism * Massive parallelism
Hard to program - Easy to program
s 6

» GPUs are designed to accelerate graphics processing (rasterisation)

- Branch prediction, out-of-order execution, large caches, etc. - This is an inherently data-parallel task

- Much of the available die area is dedicated to non-computation resources - GPUs are designed to maximise bandwidth: the time to process as single pixel is less important than the number

- CPUs are designed to optimise latency of an individual thread's results of pixels processed per second

- Must be good at everything, parallel or not - Specialised for compute intensive, highly parallel computation




CPU vs. GPU

+ CPU

- Multiple tasks = multiple threads
- Tasks run different instructions

- 10s of complex threads execute on a few cores

- Threads managed explicitly

- Expensive to create & manage threads

CPU vs. GPU

https://en.wikichip.org/wiki/amd/microarchitectures/zen

+ GPU

- SIMD: single instruction, multiple data
- 10s of thousands of lightweight threads

Threads are managed and scheduled by the

hardware

Cheap to create many threads

Front End

awWis/dd

apes 71

fem-g avizTS

CPU vs. GPU

» Image we need to perform
some operation that takes 4
units of time (clock cycles),
on values A, B, C and D.

A

to.t3  t.tz ts.ti ti.tis

https://en.wikipedia.org/wiki/IP_over Avian Carriers

CPU vs. GPU

NVIDIA GA102

+ Horizontal parallelism: A
increase throughput
- Morlj ex<?cut|onllur|ts 0.4 oty
working In paralie -
ene throughput

+ Vertical parallelism: Stage |
hide latency Stage 2

latency

- Keep functional units busy  Stage 3
when waiting for
dependencies, memory, etc.

TENSOR TENSOR
FP32 v FP32 =
3rd Gen

TENSOR TENSOR
FP32 Core] FP32 CORE



» The CPU spends a lot of resources to avoid latency
» The GPU instead uses parallelism to hide latency

- No branch prediction

- One task (kernel) at a time

- No context switching

- Limited super-scalar pipeline

- No out-of-order execution

- Very low clock speed

+ Each streaming multiprocessor (SM) executes a number of warps
- The SM has a number of active threads (e.g. Ampere has up to 2048 per SM)
- The core will switch warps whenever there is a stall in execution (e.g. waiting for memory)

- Latency is thus hidden by having many active threads; this is only possible if you can feed the GPU enough work

13

+ Each GPU has...

- A number of streaming multiprocessors (comparable to CPU cores)
- Each core executes a number of warps (comparable to a CPU thread)

- Each warp consists of 32 “threads” that run in lockstep™ (comparable to a single lane of a SIMD execution unit)

*not so for Volta architecture and onwards. .. http://www.catb.org/jargon/html/W/wheel-of-reincarnation.html 14

+ There are many similarities between the CPU and GPU

- Multiple cores

- A memory hierarchy

- SIMD vector instructions

But there are also fundamental differences

- Each SM executes up to 64 warps, instead of two threads (with SMT2)

- The memory hierarchy is explicit on the GPU (software managed cache)

- CPU uses thread (SMTx) and instruction level parallelism to saturate ALUs

- GPU SIMD is implicit (SIMT model)



Execution model

» The GPU is a co-processor controlled by a host program
- The host (CPU) and device (GPU) have separate memory spaces

- The host program controls data management on the device (allocation, transfer) as well as launching kernels

grid of thread blocks

host thread

Device Memory

Programming model

» The CUDA (and OpenCL, Vulkan and Metal) programming model provides
- A thread abstraction to deal with SIMD
- Synchronisation and data sharing between small groups of threads (100s)
- A scalable programming model to deal with lots of threads (10,000s)
- A C-like language for device code

* The similarity is only superficial; it is heavily influenced by the underlying hardware model because pecple feel more

comfortable if there are braces and semicolons

Execution model

» The GPU kernels execute multiple thread blocks over the SMs
- All threads execute the same sequential program

- Thread instructions are executed in logical SIMD groups (warps)

Block
Thread

registers, perile — per-application
shared P— —
per-thread P P — global memory

local memory

Device Memory

Programming model

+ A GPU program consists of the kernel run on the GPU
- Kernels are functions which are executed # times in parallel by » different threads on the device
- Each thread executes the same sequential program
* We can not execute different code in parallel

+ ... together with a program on the CPU to launch the kernel and control GPU device operations

20



A
» Example: element-wise add two vectors

- Sequential version: B

+ o+ o+ o+

void vector_add( floatx A, float* B, float* C, int n )

{
for (int i =0; i <n; ++i ) {
C[i] = A[i] + B[i];
}
}
- CUDA kernel:
__global__ void vector_add( floatx A, floatx B, floatx C, int n )
{
int 1 = blockDim.x * blockIdx.x + threadIdx.x;
if (i<n){
C[i] = A[i] + B[il;
}
}

» Threads execute in a single-instruction multiple-thread model (SIMT)
- In a SIMD model the vector width is explicit
- In SIMT this is left unspecified

- Greatly simplifies the programming model

SIMD SIMT
guBnan -EEEH
o [slel]e] d 511

_mi28 a = _mm_set_ps(4, 3, 2, 1);
_m128 b = _mm_set_ps(8, 7, 6, 5);
_m128 ¢ = _mm_add_ps(a, b) }

__global__ void vector_add(...) {
// as before

» A kernel consists of multiple copies of the code executed in parallel
- Each thread has its own registers
- Each warp or each thread has its own program counter®
- The order in which threads are executed is not specified

* Threads are very fine-grained

- Launching threads on the GPU is cheap compared to on the CPU

* Pre-Volta there is one PC per warp; post-Volta each thread has its own PC 22

+ Threads execute in a single-instruction multiple-thread (SIMT) model
- Understanding how this is mapped to the underlying hardware is important
- In CUDA threads execute in groups of 32 called a warp
- This is the logical vector width
+ Performance considerations
- Threads in a warp share the same program counter

- Good code will try to keep all threads convergent within a warp



» The scalar (kernel) code is mapped onto the hardware SIMD execution
- Hardware handles control flow divergence and convergence
- Divergent control flow between warp threads is handled via an active mask

if ( threadIdx.x < 8 ) {
for (int 1 = 0; i < threadIdx.x; +1i ) {
//
}
}
else
{
if ( answer = 42 ) {
//
}
else {
//
}

« Divergent control flow is handled by predicated execution
- Can lead to subtle deadlocks...

- Consider the canonical implementation of a spin-lock (for the CPU):

do {
old = atomic_exchange(&lock[i], 1);
} while (old = 1);

/* critical section */

atomic_exchange(&lock[i], 0);

+ Divergent control flow is handled by predicated execution
- At each cycle all threads in a warp must execute the same instruction

- Conditional code is handled by temporarily disabling threads for which the condition is not true (alternatively;
false)

- If-then-else blocks are sequentially executing the ‘if’ and ‘else’ branches

» The GPU is therefore a very wide vector processor

+ Benefits of SIMT vs. SIMD
- Similar to regular scalar code, easier to read and write
+ Drawbacks of SIMT vs. SIMD
- The (logical) vector width is always 32, regardless of the data size

- Scattered memory access and control flow are not discouraged



+ Parallel kernels are composed of many threads
- Executing the same sequential program
- Each thread has a unique identifier

+» Threads are grouped into blocks
- Threads in the same block can cooperate

+ A grid of thread blocks is the collection of
threads which will execute a given kernel

- Thread blocks will be scheduled onto
the SMs of the GPU for execution

» Each thread block is mapped onto a SM of the GPU to be executed

- The hardware is free to assign blocks to any processor (SM) at any time

- A kernel scales across any number of parallel processors

- Each block executes in any order relative to other blocks

Kernel grid

[ e -,
ok skt

time _

Device

+ Individual threads are grouped into thread blocks
- Each thread block constitutes an independent data-parallel task
- Threads in the same block can cooperate and synchronise with each other
- Threads in different thread blocks can not cooperate
- The program must be valid for any interleaving of thread blocks

+ This independence requirement ensures scalability

+ Each GPU thread is individually very weak
- Hardware multithreading is required to hide latency
- This means that performance depends on the number of thread blocks which can be allocated onto each SM

- This is limited by the set of registers and shared memory on the SM which are shared between all threads
executing on that processor

» Therefore, per-thread resource usage costs performance

- More registers = fewer thread blocks

- More shared (local) memory usage = fewer thread blocks




+ The multiprocessor occupancy is the number of kernel threads which can run simultaneously on each SM,

» Threads in a thread block can communicate and synchronise

- Example: reverse a vector
compared to the maximum possible >amp v veete
- tion: Does thi k?
- Example: Constants for Turing architecture (RTX 2080 and similar) Question: Does this wor
_ global__ void reverse( floatx arr, int n )
* Simultaneous thread blocks (B) < 16 {
__shared__ float tmp[blockDim.x];
* Warps per thread block (T) < 32

int gid = blockDim.x * blockIdx.x + threadIdx.x;

¢ Maximum resident warps:B x T < 32 if (gid < n)

tmp[blockDim.x - threadIdx.x - 1];

{

* 32-bit registers per thread: B x T x 32 < 65536 tmp[threadIdx.x] = arr[gid];
__syncthreads();
* Shared memory per block (bytes) x B < 65536* -
}
e Occupancy:B xT /48 }
33
» A many-core processor is a device for turning a compute Thegad + Global memory is accessed in 32-, 64-, or 128-byte transactions
bound problem into a memory bound problem $ =

- Similar to how a CPU reads a cache line at a time
- Lots of processors (ALUs)

- Memory concerns dominate performance tuning more global memory transactions

- Only global memory is persistent across kernel launches

addresses from a warp

Wit |

0 32 64 96 128 160 192 224 256 288 320 352 384

77

0 32 64 96 128 160 192 224 256 288 320 352 384

- The GPU has a "coalescer" which examines the memory requests from threads in the warp, and issues one or

+ To use bandwidth effectively, threads should read/write in dense blocks

H

&

Bandwidth (GB/5)

g

Copy with Stride (Tesla M2090 - ECC on)

—Caching

—Non-caching

. B 5 2 8

1357 9 UBISTIABsT BN
Stride




GPGPU

* A typical GPU program
I. Set up input data on the CPU
2. Transfer input data to the GPU
3. Operate on the data

4. Transfer results back to the CPU

| oass oaus o2ss ozss

027 028 0295 03s 0318

5 ... 5 Pocees - 100
& s 4106330000
over 71 [T covencoro 1 100 0 AT 1
& Theaddos1aE7eaa
6. profit orver AP - 1 ] Il
SR
orver A% 1 [ 1
i Ovaesd
& 101 Gebrce X 20807
= Context 1 (CUDA)
7 wancey o0, | T
7 MemCpy (OtoH) | 1 | I
I - - - B

# Compute

# Streams

1T —— |

Summary

+ GPUs excel when...
- The calculation is data-parallel and the control-flow is regular
- The calculation is large (compute/memory bound)
+ CPUs excel when...
- The calculation is largely serial and the control-flow is irregular

- The programmer is lazy

37

39

Summary

» GPU excels at executing many parallel threads
- Scalable parallel execution
- High bandwidth parallel memory access

» CPU excels at executing a few serial threads
- Fast sequential execution

- Low latency cached memory access

Photo by Ramiz

38




» NVIDIA programmin i

» Intel intrinsics guide

41



