All Pair Shortest Paths

Alison Liu

Given a directed weighted graph, the all-pair shortest paths problem aims
to find the shortest path between any pair of vertices u and v.

A directed idea for solving the all-pair shortest paths problems is to run |V|
single-source shortest paths algorithms, each starts from one vertex as a source.
Therefore, the time complexity for answering the all-pair shortest paths is at
most O(|V|?log |V |+|V||E|) on graphs without negative weights (by Dijkstra’s
algorithm) and at most O(|V|?|E|) for general graphs without negative cycle
(by Bellman-Ford algorithm).

1 Dynamic programming by number of edges

The first algorithm is a dynamic programming algorithm which restricts the
number of edges on the shortest path. Let dist’¥) be the distance of the shortest

uv

path from u to v using at most ¢ edges. We get the following algorithm:

Algorithm 1 Dynamic Programming Approach 1

for all u, v do
distgg)) + 00, distfgz 0
for {=1to |V|—-1do
for all vertices u do
for all vertices v do
dist% — distgfv_l)

for all predecessors k of v do
distif) min{dist), distyy, " + disty, "}

uv uv?

The time complexity of the algorithm is O(|V]).
By slightly rewriting the algorithm, the algorithm is equivalent to Algo-
rithm 2. And the time complexity is O(|V|?|E|).

For further acceleration, one can double the number of involved edges in
each round (instead of increasing the number one by one). See Algorithm 3.
The time complexity is O(]V | log |V]).

Algorithm 2 Dynamic Programming Approach 1, re-written

for all u, v do
dist,s) — oo, distY) « 0
for £ =1 to \V\—ldo
for all vertices u do
for each edge (k,v) do
dist!Y) + min{dist'") dlSt(Z R dist](i)_l)}

uv

Algorithm 3 Dynamic Programming Approach 1.5

for all u, v do
distESJ) < 00, distggz 0
for ¢ =1 to [log|V]] do
for all vertices u do
for all Vertices v do
dlst p — 00
for all vertices k do i
dist(2) min{dlst(2) dlSt(Dy dist,(fv)}

uv uv

2 Floyd-Warshall: Dynamic programming by ver-
tices

There is another approach of dynamic programming, where the restriction is
on the subset of vertices the shortest paths are using. The algorithm first gives
labels 1,2, --- ,n to vertices. Let dlstfjf,) denote the shortest distance from vertex

u to vertex v that only goes through the vertices 1,2, --- , k. Initially, all dlstfgj)

is set to be 0 if there is an edge (u,v) and oo otherwise. The shortest distance
from v to v in the graph is distq(ﬁ,). For any dlbtgkz),, it is the minimum value
between the shortest distance of paths going through k and the shortest distance
of paths not going through k. This approach only takes constant comparison

in the inner for-loop. (See Algorithm 4.) Therefore, the time complexity is

O(IVP).

Algorithm 4 Dynamic Programming Approach 2: Floyd-Warshall

for all u, v do
dlstgw) +— w(u,v)
for k=1to |V| do
for all vertices u do
for all vertices v do

dist{®) mln{dlst(4 dlSt(k 2 dlst (k=1)3

3 Johnson: Reweighing the edges

Another different approach is to reweight the edges such that there is no negative
weight in the graph, and run |V| Dijkstra’s algorithms on the reweighted
graph. The edge reweighting should satisfy the following two properties: 1) For
all edge (u,v), the new weight w’(u,v) > 0, and 2) The path P is the shortest
path from s to ¢ in the original graph if and only if it is the shortest path from
s to t in the reweighted graph.

Johnson’s algorithm is an algorithm that first reweights the edges such that
there is no negative weight edge and runs |V| Dijkstra’s algorithms on the
new graph. Formally, the algorithm first assigns h-value for each vertex, and
then reweight the edge weight w(u,v) by w'(u,v) = w(u,v) + h(u) — h(v). The
h-values of the vertices are generated as follows. First, the algorithm adds a
dummy vertex ¢ to the original graph. Then, for any vertex v in the original
graph, there is a new edge (o,v) with weight 0. The h-value of the vertex v
is the shortest distance from o to v, which can be found in O(|V]||E]|) time
by the Bellman-Ford algorithm. Then, the algorithm runs |V| Dijkstra’s
algorithms on the reweighted graph, each start from a vertex in V. The total
time complexity of the Johnson’s algorithm is O(|V|?log |V'| + |V||E|, which is
dominated by running |V| Dijkstra’s algorithms.

The new weights are non-negative. For any edge (u,v), the new weight
w' (u,v) = wu,v) —h(u) + h(v) = w(u,v) — §(o,u) + 6(o,v) > 0, where the last
inequality is from §(o,v) < (o, u) + w(u,v).

Shortest paths preservation. The reweighting through h-values of the
vertices preserves the shortest paths as follows. Consider any path P from s to
t, the new weight of the path w'(P) = w(P) — h(s) + h(t). Therefore, for any
shortest path P from s to ¢ such that w(P) < w(Q) for any path @ from s to
t, w'(P) < w'(Q).

Algorithm 5 Johnson’s algorithm
FIND-H(G)
For all (u,v) € E, w'(u,v) + h(u) + w(u,v) — h(v)
For each u € V, Dijkstra(G’, u)
For each v € V', §(u,v) < 6(u,v) — h(u) + h(v)
Return all §(u, v)

Algorithm 6 Find-H (G)

V'« Vu{c}

E' + Uyev{(o,v)}

For all v € V, w(o,v) < 0

G «+ (V',E")
Bellman-Ford(G', o)

For each v € V, h(v) < (o, v)

	Dynamic programming by number of edges
	Floyd-Warshall: Dynamic programming by vertices
	Johnson: Reweighing the edges

