
Exercises - Dynamic Programming 1 - Algoritmiek
Tutorial February 13, 2024

1. Basic knowledge:

(a) Explain in your own words what memoization is.

(b) What is the difference between memoization and a “classical DP”?

Solution: Answers are in the slides.

2. Exact Change: Alternate and Constructive: In the previous tutorial, you developed an
alternate recurrence for the Exact Change problem. Let’s revisit this problem.

(a) Give pseudo-code for a dynamic program using this recurrence, and analyze its running
time.

(b) Your algorithm probably uses O(nb) space. Explain how you would save space so that
you only use O(b) space.

(c) Consider again the original algorithm, which uses O(nb) space. Explain how to find an
optimal solution (an optimal set of coins to pay).

(d) Hard question: Can you combine saving space and finding the solution in a single algo-
rithm? Explain your answer.

Solution:

(a) Array P[1. . . r,0. . . b]. All elements initialized to ∞.
for i = 1 to r {
P[i,0] = 0 }
for c = 1 to b {
if a1 is a divisor of c then P[1,c] = c/a1 else P[1,c] = ∞ }
for i = 2 to r {
for c = 1 to b {
for k = 0 to c/ai {
P[i,c] = min{ P[i,c], k+P[i-1,c− kai] }
} } }
return P[r,b]
Do not forget the base cases and the return value!
Running time. The first for-loop takes O(r) time. The second for-loop takes O(b) time.
The third, nested, for-loops, by using conservative estimates, take O(rbmaxri=1{b/ai}) =
O(rb2) time. Hence, the total running time is O(rb2).
Compare this to the O(rb) time algorithm discussed in class!

(b) Observe that the algorithm only considers elements from the previous row. Hence, it
suffices to maintain two rows: the current one and the previous one. Each row has b
elements, so O(b) space.

(c) Starting from P [r, b], consider how the minimum is achieved. Suppose you consider
P [i, c] for some i and c. Determine the value of the integer k (0 ≤ k ≤ c/ai) for
which P [i, c] = k + P [i − 1, c − kai]. Then pay out k coins of value ai and continue by
inspecting P [i− 1, c− kai]. Stop when i reaches 0 or c reaches 0. This approach can be
implemented using a recursive algorithm or (preferably) using a simple while-loop (write
down pseudocode to test yourself!)

(d) Using just the two rows of the table, as in the solution for part (a), and the order of filling
the table (enumerate all i first, then all b), this seems difficult. However, the solution
explained during the lecture uses O(b) space and can be modified to yield a solution.
So we can take a hint from there and change the order of filling the table, fixing c first.
Consider the following implementation:
Array Q[0. . . b]. All elements initialized to ∞.
Array P[0. . . b]. All elements initialized to ∞.
Array R[0. . . b]. All elements initialized to ∞.
Q[0] = 0
for c = 1 to b {
for i = i to r {
for k = 0 to c/ai {
P[c] = Math.min{ P[c], k+R[c− kai] }
}
Copy P into R
}
Q[c] = P[c]
}
return Q[b]
Observe that we fill the table for a particular value of c first. Again, note that we only
need the previous row, as in (a), and that the table Q gives us enough information to
retrieve the solution. Observe that the separate arrays P and R are superfluous, and it
suffices to just use Q.
Array Q[0. . . b]. All elements initialized to ∞.
Q[0] = 0
for c = 1 to b {
for i = 1 to r {
for k = 0 to c/ai {
Q[c] = Math.min{ Q[c], k+Q[c− kai] }
} }
}
return Q[b]

3. Windmills: constructive: In the previous tutorial, you developed a recurrence to solve the
windmills problem.

(a) Give a dynamic program for your recurrence and analyze its running time.

(b) Explain how to find an optimal solution (an optimal set of positions for the windmills,
such that they are at least K apart).

Solution:

(a) Array P[1. . . n]
P[1] = e1
for i=2 to n {
P[i] = max { P[i-1], ei + P[i-K] }
}
return P [n]
Don’t forget the return value.
Running time. Clearly O(n).

Alternative
Array P[1. . . n]
for i = 1 to K {
P[i] = ei }
for i=K+1 to n {
for j=1 to i-K {
P[i] = max { P[i], ei + P[j] }
} }
ret = −∞
for i=n to n-K+1 {
ret = max { ret, P[i] } }
return ret
Don’t forget the return value.
Running time. The first for-loop requires O(K) = O(n) time. The second, nested for-
loop takes O(n2) time by a conservative estimate. The last for-loop takes O(K) = O(n)
time. The total running time is O(n2). By being more precise in the implementation
and estimates, the running time can be brought down to O(nK).

(b) Starting from P [n], consider how the maximum is achieved. Suppose you consider P [i].
If P [i] = ei + P [i − K], then a windmill is placed at i, no windmills are placed at
i−1, . . . , i−K+1, and you continue by inspecting P [i−K]. Otherwise, P [i] = P [i−1],
then no windmill is placed at i and you continue by inspecting P [i − 1]. Stop when i
reaches below 1. This can be implemented using a recursive algorithm or (preferably)
using a simple while-loop (write down pseudocode to test yourself!).

4. Mister Animal (revisited): Consider Mister Animal and the recurrence that you developed
for this problem in the previous tutorial.

(a) Give a dynamic program for your recurrence.

(b) Analyze the running time and memory space usage of your algorithm.

(c) Explain how to find a solution (a way to spend exactly B dollars).

(d) Can you save memory space? If so, explain how.

Solution:

(a) i. Array S[0 . . . i, 0 . . . D], initialized to false
S[0,0] = true
for D=1 to B {
S[0,D] = false
}
for i=1 to n {
for D=1 to B {
if vi > D then S[i,D] = S[i-1,D]
else S[i,D] = S[i-1,D − vi] or S[i-1,D]
} }
return S[n,D]

(b) The running time and space usage are both O(nB).

(c) Trace back from S[n,B]. Suppose you consider S[i,D]. If vi ≤ D and S[i − 1, D − vi]
is true, then take item i and continue by inspecting S[i − 1, D − vi]. Otherwise, leave
item i and continue by inspecting S[i − 1, D]. Stop when i reaches 0. This can be
implemented using a recursive algorithm or (preferably) using a simple while-loop (write
down pseudocode to test yourself!).

(d) Yes. Note that we only use S[i − 1, ·] to compute S[i, ·]. Hence, it suffices to maintain
only the current and the previous row of the table. This yields O(B) space.

5. A2B revisited: Consider the following recurrence for the A2B problem: for a ≤ c ≤ b,
K(c) is the smallest number of operations to get from c to b. Then:
K(c) = min{1 +K(c+ 1), 1 +K(2c)} if 2c ≤ b
K(c) = 1 +K(c+ 1) otherwise.
Note that this solves the problem just as well, but from the ‘other direction’.

(a) What is the base case?

(b) Give pseudocode for a memoization algorithm for this recurrence.

(c) Give pseudocode for a dynamic program for this recurrence.

Solution:

(a) K(b) = 0

(b) Array K[a . . . b], initialized to -1.
Method computeK(int c, int b).
{ if K[c] != -1 then return K[c].
if c == b then set K[c] to 0.
elseif 2c ≤ b then set K[c] to 1+ minimum of computeK(2c,b) and computeK(c+1,b).
else set K[c] to 1+computeK(c+1,b).
return K[c]. }
Important to note that the value to compute is computeK(a,b).

(c) Array K[a . . . b]. Set K[b] = 0.
for c = b-1 to a do {
if 2c ≤ b then set K[c] to 1+ minimum of computeK(2c,b) and computeK(c+1,b).
else set K[c] to 1+computeK(c+1,b)
}
return K[a]
Don’t forget the return value!

6. Splitting the inheritance: You are executing a will and need to split an inheritance of n
items for value v1, . . . , vn for two brothers (the items themselves are indivisible). To avoid
any issues, the split must be done as fairly as possible. How can you find a fairest split of the
items, that is, a split of the items such that the total value of items given to brother 1 differs
as less as possible from the items given to brother 2? We will design a dynamic programming
algorithm for this task.

(a) Consider as a top-choice which brother gets item i. From this, you formulate the fol-
lowing subproblem: what is the fairest split of the first i items. Explain, by way of an
example, that this is not a good subproblem (i.e., give a counterexample to the optimality
principle).

(b) Someone suggest as a subproblem: is there a split of the first i items such that brother
1 gets exactly c more in total value than brother 2. Prove the optimality principle using
this subproblem.

(c) Give a dynamic programming algorithm for this problem. Use the steps as described in
class!

(d) Explain to find an optimal solution (a fairest way to split up the inheritance).

(e) Can you save memory space in your algorithm. If so, explain how.

Solution:

(a) Consider items of value 1, 4, 5. The optimal way to split items 1 and 2 is to give one
item to brother 1 and another to brother 2. When considering items 1, 2, and 3, one can
give item 3 to brother 1 (say), but then one cannot use the solution for items 1 and 2.
Indeed, an optimal way to split items 1, 2, and 3 is to give brother 1 items 1 and 2, and
brother 2 item 3; they both get an equal share. You cannot discover this solution using
the solution to the subproblem.

(b) Consider an optimal split of the first i items with difference exactly c; that is B1 ⊎B2 =
{1, . . . , i} and (

∑
j∈B1

vj) − (
∑

j∈B2
vj) = c. Suppose i ∈ B1. Then consider a solution

B′
1 ⊎B′

2 for the subproblem with parameters i− 1 and c− vi. This solution must exist,
because (B1 \ {i})⊎B2 is such a solution. Note that (B′

1 ∪{i})⊎B2 is a solution for the
subproblem with parameters i and c. Hence, the solution consists of solutions for the
subproblem. The case that i ∈ B2 is almost the same.

(c) i. Let V =
∑n

i=1 vi. Let S[i, c] is true if and only if there is a way to split the first i
items such that the brother 1 gets exactly c more in total value than brother 2, for
i = 1, . . . , n and c = −V, . . . , 0, . . . , V .
S[0,0] = true
S[0,c] = false for all c ̸= 0
S[i, c] = S[i− 1, c− vi] ∨ S[i− 1, c+ vi].

ii. Array S[0. . . n, -V. . . 0. . . V], initialized to false
for c = -V to V {
S[0,c] = false
}
S[0,0] = true
for i=1 to n {
for c = −V + vi to V − vi {
S[i,c] = S[i− 1, c− vi] or S[i− 1, c+ vi]
} }

ret = V
for c = -V to V {
if S[n,c] is true and |c| < ret then ret = |c|
}
return ret

(d) Suppose the algorithm returns a value o. Starting from S[n, o], consider how it is achie-
ved. Suppose you consider S[i, c]. If S[i− 1, c− vi] is true, give item i to brother 1 and
continue by inspecting S[i− 1, c− vi]. Otherwise, if S[i− 1, c+ vi] is true, give item i to
brother 2 and continue by inspecting S[i− 1, c+ vi].

(e) Observe that the algorithm only considers elements from the previous row. Hence, it
suffices to maintain two rows: the current one and the previous one. Each row has 2V +1
elements, so O(V) space is needed.

7. Multiplication target: Consider a set Σ of symbols on which an operator ∗ : Σ × Σ → Σ
is given. This operator is neither associative nor commutative; so if Σ = {a, b}, then it is
possible that a ∗ a = b, a ∗ b = b, b ∗ a = a and b ∗ b = a. Suppose you are given n symbols
x1, . . . , xn ∈ Σ, possibly with duplications. You have to place parenthesis such that applying
∗ leads to a target value d ∈ Σ. For example, if Σ = {a, b} and ∗ as before, and given
is x1x2x3 = aba en d = a, then (a ∗ b) ∗ a = b ∗ a = a leads to a correct solution, but
a ∗ (b ∗ a) = a ∗ a = b does not.
Careful: you are not allowed to change the order of the symbols, only place parenthesis.

(a) Give a dynamic programming algorithm for this problem. Use the steps discussed in
class!

(b) Analyze the running time and memory space usage of your algorithm.

(c) Explain how to find a solution (a way to place parenthesis such that applying the operator
gets you to d).

(d) Can you save memory space? If so, explain how.

No solution provided.

