
Hand-in Assignment 1 (Algoritmiek) Thomas van Maaren (9825827)

Exercise 1

1. What is your top-choice for this problem? (1)

The top-choice is the position of the last space.

2. What is your subproblem for the top-choice you described above? (1)

Let y = y1y2 . . . yn be a string that we want to decode. A subproblem of
this would be to decode y1y2 . . . ym for any 1 ≤ m ≤ n.

3. Write the subproblem for your top-choice as a recurrence relation. (2)

If maxQuality(y1y2 . . . yn) is the highest quality we can get from the se-
quence of letters yry2 . . . yn we see that

maxQuality(y1y2 . . . yn)

= max

(
q(y1y2 . . . ym), max

2≤m≤n
(q(ymym+1 . . . yn) + maxQuality(y1y2 . . . ym−1))

)
4. Prove the optimality principle for your subproblem for the corresponding

top-choice.(3)

Consider a sequence of indices S = {i1, . . . , ik} that gives us the choice
of spaces that has the highest quality. Say ik = m. Then S\{ik} =
{i1, . . . , ik−1} is a solution for the subproblem with y1 . . . ym−1. Let T =
{j1, . . . , jk′} be an optimal solution of the subproblem y′ = y1y2 . . . ym−1.
We know that

q(y1y2 . . . yj1−1) + q(yj1yj1+1 . . . yj2−1) + · · ·+ q(yjk′ yjk′+1 . . . yik−1) ≥
(1)

q(y1y2 . . . yi1−1) + q(yi1yi1+1 . . . yi2−1) + · · ·+ q(yik−1
yjk−1+1 . . . yik−1)

(2)

Because S\{ik} is a solution. Note that S′ = {j1, . . . , jk′ , ik} is also a
possible splitting of y1 . . . yn. Because of (1) and (2) we see that

q(y1y2 . . . yj1−1) + · · ·+ q(yjk′ yjk′+1 . . . yik−1) + q(yjkyjk+1 . . . yn) ≥ (3)

q(y1y2 . . . yi1−1) + · · ·+ q(yik−1
yjk−1+1 . . . yik−1) + q(yikyjk+1 . . . yin)

(4)

Thus S′ has a higher or equal quality than S and therefore it is again an
optimal solution.

5. Write a pseudocode for your algorithm and analyze its runtime. (3)

If y1y2 . . . yn is the string the following algorithm will give us the optimal
the space indices.

1



Hand-in Assignment 1 (Algoritmiek) Thomas van Maaren (9825827)

1 //O(n^2)

2 for(m=1,...,n){

3 //O(1)

4 max[m] = q(y_1...y_m)

5 //O(1)

6 amount[m] =0

7 //O(n)

8 //If m=1 it will loop zero times

9 for(l=2,...,m){

10 //O(1)

11 if(max[m] < q(y_l...y_m) + max[l-1]){

12 //O(1)

13 max[m] = q(y_l...y_m) + max[l-1]

14 //O(1)

15 amount[m] = 1+amount[l-1]

16 }

17 }

18 }

19 //O(1)

20 k = amount[n]

21 //O(1)

22 previous_index = n

23 //O(n)

24 for(m=n,...,1){

25 //O(1)

26 if(max[m] + q(y_{m+1}...y_previous_index) == max[previous_index]){

27 //O(1)

28 i_k = m

29 //O(1)

30 k= k-1

31 //O(1)

32 previous_index = m

33 }

34 return(i_1...i_k)

We shall now analyze the runtime. Because q takes O(1) time it should
be clear that lines 9-15 take O(1) time. Because the for-loop in line 8
repeats m− 1 ≤ n time we see that 8-16 takes O(n) time. We see that 3-7
take constant time, so because O(1) +O(n) = O(n) we see that 3-16 take
O(n) time. We see that the for loop in line 2 repeats n times, so 1-17 take
O(n2) time.

We see that 24-31 takes constant time and is repeated n times, so 23-32 is
O(n) time. Because O(n)+O(n2) = O(n2) we see that the time complexity
is O(n2). This is a lot better than going through all possibilities which
had a time complexity of O(2n)

2


