Exercises - Single Source Shortest Paths -
Algoritmiek
Tutorial

. Explorer: Consider a graph that contains m paths P; for 1 <17 < m,
each with infinite length, and has a vertex s connecting all P;’s by being
adjacent to the first vertex of each P;. More precisely, s is adjacent
to vertex v;; for 1 < i < m and vertex v;; is adjacent to v; j41 for
1 <i<mandj > 1. Someone left a treasure in one of the vertices in
the graph. Our goal is to design an algorithm that starts from vertex s
and is able to find the treasure. Keep in mind that there are infinite
number of vertices and any algorithm cannot reach the end of path P;
for any .

(a) Does DFS necessarily find the treasure? Why?
(b) Does BFS necessarily find the treasure? Why?

. Subpaths of shortest paths are shortest paths: Consider any
directed weighted graph G = (V, E') which has no negative cycle. Prove
that the subpaths of shortest paths are also shortest paths. More
formally, consider any shortest path from vy to vg, vg — v1 — -+ —
vg, for any 0 < ¢ < j < Kk, the subpath v; = vig1 — -+ — vj is a
shortest path from v; to v;.

. Shortest path subgraph: Show that the predecessor subgraph of
G = (V, E) after any single source shortest path algorithm is a tree.
(Note: the predecessor subgraph G is defined as (V, E), where E,; =

{(z[v],v) [veV})

. Prove the correctness of DIJKSTRA’s algorithm formally.

. Path counting:



(a) Consider a DAG (directed acyclic graph) G = (V, E) and two
vertices s,t € V, give an O(|V| + |E|)-time algorithm to count
the total number of paths from s to ¢t. Analyze your algorithm
and give the correctness proof.

(b) Consider an arbitrary directed graph G = (V, E)) with weighted
edges, where all the weights are non-negative. Given two vertices
s,t € V, determine the number of shortest paths from a source
vertex s to the target vertex ¢. This algorithm should run in the
same time as Dijkstra’s algorithm.

6. Consider a directed graph G = (V, F) with non-negative edge lengths
and a starting vertex s € V. The bottleneck of a path is defined as the
minimum length of one of its edges. Show how to compute correctly,
for each vertex v € V, the maximum bottleneck of any s — v path.
Your algorithm should run in O(|V|?) time.



