
Single Source Shortest Paths
Alison Liu

1 Breadth-First Search and shortest paths
Given a directed weighted graph G = (V, E, w), where every edge (u, v) ∈ E
has a weight w(u, v). A path P is a sequence of vertices v0, v1, v2, · · · , vk such
that for any i ∈ [1, k], (vi−1, vi) ∈ E. The weight of a path P , denoted by
w(P), is defined by

∑k
i=1 w(vi−1, vi). We denote the shortest distance between

u, v ∈ V , δ(u, v) by min{w(P) | P is a path from u to v}. The single-source
shortest paths problem is to find the shortest distance from the source s to any
vertex v ∈ V .

According to the different complexity of the input graphs, we introduce
different algorithms for solving the single-source shortest paths problem.

The breadth-first search (BFS) algorithm is a graph exploration algorithm.
In short, BFS keeps a queue (which initially contains the vertex where BFS starts
at) of visited vertices. In each round, BFS dequeues a vertex from the queue
and enqueues all its neighbors that are not discovered yet. See Algorithm 2

Algorithm 1 Breadth-First Search(s)
Mark s as discovered
Enqueue(Q, s)
while Q is not empty do

u← Dequeue(Q)
for each neighbor v of u do

if v is not-discovered then
Mark v as discovered
d[v]← d[u] + 1
π[v]← u
Enqueue(Q, v)

Mark u as finished

By the aggregate method, the time complexity of BFS is O(|V |+ |E|), since
every vertex is enqueued and dequeued once, and each edge is checked once.

Note that the variable d[v] is the number of edges on the shortest path from
s to v. That is, BFS finds the shortest distance from s to any vertex v ∈ V if
the graph is unweighted.

1

Tense edges and relaxation. We use d[v] as the temporal estimation
(which is initially set to be∞) of the shortest distance from s to v. Throughout
the single-source shortest paths algorithms we will introduce in this lecture, we
keep updating the value of d[v] when we find a shorter distance from s to v. An
edge (u, v) is tense if d[v] < d[u] + w(u, v). A tense edge is relaxed if we update
the value of d[v] by d[v] + w(u, v). In other words, throughout the single-source
shortest paths algorithms, we keep relaxing tense edges if there are any. The
difference between the algorithms is that, according to different input graphs,
we have different ordering of relaxation of the tense edges (mostly for the sake
of correctness or time complexity).

Using the concept of tense edges and relaxation, we can rewrite the pseudo-
code of BFS as follows.

Algorithm 2 Breadth-First Search(s)
Mark s as discovered
Enqueue(Q, s)
while Q is not empty do

u← Dequeue(Q)
for all edges (u, v) do

if (u, v) is tense then
Relax(u, v)
Enqueue(Q, v)

2 Shortest paths on a DAG
When there are different weights on the edges, the BFS algorithm may not
return the correct shortest paths, since the visiting ordering of neighbors may
not reflect the shortest distance properly.

We first try to find single-source shortest paths on a weighted DAG. The
algorithm visits the vertices v in the topological order and relaxes every incoming
edge (u, v) if it is tense.

Algorithm 3 DAGSSSP(s)
TOPOLOGICAL SORT the vertices
for each vertex v ̸= s taken in topologically sorted order do

for all incoming edges (u, v) do
if (u, v) is tense then

RELAX (u, v)

The time complexity of DAGSSSP is O(|V |+ |E|).
Correctness. The DAGSSSP algorithm is actually a dynamic algorithm. Its

correctness relies on the property of DAGs. Since we visit the vertices in the

2

topological order, when a vertex is visited, all vertices u that can reach it have
to be visited already, and the shortest distance from s to u is fixed.

3 Shortest paths on a weighted graph with non-
negative weights

The dynamic programming approach for DAGs fails when there are directed
cycles in the graph. More specifically, we cannot bound the time complexity as
linear as we did in the DAG case.

The Dijkstra’s algorithm is for finding the shortest paths on non-negative
weighted graphs with directed cycles. In a nutshell, the algorithm replaces the
ordinary queue in the BFS algorithm with a priority queue. The vertices v are
inserted into the priority queue with their d[v] value. Every time when a vertex
is dequeued, the algorithm always dequeues the one in the priority queue with
the smallest d[v] value.

Algorithm 4 DIJKSTRA(s)
For every vertex v, initialize d[v]←∞, π[v]← ϕ, and f [v]← false

▷ d[v] is the estimated shortest distance of s− v path, and f [v] indicates if
the shortest distance of s− v path is fixed
d[s]← 0, f [s]← true
while there is at least one vertex still unfinished do

u← the vertex with f [u] = false and the smallest d[u]
f [u]← true
for all edges (u, v) do

if (u, v) is tense then
RELAX(u, v)

The time complexity is O(|V |2).1

Correctness. At any time, Dijkstra’s algorithm maintains a subset V ′ of
vertices, where every vertex has its shortest distance fixed. The algorithm picks
vertices (which have their shortest distances not yet fixed) and adds the vertices
into the subset. When picking the next vertex, the algorithm always finds the
vertex u with the smallest d[u] value. It is sufficient to prove that the shortest
distance δ(s, u) = d[u]. Consider any other path P from s to u. This path
must contain an edge (x, y) where x ∈ V ′ and y /∈ V ′ (note that y cannot be u).
Denote the sub-path from y to u by P ′. The path weight w(P ′) ≥ 0 since there is
no negative weight. Therefore, the weight of P is w(x, y) + w(P ′) ≥ d[y] ≥ d[u].
That is, the weight of any other path P from s to u is at least d[u]. It implies
that d[u] is the shortest distance from s to u.

1The time complexity can be improved into O(|E| + |V | log |V |) using Fibonacci heaps.

3

4 Shortest paths on a weighted graph without
negative cycle

The last algorithm, Bellman-Ford, is to solve the single-source shortest paths
problem on graphs that have negative weights (but without negative cycles). In
short, the Bellman-ford algorithm keeps checking if there is any tense edge in
the graph. If so, it checks every edge in the graph and relaxes it if needed.

Algorithm 5 Bellman-Ford(s)
while there is a tense edge do

for every edge (u, v) do
if (u, v) is tense then

RELAX(u, v)

There is no shortest path with more than |V | − 1 edges. Therefore, the
Bellman-Ford algorithm takes at most |V | − 1 rounds, and each round takes at
most |E| checking and relaxation. In total, the time complexity is O(|V ||E|).

Correctness. The correctness of Bellman-Ford algorithm relies on the
following observation:

Observation 1. For any vertex v, letP be the shortest path s to v, where u
is the predecessor of v on the path. If at the moment when the edge (u, v) is
checked, d[u] = δ(s, u), then after checking (u, v), d[v] = δ(s, v).

By this observation, as long as Bellman-Ford relaxes the edges in order of
each shortest path from s to any v, it correctly returns the shortest paths. In-
deed, for any shortest path from s to v, P = [s, v1, v2, · · · , vk = v], Bellman-Ford
has at most k rounds. Moreover, the edge (s, v1) is checked (and relaxed if
needed) in the first round, the edge (v1, v2) is checked in the second round, etc.
Therefore, Bellman-Ford algorithm correctly returns the shortest paths from
the source vertex s.

4

	Breadth-First Search and shortest paths
	Shortest paths on a DAG
	Shortest paths on a weighted graph with non-negative weights
	Shortest paths on a weighted graph without negative cycle

