
Exercises - Greedy - Algoritmiek
Tutorial 22 February 2022

1. Pancakes (part 1): You have bought a Pancakebot, a ‘printer’ for pancakes. Your idea is to
use it to put on children’s parties. There are n potential children’s parties you can bring your
Pancakebot to, where party i has a fixed start time s(i) and end time e(i). Because you have only
one Pancakebot, you have to select a subset of the parties to go to. Each party has the same profit,
100 euros. Which parties do you select to earn as much money as possible?
We consider several strategies by which to select the parties. Each strategy proposes a rule to select
a party; after a party is selected, we remove all parties that overlap in time with the selected party
(i.e. that are not compatible) and re-apply the rule until no longer possible. This always yields a
feasible solution.

(a) Consider a strategy where you always select a party that starts earliest, that is, with the
minimal start time s(i). Give an example that shows that following this strategy might yield
a sub-optimal solution.

(b) Consider instead a strategy where you always select a party of shortest duration, that is, with
minimal e(i) − s(i). Give an example that shows that following this strategy might yield a
sub-optimal solution.

(c) Consider now a strategy where you always select a party that ends earliest, that is, with the
earliest ending time e(i). Use an exchange argument to argue that this strategy yields an
optimal solution.
Hint: consider an optimal solution that has the most parties in common with the greedy
solution.

(d) As an alternative argument, use induction to prove that greedy always “stays ahead”. That
is, e(Gi) ≤ e(Oi) for all 1 ≤ i ≤ k, where G1, . . . , Gk are the greedily selected parties and
O1, . . . , O` is an optimal solution. Then show that k = `.

Solution:

(a) A single, very long party that starts earliest and overlaps many short parties.

(b) Two long, non-overlapping parties, and a single short party that overlaps the end time of the
first and the start time of the second.

(c) Let G1, . . . , G` the parties selected by the greedy strategy and let O1, . . . , Ok be the parties
selected by an optimum solution, both numbered by increasing end time (so e(Oi) < e(Oi+1)
for all 1 ≤ i < k and e(Gj) < e(Gj+1) for all 1 ≤ j < `. Suppose the optimum solution has
been selected such that it has the most parties that greedy also selected, so |{G1, . . . , G`} ∩
{O1, . . . , Ok}| is maximum.
Suppose they are different and let i be the first index where they differ. By the definition of
i, s(Oi) ≥ e(Oi−1) and s(Gi) ≥ e(Gi−1) = e(Oi−1). By the choices of greedy, e(Gi) ≤ e(Oi).
Hence, we can replace Oi by Gi and obtain a valid solution without overlaps. Also note that
e(Gi) ≤ e(Oi) < e(Oi+1) < · · · < e(Ok) and thus Gi is not one of Oi+1, . . . , Ok. Hence,
O1, . . . , Oi−1, Gi, Oi+1, . . . , Ok is also an optimum solution (the same number of parties). It
has one more party in common with greedy, a contradiction.

(d) Base: i = 1, follows by definition of the greedy strategy. IH: it holds for all j < i. Step:
since e(Gj) ≤ e(Oj) for all j < i and e(Oi−1) < e(Oi), Oi is available to the greedy strategy
after selecting G1, . . . , Gi−1. Then e(Gi) ≤ e(Oi) by definition. Note that ` ≤ k by definition.
Suppose ` < k. As in the previous argument, Ok is available to the greedy strategy after
selecting G1, . . . , G`, a contradiction that G was constructed greedily.

2. Pancakes (part 2): Your idea to make pancakes using the Pancakebot is a great success! You
decide to change your earnings model. For exactly 1 hour at party i, you ask an amount of ki
euros. Party i still has starting time si, which is guaranteed to be an integer. The duration is
1 hour, so the ending time of party i is si + 1. Which parties do you go to to make as much money
as possible.

(a) Give an optimal greedy strategy and prove the greedy choice property using an exchange
argument (uitwisselargument).

(b) Suppose there are n parties and 1 ≤ si ≤ n. Give an algorithm to compute an optimal solution
with running time O(n).

Solution:

(a) For every start time, pick the party with maximum ki. In an optimal solution, we can always
replace the chosen party with the party chosen by the greedy solution.

(b) Use bucket sort and pick the maximum ki in every bucket.

3. Lampposts: A long road has n houses, where house i has distance si from the start (you may
assume the houses are sorted by distance, i < j ⇒ si ≤ sj). The city has decided to place
lampposts along the road such that each house has a lamppost within distance M .
Example: If s is: 340, 670, 1200, 1600, 2400, 2710 and M = 500, then three lampposts suffice, for
example on positions 500, 1500, 2400.
Give a greedy algorithm that computes in linear time the minimum number of lampposts needed.
Prove the greedy choice property.

Solution: The last house needs to be lit. You can place the lamppost at distance M , so at sn−M .
Then we can prove that we always stay ahead. So if gm, . . . , g1 is a placement of the lampposts
by greedy and ok, . . . , o1 is the placement of the optimum (here g1 and o1 are the last lampposts
placed), then we can prove that gi ≤ oi for all i. Use induction. The base case is clear by the
choice of g1. Also, all houses after g1 −M and o1 −M are covered by greedy resp. optimum. IH:
gi−1 ≤ oi−1 and all houses after gi−1 −M and oi−1 −M are covered by greedy resp. optimum.
Note that gi−1 −M ≤ oi−1 −M , so the first house left uncovered by greedy is at least as far to
the left as the first house left uncovered by optimum. Then greedy can place the next lamppost at
least as far to the left as the optimum, so gi ≤ oi. Also, all houses after gi −M and oi −M are
covered by greedy resp. optimum.
The algorithm now considers sn, places a lamp at sn −M , and then moves back to the largest i
such that si < sn −M , etc. Since the positions are sorted, this takes O(n) time.

4. Bicycle rental: A rental shop has n bicycles. The height of bicycle j is fj . De rental shop can
rent all bikes to a group of n people. The height of person i is pi. Because everyone likes to have a
fitting bike, we calculate a mismatch of |fj − pi| if person i rides bike j. Give a greedy algorithm
that gives a bike to each person, while minimizing the sum of mismatches. Prove the greedy choice
property! The running time of your algorithm should be O(n log n).

Solution: The greedy strategy is to give the tallest person the tallest bike. Suppose the bikes are
sorted f1 ≤ · · · ≤ fn. Consider greedy versus an optimum solution, and let b be the last bike for
which they have different assignments. Say the optimum puts person o on b and greedy puts person
g (1 ≤ o, g ≤ n). Note that pg ≥ po. Let a be the bike assigned to g in the optimum. Note that
fa ≤ fb. Then the current mismatch in the optimum for these two people is |po − fb| + |pg − fa|.
However, by the aforementioned inequalities,

|po − fb|+ |pg − fa| ≥ |po − fa|+ |pg − fb|.

Hence, we can swap without increasing the sum of mismatches. Therefore, there exists an optimal
solution that follows the greedy strategy.
For the algorithm, sort the bicycles and people by height. Then the assignment is straightforward.
O(n log n) time.

5. Fibonacci-Huffman: Give an optimal Huffman-code for {a, b, c, d, e, f, g, h}, where the relative
frequencies are as the Fibonacci-numbers:

σ a b c d e f g h
f(σ) 1 1 2 3 5 8 13 21

Solution: In this case, when applying Huffman’s algorithm, any newly formed node after k steps
always receives a frequency equal to the sum of the k+ 1 lowest Fibonacci numbers (so the sum of

the first k + 1 letters). This is because
∑k+1

i=1 F (i) = F (k + 3) − 1 < F (k + 3). Then h=0, g=10,
f=110, e=1110, d=11110, c=111110, b=1111110, a=1111111.

