Graph Introduction

Alison Liu

Graph is used heavily in the field of math and theoretical computer science to model relations between objects.

1 Terminologies

First, we give the formal definitions of terminologies that will be used in this lecture. A graph G = (V, E) consists of a set V of *vertices* and a set E of *edges*, where an edge $(u, v) \in E$ connects two vertices $u, v \in V$. Sometimes, people use n = |V| and m = |E| to represent the number of vertices and edges, respectively. If there exists an edge between two vertices u and v, we say that

- *u* and *v* are *adjacent*,
- u and v are neighbors to each other,
- u and v are *end points* of the edge, and
- (u, v) is incident to u (and v).

The *degree* of a vertex u is the number of edges where u is one of the edges.

The edges in a graph can be associated with real numbers, which is called *weight*. A graph in which each edge has a weight of 1 is called a *unweighted* graph, otherwise, it is called a *weighted* graph.

A graph can be *directed* or *undirected*. In a directed graph, the edge (u, v) is an ordered set. That is, $(u, v) \neq (v, u)$. In a directed graph, given an edge (u, v), u is called the *tail* of the edge, and v is called the *head* of the edge. The *in-degree* of a vertex v is the number of edges where v is the tail, and the *out-degree* of v is the number of edges where v is the head.

1.1 Graph representation

There are two ways to represent a graph, *adjacency list* and *adjacency matrix*. In the adjacency list, there is a size-|V| array, where each entry refers to one vertex. An entry of vertex v links to a linked list of its neighbors. In the adjacency matrix, there is a $|V| \times |V|$ matrix, where the entry $a_{u,v}$ is 1 if and only if (u, v) is an edge.

Query complexity and space complexity. Checking if two vertices u and v are adjacent takes O(|V|) time in an adjacency list and O(1) time in an adjacency matrix. Listing all neighbors of a vertex v, on the other hand, takes O(degree of v) time in an adjacency list and O(|V|) time in an adjacency matrix. Space-wise, the adjacency list needs O(|V|+|E|) units, and the adjacency matrix needs $O(|V|^2)$ units. More complexities can be found in the following table.

	Adjacency list	Adjacency matrix
Space	O(V + E)	O(V ²)
Add an edge	O(1)	O(1)
Delete an edge	O(max degree) = O(V)	O(1)
List all neighbors of a vertex	O(# of neighbors) = O(V)	O(V)
Check adjacency of vertices u and v	O(max degree) = O(V)	O(1)
List all edges	O(E)	O(V ²)

2 Depth-first-search

One of the algorithms that traverse the graph is *depth-first-search (DFS)*. Initially, all vertices are *not-discovered*. Throughout the process, a vertex is *discovered* when they are accessed by the algorithm for the first time and *finished* when all its neighbors are discovered. Intuitively, the DFS algorithm first starts with discovering a not-discovered vertex, and recursively discovering its undiscovered neighbor. When there is no undiscovered neighbor left, the DFS algorithm backtracks to the last vertex. See Algorithms 1 and 2.

DFS and recurrence. There is a time step *time* in the DFS algorithm. For every vertex v, the variable d[v] is the time when this vertex is visited by the DFS algorithm for the first time, and the variable f[v] is the time when all its neighbors are visited. Recall that DFS recursively visits an undiscovered neighbor of the current vertex. The variable $\pi[v]$ keeps the information that from which vertex v is visited by the algorithm. When all neighbors of v are visited, DFS backtracks to the vertex $\pi[v]$. Moreover, since DFS is a recurrence

Algorithm 1 Depth-first-search

for each $u \in V$ do Mark u as not-discovered $\pi[v] \leftarrow \text{NIL}$ $time \leftarrow 0$ for each vertex $u \in V$ do if u is not-discovered then DFS-VISIT(u)

Algorithm 2 DFS-VISIT(u)

Mark u as discovered $time \leftarrow time + 1$ $d[u] \leftarrow time$ for each neighbor v of u do if v is not-discovered then $\pi[v] \leftarrow u$ DFS-VISIT(v)Mark u as finished $time \leftarrow time + 1$ $f[u] \leftarrow time$

algorithm, there is a system stack. All discovered but not finished vertices are kept in the memory. More specifically, v enters the memory at the time step d[v] and leaves the memory at the time step f[v].

Time complexity. In DFS, each edge is visited at most twice (from each direction). A vertex is discovered once and finished once. Therefore, the time needed for DFS is O(|V| + |E|), which is *linear* for graph algorithms.

2.1 Interesting properties of DFS

Parenthesis theorem. Recall that d[v] is the time when v enters the memory, and f[v] is the time when v leaves the memory. Due to the recurrence nature of DFS, for any two vertices u and v, the time intervals [d[u], f[u]] and [d[v], f[v]] form a parenthesis shape. That is, either $[d[u], f[u]] \subset [d[v], f[v]], [d[v], f[v]] \subset [d[u], f[u]], \text{ or } [d[u], f[u]] \cap [d[v], f[v]] = \phi$.

Theorem 1. (Parenthesis Theorem)

In any DFS of a graph G = (V, E), for any two vertices $u, v \in V$, v is a proper descendant of u in the depth-first forest if and only if d[u] < d[v] < f[v] < f[u].

Edge classification. Recall the $\pi[v]$ variables in the DFS algorithm that keep the information from which vertex $\pi[v] v$ is discovered. The *predecessor* subgraph of a DFS is $G_{\pi} = (V, E_{\pi})$, where $E_{\pi} = \{(\pi[v], v) \mid v \in V \text{ and } \pi[v] \neq \phi\}$.

Note that $G\pi$ is a forest. According to the G_{π} , each edge in E can be classified as one of the following four types:

- Tree edges: the edges in E_{π}
- Back edges: the edges that points from a descendant to an ancestor in the depth-first forest
- Forward edges: non-tree-edges pointing from an ancestor to a descendant in the depth-first forest
- Cross edges: all other edges

It is possible to identify the edge classes during the DFS. An edge (u, v) is a tree edge if at the moment it is checked (and u naturally is visited but not finished), the vertex v is not-discovered. If v is another visited but not finished vertex, (u, v) is an edge pointing from a descendent to an ancestor. That is, (u, v) is a back edge. If at the moment (u, v) is checked, v is a finished vertex, there are two cases: 1) v is in the same depth-first tree with u, or 2) u and v will not be in the same depth-tree. The case distinction can be done by checking if f[v] > d[u]. If f[v] > d[u], there is an overlap between [d[u], f[u]]and [d[v], f[v]]. By Theorem 1, v is a descendent of u. Therefore, (u, v) is a forward edge. Otherwise (that is, if f[v] < d[u]), (u, v) is a cross edge. Consider that we initially mark all vertices in white, mark a vertex in grey once it is visited, and mark a vertex in black when it is finished. The summary of the edge classes can be found in the following table. The color of a vertex indicates their states when the edge incident to it is checked.

Type of (u, v)	Relation between d[u], f[u], d[v], f[v]	Intervals [d[u], f[u]] and [d[v], f[v]]	Color of v at the time (u, v) is explored
Tree edge	d[u] < d[v] < f[v] < f[u]	[d[u], f[u]] ⊢ – – – – – – – – – – – – – – – – – –	u →v
Back edge	d[v] < d[u] < f[u] < f[v]	[d[u], f[u]]	u — v
Forward edge	d[u] < d[v] < f[v] < f[u]	[d[u], f[u]] +	→ ▼
Cross edge	d[v] < f[v] < d[u] < f[u]	[d[u], f[u]]	u->v

White-path theorem. In the white/grey/black color coding for the vertices, a tree edge in the depth-first forest points from a grey vertex to a white vertex. Naturally, if at the moment when u is discovered by DFS, there is a path from u to vertex v consisting entirely of white vertices, v will be a descendent of u in the depth-first forest. Surprisingly, the opposite is also correct. That is, if v is a descendant of u in the depth-first forest, there must be a white path from u to v at the time when u is discovered.

Theorem 2. (White-Path theorem) In a depth-first forest of a graph G, vertex v is a descendant of vertex u if and only if at the time that u is discovered by DFS, vertex v can be reached from u along a path consisting entirely of white vertices.

Proof. We first show that if vertex v is a descendant of vertex u, then at the time that u is discovered by DFS, vertex v can be reached from u along a path consisting entirely of white vertices. Since v is a descendant of u, for any vertex w on the path from u to v in the DFS tree, d[u] < d[w] < f[w] < f[u] (we assume that w is not u). That is, at the moment when u is discovered, w is not-discovered (white). It proves the claim.

For the opposite direction, we prove it by contradiction. Assume there is a white path starting from u. Suppose, on the contrary, that v is the first vertex on this white path which does not become a descendant of u in the depth-first tree. Let w be v's predecessor. Since w and u may be the same vertex, $f[w] \leq f[u]$. Since v is white at the time d[u], d[u] < d[v]. Moreover, w cannot be marked as finished if v is not-finished. Therefore, f[w] > f[v]. Since every node is finished after being discovered, d[u] < d[v] < f[v] < f[w] < f[u]. By the parenthesis theorem, since [d[v], f[v]] is contained entirely within [d[u], f[u]], v is a descendant of u.

2.2 Cycle detection – A simple application using properties of DFS

The properties of DFS can be used to design graph algorithms. The following is an example that detects if there exists a directed cycle in a given directed graph.

Theorem 3. Given a directed graph G, there is a directed cycle if and only if a DFS of G yields at least one back edge.

Proof. We first show that if there is a back edge, then there is a directed cycle. If there is a back edge (u, v), v is an ancestor of u in a depth-first tree. That is, there is a path from v to u in the tree. The path, together with the edge (u, v), forms a cycle.

Next, we prove the opposite direction. Suppose there is a cycle $c = [v, u_1, u_2, \cdots, u_k, u, v]$ in G, where v is the first vertex discovered by DFS. That is, at time d[v], all the other vertices in c are not-discovered. Therefore, there is a white-path from vto u. By the white-path theorem, u is a descendant of v in the depth-first tree. Hence, the edge (u, v) points from a descendant to an ancestor and is a back edge.

According to this theorem, we can decide that there is a directed cycle as long as we find a back edge during the DFS. Therefore, we can answer this question in linear time.

3 Topological sort

One application of graphs in scheduling is to present tasks as vertices. There is an edge from u to v if the task corresponding to u needs to be finished before the task corresponding to v. A reasonable set of tasks should have no directed cycle in the corresponding graph:

Definition 1. A directed acyclic graph (DAG) is a directed graph that does not have any directed cycles.

Given a DAG, a scheduler wants to find a "good" order of the tasks such that one can follow this order and finish the tasks without any trouble. The order is called a topological order.

Definition 2. A topological sort of a DAG G = (V, E) is a linear ordering of all its vertices such that for any edge $(u, v) \in E$, u appears before v in the ordering.

To find the topological order of a given DAG, one can apply the DFS algorithm and return the vertices in decreasing order of their finish time. Note that instead of sorting the vertices by their finish time/ after the DFS, we can put a vertex to the front of the list of finished vertices once it is finished. Therefore, the topological sort only takes O(|V| + |E|) time. See Algorithm 3.

Algorithm 3 Topological-Sort(G)

 $\begin{array}{l} \mbox{Linked list } L_{\rm sort} \leftarrow {\tt NIL} \\ \mbox{Call DFS}(G) \\ \mbox{As each vertex } v \mbox{ is finished, put } v \mbox{ to the front of } L_{\rm sort} \\ \mbox{Return } L_{\rm sort} \end{array}$

In the following, we show that the algorithm correctly returns a topological order.

Theorem 4. After the procedure Topological-Sort, for any two distinct vertices u and v, if there is an edge (u, v), in the resulting list, u appears before v.

Proof. Equivalently, we show that for any edge $(u, v) \in E$, f[v] < f[u]. Since G is a DAG, there is no back edge in E. Therefore, for any edge (u, v), either v is a descendent of u or (u, v) is a cross edge. If v is a descendent of u, by the parenthesis theorem, f[v] < f[u]. Otherwise, if (u, v) is a cross edge, at the moment when it is checked, v is finished. Hence, f[v] < f[u].

4 Strongly connect components

Definition 3. A strongly connected component of a directed graph G = (V, E) is a maximal set of vertices $C \subseteq V$ such that for every pair of vertices u and v in C, there is a path from u to v and a path from v to u. That is, and are reachable from each other.

To find the strongly connected components in a given directed graph, we need the concept of a transpose graph:

Definition 4. A transpose of a directed graph G = (V, E) is a directed graph $G^T = (V, E^T)$, where $E^T = \{(u, v) \mid (v, u) \in E\}$.

Note that G^T can be constructed in O(|V| + |E|) time. If there is a path from u to v in G, there is a path from v to u in G^T . For two vertices u and v in a strongly connected component, there is a path from u to v in G and a path from u to v in G^T .

$\mathbf{Algorithm} \ 4 \ \mathtt{Strongly-Connected-Components}(G)$		
Call DFS and compute finish time $f[u]$ for each u		
Compute G^T		
while some vertex in G^T is not-discovered do		
$u \leftarrow \text{not-discovered vertex with the latest } f[u]$		
Call DFS-VISIT (u) on G^T		
The depth-first trees in $DFS(G^T)$ are the strongly connected components.		

Theorem 5. The STRONGLY-CONNECTED-COMPONENTS(G) algorithm correctly computes the strongly connected components of a directed graph G.

Proof. We prove this theorem by showing that the first trees produced by $DFS(G^T)$ are strongly connected components. In the base case, where k = 0, the claim is true.

Assume that the first k trees are strongly connected components. We show that 1) for any vertex u in the (k + 1)-th connected component, it is in the (k + 1)-th tree, and 2) for any vertex w outside this tree, there is no path from any vertex v in the (k + 1)-st tree to w in G^T . First, by the inductive hypothesis, there are strongly connected components C_1, C_2, \dots, C_k . Assume that the (k + 1)-th tree is reached by $DFS(G^T)$ calling DFS-VISIT(v). Let C be the strongly connected component containing v. The vertex v has the largest finish time among all not-discovered vertices (vertices in $G^T \setminus \{C_1, C_2, \dots, C_k\}$. Therefore, any vertices in C are not-discovered at time d[v]. By the White-path theorem, all these vertices are v's descendants. That is, The (k + 1)-th tree contains all vertices in C.

From any vertex u in C_1, C_2, \dots, C_k , there is no path from u to any vertex in C (in G^T). That is, in G, for any $1 \leq i \leq k$, there is no path from C to C_i . Since v has the largest finishing time among all not-discovered vertices, in G^T , there is no edge from any vertex in C (or C_i) to any other not-discovered strongly connected components $C' \neq C_1, C_2, \cdots, C_k$. Hence, in G, there is no path from C' to C.