Hand-in Assignment 1 (Algoritmiek) Thomas van Maaren (9825827)

Exercise 1

1. What is your top-choice for this problem? (1)

The top-choice is the position of the last space.

2. What is your subproblem for the top-choice you described above? (1)
Let y = y1y2 . ..y, be a string that we want to decode. A subproblem of
this would be to decode y1ys ... ym for any 1 < m < n.

3. Write the subproblem for your top-choice as a recurrence relation. (2)

If maxQuality(y1y2 ... yn) is the highest quality we can get from the se-
quence of letters y,ys ...y, we see that

maxQuality (y1y2 - - . Yn)

= max (q(ylyz o Ym), MaX (q(YmYm+1 - - - Yn) + maxQuality (y1yz . .. yml)))
2<m<n
4. Prove the optimality principle for your subproblem for the corresponding
top-choice.(3)

Consider a sequence of indices S = {iy,...,i;} that gives us the choice
of spaces that has the highest quality. Say iy = m. Then S\{ix} =
{i1,...,ik—1} is a solution for the subproblem with y; ...y;,—1. Let T' =
{j1,---,Jr} be an optimal solution of the subproblem 3" = y1y2 ... Ym_1-
We know that

qWye - Yj—1) + QWi Y41 - Yja—1) T+ QY Y1 Yig—1) >

—_

(1)
qWye - Yi—1) F qWi Yis 41 - Yio—1) o+ QWi Vi1 -+ Yip—1)
(2)

Because S\{ix} is a solution. Note that S’ = {ji,...,Jx, ik} is also a
possible splitting of y; ... y,. Because of (1) and (2) we see that

ayz - yi—1) + Wi Vi 41 - Yie—1) T QWi Yjat1---Yn) = (3)
QY2 - Yi—1) o+ QWi Y1 - Yi—1) + AYi Vi1 - Yi)
(4)

Thus S’ has a higher or equal quality than S and therefore it is again an
optimal solution.
5. Write a pseudocode for your algorithm and analyze its runtime. (3)

If y1y2 . .. yn is the string the following algorithm will give us the optimal
the space indices.



Hand-in Assignment 1 (Algoritmiek) Thomas van Maaren (9825827)

1 //0(n"~2)

2 for(m=1,...,n){

3 //0(1)

4 max[m] = q(y_1...y_m)

5 //0(1)

6 amount [m] =0

7 //0(n)

8 //If m=1 it will loop zero times
9 for(1=2,...,m){

10 //0(1)

11 if (max[m] < q(y_1l...y_m) + max[1-1]){
12 //0(1)

13 max[m] = q(y_1...y_m) + max[1l-1]
14 //0(1)

15 amount [m] = 1+amount[1-1]
16 }

17 }

18 }

19 //0(1)

20 k = amount [n]

21 //0(1)

22 previous_index = n

23 //0(n)

24 for(m=n,...,1){

25 //0(1)

26 if (max[m] + q(y_{m+1}...y_previous_index) == max[previous_index]){
27 //70(1)

28 ik=m

29 //0(1)

30 k= k-1

31 //0(1)

32 previous_index = m

33 }

34 return(i_1...i_k)

We shall now analyze the runtime. Because g takes O(1) time it should
be clear that lines 9-15 take O(1) time. Because the for-loop in line 8
repeats m — 1 < n time we see that 8-16 takes O(n) time. We see that 3-7
take constant time, so because O(1) + O(n) = O(n) we see that 3-16 take
O(n) time. We see that the for loop in line 2 repeats n times, so 1-17 take
O(n?) time.

We see that 24-31 takes constant time and is repeated n times, so 23-32 is
O(n) time. Because O(n)+0(n?) = O(n?) we see that the time complexity
is O(n?). This is a lot better than going through all possibilities which
had a time complexity of O(2")



