
Department of Information and Computer Science
Utrecht University

INFOB3CC: Accelerate (solutions)

Trevor L. McDonell

January 9, 2022

Introduction
Since it is the first week back after the break and we haven’t covered any new theory yet, these are just some
extra practical questions to get you familiar with the Accelerate, which you will use for the third practical.

Questions
1. Why does the Accelerate library make a distinction between Acc and Exp? How does this correspond to

GPU programming in a language such as CUDA or OpenCL?

Solution: In Accelerate Acc is a parallel computation, and corresponds to a kernel function in
CUDA or OpenCL which is executed in the GPU. The Exp sub-language corresponds to the code
which each individual GPU thread executes in parallel.

2. The Mandelbrot set is generated by sampling complex numbers c in the complex plane and determining
whether under iteration of the polynomial:

zn+1 = c+ z2n

that the magnitude of zn remains bounded however large n gets.
(a) Follow this tutorial to implement a Mandelbrot set generator in Accelerate:

https://www.acceleratehs.org/examples/mandelbrot.html
Note: As explained in the Accelerate documentation as well, lift and unlift are very general
functions that you need in specific situations, but require you to be very clear to the compiler about
what types things has (and if you’re not quite clear enough, you will get difficult-to-understand
type errors). To combat this difficulty, pattern synonyms such as T2, I1, etc. were defined, which
work more conveniently and give you better type errors when you make a mistake.
The tutorial was written before the implementation of T2, I1, etc. in Accelerate. As such, it still
uses lift and unlift to convert back and forth between e.g. Exp (Z :. Int) and Exp Int. In
modern Accelerate code, as long as you’re not defining your own data types (in this Mandelbrot
tutorial, as well as in the Quickhull practical, you aren’t), you should be able to program without
using lift and unlift at all.
In particular, instead of (unlift -> x :+ y), use (x ::+ y) (search for “pattern (::+)” in the
documentation for the Data.Array.Accelerate.Data.Complex module). And instead of lift (x
:+ y), use x ::+ y. Similarly, instead of (unlift -> Z :. i :. j), use (I2 i j), etc.

(b) What are the problems with executing this kind of program on the GPU?

https://www.acceleratehs.org/examples/mandelbrot.html


Concurrency January 9, 2022

Solution: As with GPU programming in CUDA or OpenCL, each parallel operation (Acc)
in Accelerate consists of many threads (Exp) executing in data-parallel. This means that the
same considerations for parallel GPU code exist in Accelerate code. In this case, each thread
might take a different number of iterations before deciding that point is in the set or not. On a
device such as the GPU where the individual threads are mapped onto SIMD hardware where
predicated execution is used to disable the SIMD lanes which do not all take the same branch,
part of the hardware will thus not be used. This is known as warp divergence.


