All Pair Shortest Paths

Alison Liu

Given a directed weighted graph, the *all-pair shortest paths* problem aims to find the shortest path between any pair of vertices u and v.

A directed idea for solving the all-pair shortest paths problems is to run |V| single-source shortest paths algorithms, each starts from one vertex as a source. Therefore, the time complexity for answering the all-pair shortest paths is at most $O(|V|^2 \log |V| + |V||E|)$ on graphs without negative weights (by Dijkstra's algorithm) and at most $O(|V|^2|E|)$ for general graphs without negative cycle (by Bellman-Ford algorithm).

1 Dynamic programming by number of edges

The first algorithm is a dynamic programming algorithm which restricts the number of edges on the shortest path. Let $\operatorname{dist}_{uv}^{(\ell)}$ be the distance of the shortest path from u to v using at most ℓ edges. We get the following algorithm:

Algorithm 1 Dynamic Programming Approach 1	
for all u, v do	
$\operatorname{dist}_{uv}^{(0)} \leftarrow \infty, \operatorname{dist}_{uu}^{(0)} \leftarrow 0$	
for $\ell = 1$ to $ V - 1$ do	
for all vertices u do	
for all vertices v do	
$\operatorname{dist}_{uv}^{(\ell)} \leftarrow \operatorname{dist}_{uv}^{(\ell-1)}$	
for all predecessors k of v do	
$\operatorname{dist}_{uv}^{(\ell)} \leftarrow \min\{\operatorname{dist}_{uv}^{(\ell)}, \operatorname{dist}_{uk}^{(\ell-1)} + \operatorname{dist}_{kv}^{(\ell-1)}\}$	

The time complexity of the algorithm is $O(|V|^4)$.

By slightly rewriting the algorithm, the algorithm is equivalent to Algorithm 2. And the time complexity is $O(|V|^2|E|)$.

For further acceleration, one can double the number of involved edges in each round (instead of increasing the number one by one). See Algorithm 3. The time complexity is $O(|V|^3 \log |V|)$.

Algorithm 2 Dynamic Programming Approach 1, re-written

for all u, v do $\operatorname{dist}_{uv}^{(0)} \leftarrow \infty, \operatorname{dist}_{uu}^{(0)} \leftarrow 0$ for $\ell = 1$ to |V| - 1 do for all vertices u do for each edge (k, v) do $\operatorname{dist}_{uv}^{(\ell)} \leftarrow \min\{\operatorname{dist}_{uv}^{(\ell)}, \operatorname{dist}_{uk}^{(\ell-1)} + \operatorname{dist}_{kv}^{(\ell-1)}\}$

Algorithm 3 Dynamic Programming Approach 1.5

for all u, v do $\operatorname{dist}_{uv}^{(0)} \leftarrow \infty, \operatorname{dist}_{uu}^{(0)} \leftarrow 0$ for $\ell = 1$ to $\lceil \log |V| \rceil$ do for all vertices u do for all vertices v do $\operatorname{dist}_{uv}^{2^i} \leftarrow \infty$ for all vertices k do $\operatorname{dist}_{uv}^{(2^i)} \leftarrow \min\{\operatorname{dist}_{uv}^{(2^i)}, \operatorname{dist}_{uk}^{(2^{i-1})} + \operatorname{dist}_{kv}^{(2^{i-1})}\}$

2 Floyd-Warshall: Dynamic programming by vertices

There is another approach of dynamic programming, where the restriction is on the subset of vertices the shortest paths are using. The algorithm first gives labels $1, 2, \dots, n$ to vertices. Let $\operatorname{dist}_{uv}^{(k)}$ denote the shortest distance from vertex u to vertex v that only goes through the vertices $1, 2, \dots, k$. Initially, all $\operatorname{dist}_{uv}^{(0)}$ is set to be 0 if there is an edge (u, v) and ∞ otherwise. The shortest distance from u to v in the graph is $\operatorname{dist}_{uv}^{(n)}$. For any $\operatorname{dist}_{u,v}^{(k)}$, it is the minimum value between the shortest distance of paths going through k and the shortest distance of paths not going through k. This approach only takes constant comparison in the inner for-loop. (See Algorithm 4.) Therefore, the time complexity is $O(|V|^3)$.

Algorithm 4 Dynamic Programming Approach 2: Floyd-Warshall

for all u, v do $\operatorname{dist}_{uv}^{(0)} \leftarrow w(u, v)$ for k = 1 to |V| do for all vertices u do for all vertices v do $\operatorname{dist}_{uv}^{(k)} \leftarrow \min\{\operatorname{dist}_{uk}^{(k-1)} + \operatorname{dist}_{kv}^{(k-1)}, \operatorname{dist}_{uv}^{(k-1)}\}$

3 Johnson: Reweighing the edges

Another different approach is to reweight the edges such that there is no negative weight in the graph, and run |V| Dijkstra's algorithms on the reweighted graph. The edge reweighting should satisfy the following two properties: 1) For all edge (u, v), the new weight $w'(u, v) \ge 0$, and 2) The path P is the shortest path from s to t in the original graph if and only if it is the shortest path from s to t in the reweighted graph.

Johnson's algorithm is an algorithm that first reweights the edges such that there is no negative weight edge and runs |V| Dijkstra's algorithms on the new graph. Formally, the algorithm first assigns *h*-value for each vertex, and then reweight the edge weight w(u, v) by w'(u, v) = w(u, v) + h(u) - h(v). The *h*-values of the vertices are generated as follows. First, the algorithm adds a dummy vertex δ to the original graph. Then, for any vertex v in the original graph, there is a new edge (σ, v) with weight 0. The *h*-value of the vertex vis the shortest distance from σ to v, which can be found in O(|V||E|) time by the Bellman-Ford algorithm. Then, the algorithm runs |V| Dijkstra's algorithms on the reweighted graph, each start from a vertex in V. The total time complexity of the Johnson's algorithm is $O(|V|^2 \log |V| + |V||E|)$, which is dominated by running |V| Dijkstra's algorithms.

The new weights are non-negative. For any edge (u, v), the new weight $w'(u, v) = w(u, v) - h(u) + h(v) = w(u, v) - \delta(\sigma, u) + \delta(\sigma, v) \ge 0$, where the last inequality is from $\delta(\sigma, v) \le \delta(\sigma, u) + w(u, v)$.

Shortest paths preservation. The reweighting through *h*-values of the vertices preserves the shortest paths as follows. Consider any path P from s to t, the new weight of the path w'(P) = w(P) - h(s) + h(t). Therefore, for any shortest path P from s to t such that $w(P) \leq w(Q)$ for any path Q from s to t, $w'(P) \leq w'(Q)$.

Algorithm 5 Johnson's algorithm

 $\begin{aligned} & \texttt{FIND-H}(G) \\ & \texttt{For all } (u,v) \in E, \, w'(u,v) \leftarrow h(u) + w(u,v) - h(v) \\ & \texttt{For each } u \in V, \, \texttt{Dijkstra}(G',u) \\ & \texttt{For each } v \in V, \, \delta(u,v) \leftarrow \delta(u,v) - h(u) + h(v) \\ & \texttt{Return all } \delta(u,v) \end{aligned}$

Algorithm 6 Find-H (G)

 $\begin{array}{l} V' \leftarrow V \cup \{\sigma\} \\ E' \leftarrow \cup_{v \in V} \{(\sigma, v)\} \\ \text{For all } v \in V, \ w(\sigma, v) \leftarrow 0 \\ G' \leftarrow (V', E') \\ \texttt{Bellman-Ford}(G', \sigma) \\ \text{For each } v \in V, \ h(v) \leftarrow \delta(\sigma, v) \end{array}$