
Graph Introduction
Alison Liu

Graph is used heavily in the field of math and theoretical computer science
to model relations between objects.

1 Terminologies
First, we give the formal definitions of terminologies that will be used in this
lecture. A graph G = (V, E) consists of a set V of vertices and a set E of edges,
where an edge (u, v) ∈ E connects two vertices u, v ∈ V . Sometimes, people use
n = |V | and m = |E| to represent the number of vertices and edges, respectively.
If there exists an edge between two vertices u and v, we say that

• u and v are adjacent,

• u and v are neighbors to each other,

• u and v are end points of the edge, and

• (u, v) is incident to u (and v).
The degree of a vertex u is the number of edges where u is one of the edges.

The edges in a graph can be associated with real numbers, which is called
weight. A graph in which each edge has a weight of 1 is called a unweighted
graph, otherwise, it is called a weighted graph.

A graph can be directed or undirected. In a directed graph, the edge (u, v)
is an ordered set. That is, (u, v) ̸= (v, u). In a directed graph, given an edge
(u, v), u is called the tail of the edge, and v is called the head of the edge.
The in-degree of a vertex v is the number of edges where v is the tail, and the
out-degree of v is the number of edges where v is the head.

1

1.1 Graph representation
There are two ways to represent a graph, adjacency list and adjacency matrix.
In the adjacency list, there is a size-|V | array, where each entry refers to one
vertex. An entry of vertex v links to a linked list of its neighbors. In the
adjacency matrix, there is a |V | × |V | matrix, where the entry au,v is 1 if and
only if (u, v) is an edge.

Query complexity and space complexity. Checking if two vertices u
and v are adjacent takes O(|V |) time in an adjacency list and O(1) time in an
adjacency matrix. Listing all neighbors of a vertex v, on the other hand, takes
O(degree of v) time in an adjacency list and O(|V |) time in an adjacency matrix.
Space-wise, the adjacency list needs O(|V |+|E|) units, and the adjacency matrix
needs O(|V |2) units. More complexities can be found in the following table.

2 Depth-first-search
One of the algorithms that traverse the graph is depth-first-search (DFS). Ini-
tially, all vertices are not-discovered. Throughout the process, a vertex is discov-
ered when they are accessed by the algorithm for the first time and finished when
all its neighbors are discovered. Intuitively, the DFS algorithm first starts with
discovering a not-discovered vertex, and recursively discovering its undiscov-
ered neighbor. When there is no undiscovered neighbor left, the DFS algorithm
backtracks to the last vertex. See Algorithms 1 and 2.

DFS and recurrence. There is a time step time in the DFS algorithm.
For every vertex v, the variable d[v] is the time when this vertex is visited by
the DFS algorithm for the first time, and the variable f [v] is the time when
all its neighbors are visited. Recall that DFS recursively visits an undiscovered
neighbor of the current vertex. The variable π[v] keeps the information that
from which vertex v is visited by the algorithm. When all neighbors of v are
visited, DFS backtracks to the vertex π[v]. Moreover, since DFS is a recurrence

2

Algorithm 1 Depth-first-search
for each u ∈ V do

Mark u as not-discovered
π[v]← NIL

time← 0
for each vertex u ∈ V do

if u is not-discovered then DFS-VISIT(u)

Algorithm 2 DFS-VISIT(u)
Mark u as discovered
time← time + 1
d[u]← time
for each neighbor v of u do

if v is not-discovered then
π[v]← u
DFS-VISIT(v)

Mark u as finished
time← time + 1
f [u]← time

algorithm, there is a system stack. All discovered but not finished vertices are
kept in the memory. More specifically, v enters the memory at the time step
d[v] and leaves the memory at the time step f [v].

Time complexity. In DFS, each edge is visited at most twice (from each
direction). A vertex is discovered once and finished once. Therefore, the time
needed for DFS is O(|V |+ |E|), which is linear for graph algorithms.

2.1 Interesting properties of DFS
Parenthesis theorem. Recall that d[v] is the time when v enters the memory,
and f [v] is the time when v leaves the memory. Due to the recurrence nature of
DFS, for any two vertices u and v, the time intervals [d[u], f [u]] and [d[v], f [v]]
form a parenthesis shape. That is, either [d[u], f [u]] ⊂ [d[v], f [v]], [d[v], f [v]] ⊂
[d[u], f [u]], or [d[u], f [u]] ∩ [d[v], f [v]] = ϕ.

Theorem 1. (Parenthesis Theorem)
In any DFS of a graph G = (V, E), for any two vertices u, v ∈ V , v is a

proper descendant of u in the depth-first forest if and only if d[u] < d[v] < f [v] <
f [u].

Edge classification. Recall the π[v] variables in the DFS algorithm that
keep the information from which vertex π[v] v is discovered. The predecessor
subgraph of a DFS is Gπ = (V, Eπ), where Eπ = {(π[v], v) | v ∈ V and π[v] ̸= ϕ}.

3

Note that Gπ is a forest. According to the Gπ, each edge in E can be classified
as one of the following four types:

• Tree edges: the edges in Eπ

• Back edges: the edges that points from a descendant to an ancestor in the
depth-first forest

• Forward edges: non-tree-edges pointing from an ancestor to a descendant
in the depth-first forest

• Cross edges: all other edges

It is possible to identify the edge classes during the DFS. An edge (u, v) is
a tree edge if at the moment it is checked (and u naturally is visited but not
finished), the vertex v is not-discovered. If v is another visited but not finished
vertex, (u, v) is an edge pointing from a descendent to an ancestor. That is,
(u, v) is a back edge. If at the moment (u, v) is checked, v is a finished vertex,
there are two cases: 1) v is in the same depth-first tree with u, or 2) u and
v will not be in the same depth-tree. The case distinction can be done by
checking if f [v] > d[u]. If f [v] > d[u], there is an overlap between [d[u], f [u]]
and [d[v], f [v]]. By Theorem 1, v is a descendent of u. Therefore, (u, v) is a
forward edge. Otherwise (that is, if f [v] < d[u]), (u, v) is a cross edge. Consider
that we initially mark all vertices in white, mark a vertex in grey once it is
visited, and mark a vertex in black when it is finished. The summary of the
edge classes can be found in the following table. The color of a vertex indicates
their states when the edge incident to it is checked.

White-path theorem. In the white/grey/black color coding for the ver-
tices, a tree edge in the depth-first forest points from a grey vertex to a white
vertex. Naturally, if at the moment when u is discovered by DFS, there is a path
from u to vertex v consisting entirely of white vertices, v will be a descendent
of u in the depth-first forest. Surprisingly, the opposite is also correct. That is,
if v is a descendant of u in the depth-first forest, there must be a white path
from u to v at the time when u is discovered.

Theorem 2. (White-Path theorem) In a depth-first forest of a graph G,
vertex v is a descendant of vertex u if and only if at the time that u is discovered
by DFS, vertex v can be reached from u along a path consisting entirely of white
vertices.

4

Proof. We first show that if vertex v is a descendant of vertex u, then at the
time that u is discovered by DFS, vertex v can be reached from u along a path
consisting entirely of white vertices. Since v is a descendant of u, for any vertex
w on the path from u to v in the DFS tree, d[u] < d[w] < f [w] < f [u] (we
assume that w is not u). That is, at the moment when u is discovered, w is
not-discovered (white). It proves the claim.

For the opposite direction, we prove it by contradiction. Assume there is a
white path starting from u. Suppose, on the contrary, that v is the first vertex
on this white path which does not become a descendant of u in the depth-
first tree. Let w be v’s predecessor. Since w and u may be the same vertex,
f [w] ≤ f [u]. Since v is white at the time d[u], d[u] < d[v]. Moreover, w cannot
be marked as finished if v is not-finished. Therefore, f [w] > f [v]. Since every
node is finished after being discovered, d[u] < d[v] < f [v] < f [w] < f [u]. By the
parenthesis theorem, since [d[v], f [v]] is contained entirely within [d[u], f [u]], v
is a descendant of u.

2.2 Cycle detection – A simple application using proper-
ties of DFS

The properties of DFS can be used to design graph algorithms. The following
is an example that detects if there exists a directed cycle in a given directed
graph.

Theorem 3. Given a directed graph G, there is a directed cycle if and only if
a DFS of G yields at least one back edge.

Proof. We first show that if there is a back edge, then there is a directed cycle.
If there is a back edge (u, v), v is an ancestor of u in a depth-first tree. That is,
there is a path from v to u in the tree. The path, together with the edge (u, v),
forms a cycle.

Next, we prove the opposite direction. Suppose there is a cycle c = [v, u1, u2, · · · , uk, u, v]
in G, where v is the first vertex discovered by DFS. That is, at time d[v], all the
other vertices in c are not-discovered. Therefore, there is a white-path from v
to u. By the white-path theorem, u is a descendant of v in the depth-first tree.
Hence, the edge (u, v) points from a descendant to an ancestor and is a back
edge.

According to this theorem, we can decide that there is a directed cycle as
long as we find a back edge during the DFS. Therefore, we can answer this
question in linear time.

3 Topological sort
One application of graphs in scheduling is to present tasks as vertices. There is
an edge from u to v if the task corresponding to u needs to be finished before

5

the task corresponding to v. A reasonable set of tasks should have no directed
cycle in the corresponding graph:

Definition 1. A directed acyclic graph (DAG) is a directed graph that does not
have any directed cycles.

Given a DAG, a scheduler wants to find a “good” order of the tasks such
that one can follow this order and finish the tasks without any trouble. The
order is called a topological order.

Definition 2. A topological sort of a DAG G = (V, E) is a linear ordering
of all its vertices such that for any edge (u, v) ∈ E, u appears before v in the
ordering.

To find the topological order of a given DAG, one can apply the DFS algo-
rithm and return the vertices in decreasing order of their finish time. Note that
instead of sorting the vertices by their finish time/ after the DFS, we can put a
vertex to the front of the list of finished vertices once it is finished. Therefore,
the topological sort only takes O(|V |+ |E|) time. See Algorithm 3.

Algorithm 3 Topological-Sort(G)
Linked list Lsort ← NIL
Call DFS(G)
As each vertex v is finished, put v to the front of Lsort
Return Lsort

In the following, we show that the algorithm correctly returns a topological
order.

Theorem 4. After the procedure Topological-Sort, for any two distinct ver-
tices u and v, if there is an edge (u, v), in the resulting list, u appears before
v.

Proof. Equivalently, we show that for any edge (u, v) ∈ E, f [v] < f [u]. Since
G is a DAG, there is no back edge in E. Therefore, for any edge (u, v), either
v is a descendent of u or (u, v) is a cross edge. If v is a descendent of u, by
the parenthesis theorem, f [v] < f [u]. Otherwise, if (u, v) is a cross edge, at the
moment when it is checked, v is finished. Hence, f [v] < f [u].

4 Strongly connect components
Definition 3. A strongly connected component of a directed graph G = (V, E)
is a maximal set of vertices C ⊆ V such that for every pair of vertices u and
v in C, there is a path from u to v and a path from v to u. That is, and are
reachable from each other.

To find the strongly connected components in a given directed graph, we
need the concept of a transpose graph:

6

Definition 4. A transpose of a directed graph G = (V, E) is a directed graph
GT = (V, ET), where ET = {(u, v) | (v, u) ∈ E}.

Note that GT can be constructed in O(|V | + |E|) time. If there is a path
from u to v in G, there is a path from v to u in GT . For two vertices u and v in
a strongly connected component, there is a path from u to v in G and a path
from u to v in GT .

Algorithm 4 Strongly-Connected-Components(G)
Call DFS and compute finish time f [u] for each u
Compute GT

while some vertex in GT is not-discovered do
u← not-discovered vertex with the latest f [u]
Call DFS-VISIT(u) on GT

The depth-first trees in DFS(GT) are the strongly connected components.

Theorem 5. The STRONGLY-CONNECTED-COMPONENTS(G) algorithm correctly
computes the strongly connected components of a directed graph G.

Proof. We prove this theorem by showing that the first trees produced by
DFS(GT) are strongly connected components. In the base case, where k = 0,
the claim is true.

Assume that the first k trees are strongly connected components. We show
that 1) for any vertex u in the (k + 1)-th connected component, it is in the
(k + 1)-th tree, and 2) for any vertex w outside this tree, there is no path
from any vertex v in the (k + 1)-st tree to w in GT . First, by the inductive
hypothesis, there are strongly connected components C1, C2, · · · , Ck. Assume
that the (k + 1)-th tree is reached by DFS(GT) calling DFS-VISIT(v). Let C be
the strongly connected component containing v. The vertex v has the largest
finish time among all not-discovered vertices (vertices in GT \{C1, C2, · · · , Ck}.
Therefore, any vertices in C are not-discovered at time d[v]. By the White-path
theorem, all these vertices are v’s descendants. That is, The (k + 1)-th tree
contains all vertices in C.

From any vertex u in C1, C2, · · · , Ck, there is no path from u to any vertex
in C (in GT). That is, in G, for any 1 ≤ i ≤ k, there is no path from C to
Ci. Since v has the largest finishing time among all not-discovered vertices, in
GT , there is no edge from any vertex in C (or Ci) to any other not-discovered
strongly connected components C ′ ̸= C1, C2, · · · , Ck. Hence, in G, there is no
path from C ′ to C.

7

	Terminologies
	Graph representation

	Depth-first-search
	Interesting properties of DFS
	Cycle detection – A simple application using properties of DFS

	Topological sort
	Strongly connect components

