
Exercises - Graph Introduction

Tutorial

1. Prove the White-Path Theorem: Recall the White-Path Theorem: In a depth-first-forest
of a Graph G, vertex v is a descendant of vertex u if and only if at the time that is discovered
by DFS, vertex v can be reached from u along a path consisting entirely of white vertices. Prove
that the White-Path Theorem is correct.

Solution:
See the lecture note (Theorem 2).

2. Prove the correctness of topological sort: Recall the topological sort algorithm introduced
in the lecture that runs a DFS and returns the vertices in descending order of their finished time.
Show that the algorithm correctly sorts the vertices in a topological order.

Solution:
To prove the correctness of the topological sort algorithm, one should show that for any edge
(u, v), u must appear before v.

For the rest of the proof, see the lecture note (Theorem 4).

3. Semi-connected graph: A directed graph G = (V,E) is semi-connected iff for each pair u and
v of V , there is a path from u to v or there is a path from v to u.

(a) Assume G has two vertices u and v, both of which have in-degree 0. Prove that G is not
semi-connected.

(b) Assume G has two vertices u and v, both of which have in-degree 1 and assume (w, u) and
(w, v) are two arrows in G where w ∈ V has in-degree 0 using 3a. Prove that G is not
semi-connected.

(c) Assume G is a DAG. Design an O(|V |2)-time algorithm to decide whether G is semi-
connected or not using 3a and 3b.

(d) For arbitrary directed graph G, design an O(|V |2)-time algorithm to decide whether G is
semi-connected or not (use 3c).

(e) Let C be the set of the strongly connected components of G. Let G∗ = (V ∗, E∗) be the
directed graph such that there is a corresponding vertex vC ∈ V ∗ for each component C ∈ C,
and (vC , vC′) ∈ E∗ if there is a path from a vertex in C to a vertex in C ′. Obtain the sorted
vertices (v1, v2, . . .) by running topological sort on G∗. Prove that (vi, vi+1) ∈ E∗ for
1 ≤ i < |V ∗| iff G is semi-connected. Use this property to design a faster algorithm that
decides if G is semi-connected.

Solution:

(a) If G is semi-connected, there must exist a path from u to v or a path from v to u. However,
u has in-degree 0, which means there is no path ending with u. The same argument applies
on v, i.e., no path ends with v. Overall, there is no path from u to v and no path from v
to u, and thus G is not semi-connected.

1

(b) Although w has in-degree 0 and no path ends with w, there might exist several paths
starting from w and reaching all other vertices. So we cannot decide if the graph is semi-
connected by looking at only one zero-in-degree vertex. In this case, we remove w and its
arrows, and see if the rest of the graph is semi-connected or not. By the result of 3a, the rest
of the graph is not semi-connected, and thus the original graph is also not semi-connected.

(c) First, we observed that a Dag always has a vertex with in-degree 0. Otherwise, there is a
cycle in the graph, and it contradicts to the fact that the graph is acyclic.

Now, we design an algorithm to decide if G is semi-connected. Given a DAG G, if G has
two or more vertices with in-degree 0, then G is not semi-connected (by the result of 3a).
Otherwise, G has exactly one vertex with in-degree 0. We remove the vertex and repeat
checking the number of vertices with in-degree 0 (see the result of 3b). Each check for the
number of vertices with in-degree 0 consumes O(|V |) time. There are O(|V |) checks in total
as we remove one vertex in each round. Thus the total time complexity is O(|V |2).

(d) By running the algorithm for finding strongly connected components on G, we obtain the
strongly connected components of G. Any such component is semi-connected since the
component is strongly connected. The components form a DAG if we draw all the arrows
from component C to C ′ where there is a path from a vertex in C to a vertex in C ′. We
decide if the DAG is semi-connected or not by the algorithm of 3c. If the DAG is semi-
connected, then G is also semi-connected. Otherwise, G is not semi-connected. This is
because if there is a path from C to C ′, then any vertex in C can reach any vertex in C ′ (by
the property of strong connectivity). By the result of 3c, the algorithm runs in O(|V |2).

(e) Suppose that for all 1 ≤ i < |V ∗|, (vi, vi+1) ∈ E∗. Then, v1 can reach all the rest of the
components vi for i > 1. By the property of strong connectivity, there exists a vertex u
in component v1 that can reach all the vertices in v1. This means u can reach all the
components vi for i > 1. Since all vi’s are strongly connected, u can reach all the vertices
in vi. Thus the original graph G is semi-connected.

Conversely, suppose that there exists an i such that (vi, vi+1) /∈ E∗, then vi cannot reach
vi+1 as explained below. Recall in topological sort, all the arrows are from left to right,
and there is no back edge. Component vi may reach vj for some j > i + 1, but vj cannot
reach vi+1 since there is no back edge. Thus, vi cannot reach vi+1 and the original graph G
is also not semi-connected.

For the algorithm, we construct G∗ as described in the question. The algorithm checks if
(vi, vi+1) ∈ E∗ for 1 ≤ i < |V ∗|. If so, returns that G is semi-connected. Otherwise, returns
that G is not semi-connected. The algorithm only invokes the algorithms for strongly
connected components and topological sort. Thus the running time is O(|V |+ |E|).

4. Rolling Die Game: Consider rolling a die on a grid plane, where each entry on the plane
may be labeled “forbidden” at the beginning. Meanwhile, the bottom-left and top-right entries
are not forbidden, but with labels s and t, respectively, where s, t ∈ {1, 2, 3, 4, 5, 6}. The die is
initially put at the bottom-left entry with the side s up. At any round, the die can be rolled
up or rolled right to any neighboring entries that are not labeled as forbidden. The goal is to
decide if it is possible to move the die by rolling it up or right such that it is eventually placed
at the top-right corner with the side t up.

Model the rolling die game as a graph problem and describe how to solve it. Note that you can
make the decision on how the die was placed in the first place, as long as it has the side s up.

Solution:
One of the possible modeling: First, we use a 2-tuple (u, r) to describe the configuration of
the die with u-side up and r-side on the right. In total, there are 6 · 4 possible configurations
of the die. Next, we use a directed rolling graph R = (VR, ER) to describe the change of die
configurations after rolling. For each configuration (u, r), there is a vertex vur ∈ VR. For any
two vertices vur and vu′r′ in VR, there is an edge (vur, vu′r′) ∈ ER with a label right if rolling

2

the die with configuration (u, r) to the right results in the configuration (u′, r′). For example,
(v12, v51) is such an edge with a label right. Similarly, there are edges (vur, vu′r′) ∈ ER with a
label up if rolling the die with configuration (u, r) up results in the configuration (u′, v′). (Ex:
(v12, v42) is such an edge with a label up.)

We also model the grid in a directed graph G = (V,E), where each non-forbidden entry has
a vertex in V . For two entries u and v, there is an edge (u, v) ∈ E with a label right if v is
directly to the right of u. Similarly, if the entry v is directly above the entry u, there is an edge
(u, v) ∈ E with a label up.

To decide if it is possible to solve the game, for each vertex in V , we maintain a list of possible
die configurations. Specifically, the list of the possible die configurations of the bottom-left
grid contains all 4 configurations with the side s up. Consider each plane entry v ∈ V and its
list of possible die configurations. If (v, u) ∈ E has the label right (resp. up), then for any
v’s die configuration (u, r) (with corresponding vur ∈ VR), add the configuration (u′, r′) (with
corresponding vu′r′ ∈ VR) to the u’s list of possible die configurations if (axy, ax′y′) ∈ ER has a
label right (resp. up). Finally, if the top-right entry of the grid has a die configuration with the
side t up, then the game can be solved.

3

