
All Pair Shortest Paths
Alison Liu

Given a directed weighted graph, the all-pair shortest paths problem aims
to find the shortest path between any pair of vertices u and v.

A directed idea for solving the all-pair shortest paths problems is to run |V |
single-source shortest paths algorithms, each starts from one vertex as a source.
Therefore, the time complexity for answering the all-pair shortest paths is at
most O(|V |2 log |V |+ |V ||E|) on graphs without negative weights (by Dijkstra’s
algorithm) and at most O(|V |2|E|) for general graphs without negative cycle
(by Bellman-Ford algorithm).

1 Dynamic programming by number of edges
The first algorithm is a dynamic programming algorithm which restricts the
number of edges on the shortest path. Let dist(ℓ)

uv be the distance of the shortest
path from u to v using at most ℓ edges. We get the following algorithm:

Algorithm 1 Dynamic Programming Approach 1
for all u, v do

dist(0)
uv ←∞, dist(0)

uu ← 0
for ℓ = 1 to |V | − 1 do

for all vertices u do
for all vertices v do

dist(ℓ)
uv ← dist(ℓ−1)

uv

for all predecessors k of v do
dist(ℓ)

uv ← min{dist(ℓ)
uv , dist(ℓ−1)

uk + dist(ℓ−1)
kv }

The time complexity of the algorithm is O(|V |4).
By slightly rewriting the algorithm, the algorithm is equivalent to Algo-

rithm 2. And the time complexity is O(|V |2|E|).
For further acceleration, one can double the number of involved edges in

each round (instead of increasing the number one by one). See Algorithm 3.
The time complexity is O(|V |3 log |V |).

1

Algorithm 2 Dynamic Programming Approach 1, re-written
for all u, v do

dist(0)
uv ←∞, dist(0)

uu ← 0
for ℓ = 1 to |V | − 1 do

for all vertices u do
for each edge (k, v) do

dist(ℓ)
uv ← min{dist(ℓ)

uv , dist(ℓ−1)
uk + dist(ℓ−1)

kv }

Algorithm 3 Dynamic Programming Approach 1.5
for all u, v do

dist(0)
uv ←∞, dist(0)

uu ← 0
for ℓ = 1 to ⌈log |V |⌉ do

for all vertices u do
for all vertices v do

dist2i

uv ←∞
for all vertices k do

dist(2i)
uv ← min{dist(2i)

uv , dist(2i−1)
uk + dist(2i−1)

kv }

2 Floyd-Warshall: Dynamic programming by ver-
tices

There is another approach of dynamic programming, where the restriction is
on the subset of vertices the shortest paths are using. The algorithm first gives
labels 1, 2, · · · , n to vertices. Let dist(k)

uv denote the shortest distance from vertex
u to vertex v that only goes through the vertices 1, 2, · · · , k. Initially, all dist(0)

uv

is set to be 0 if there is an edge (u, v) and ∞ otherwise. The shortest distance
from u to v in the graph is dist(n)

uv . For any dist(k)
u,v, it is the minimum value

between the shortest distance of paths going through k and the shortest distance
of paths not going through k. This approach only takes constant comparison
in the inner for-loop. (See Algorithm 4.) Therefore, the time complexity is
O(|V |3).

Algorithm 4 Dynamic Programming Approach 2: Floyd-Warshall

for all u, v do
dist(0)

uv ← w(u, v)
for k = 1 to |V | do

for all vertices u do
for all vertices v do

dist(k)
uv ← min{dist(k−1)

uk + dist(k−1)
kv , dist(k−1)

uv }

2

3 Johnson: Reweighing the edges
Another different approach is to reweight the edges such that there is no negative
weight in the graph, and run |V | Dijkstra’s algorithms on the reweighted
graph. The edge reweighting should satisfy the following two properties: 1) For
all edge (u, v), the new weight w′(u, v) ≥ 0, and 2) The path P is the shortest
path from s to t in the original graph if and only if it is the shortest path from
s to t in the reweighted graph.

Johnson’s algorithm is an algorithm that first reweights the edges such that
there is no negative weight edge and runs |V | Dijkstra’s algorithms on the
new graph. Formally, the algorithm first assigns h-value for each vertex, and
then reweight the edge weight w(u, v) by w′(u, v) = w(u, v) + h(u)− h(v). The
h-values of the vertices are generated as follows. First, the algorithm adds a
dummy vertex δ to the original graph. Then, for any vertex v in the original
graph, there is a new edge (σ, v) with weight 0. The h-value of the vertex v
is the shortest distance from σ to v, which can be found in O(|V ||E|) time
by the Bellman-Ford algorithm. Then, the algorithm runs |V | Dijkstra’s
algorithms on the reweighted graph, each start from a vertex in V . The total
time complexity of the Johnson’s algorithm is O(|V |2 log |V |+ |V ||E|, which is
dominated by running |V | Dijkstra’s algorithms.

The new weights are non-negative. For any edge (u, v), the new weight
w′(u, v) = w(u, v)−h(u) + h(v) = w(u, v)− δ(σ, u) + δ(σ, v) ≥ 0, where the last
inequality is from δ(σ, v) ≤ δ(σ, u) + w(u, v).

Shortest paths preservation. The reweighting through h-values of the
vertices preserves the shortest paths as follows. Consider any path P from s to
t, the new weight of the path w′(P) = w(P) − h(s) + h(t). Therefore, for any
shortest path P from s to t such that w(P) ≤ w(Q) for any path Q from s to
t, w′(P) ≤ w′(Q).

Algorithm 5 Johnson’s algorithm
FIND-H(G)
For all (u, v) ∈ E, w′(u, v)← h(u) + w(u, v)− h(v)
For each u ∈ V , Dijkstra(G′, u)
For each v ∈ V , δ(u, v)← δ(u, v)− h(u) + h(v)
Return all δ(u, v)

3

Algorithm 6 Find-H (G)
V ′ ← V ∪ {σ}
E′ ← ∪v∈V {(σ, v)}
For all v ∈ V , w(σ, v)← 0
G′ ← (V ′, E′)
Bellman-Ford(G′, σ)
For each v ∈ V , h(v)← δ(σ, v)

4

	Dynamic programming by number of edges
	Floyd-Warshall: Dynamic programming by vertices
	Johnson: Reweighing the edges

