
Exercises - Single Source Shortest Paths -
Algoritmiek

Tutorial

1. Explorer: Consider a graph that contains m paths Pi for 1 ≤ i ≤ m,
each with infinite length, and has a vertex s connecting all Pi’s by being
adjacent to the first vertex of each Pi. More precisely, s is adjacent
to vertex vi,1 for 1 ≤ i ≤ m and vertex vi,j is adjacent to vi,j+1 for
1 ≤ i ≤ m and j ≥ 1. Someone left a treasure in one of the vertices in
the graph. Our goal is to design an algorithm that starts from vertex s
and is able to find the treasure. Keep in mind that there are infinite
number of vertices and any algorithm cannot reach the end of path Pi

for any i.

(a) Does DFS necessarily find the treasure? Why?
(b) Does BFS necessarily find the treasure? Why?

2. Subpaths of shortest paths are shortest paths: Consider any
directed weighted graph G = (V, E) which has no negative cycle. Prove
that the subpaths of shortest paths are also shortest paths. More
formally, consider any shortest path from v0 to vk, v0 → v1 → · · · →
vk, for any 0 ≤ i ≤ j ≤ k, the subpath vi → vi+1 → · · · → vj is a
shortest path from vi to vj .

3. Shortest path subgraph: Show that the predecessor subgraph of
G = (V, E) after any single source shortest path algorithm is a tree.
(Note: the predecessor subgraph Gπ is defined as (V, Eπ), where Eπ =
{(π[v], v) | v ∈ V }.)

4. Prove the correctness of Dijkstra’s algorithm formally.

5. Path counting:

1



(a) Consider a DAG (directed acyclic graph) G = (V, E) and two
vertices s, t ∈ V , give an O(|V | + |E|)-time algorithm to count
the total number of paths from s to t. Analyze your algorithm
and give the correctness proof.

(b) Consider an arbitrary directed graph G = (V, E) with weighted
edges, where all the weights are non-negative. Given two vertices
s, t ∈ V , determine the number of shortest paths from a source
vertex s to the target vertex t. This algorithm should run in the
same time as Dijkstra’s algorithm.

6. Consider a directed graph G = (V, E) with non-negative edge lengths
and a starting vertex s ∈ V . The bottleneck of a path is defined as the
minimum length of one of its edges. Show how to compute correctly,
for each vertex v ∈ V , the maximum bottleneck of any s − v path.
Your algorithm should run in O(|V |2) time.

2


