matching and flow:A matching in a
graph is a subset of the edges M C FE of
the graph such that each vertex in the
graph is incident on at most one edge
in M.A maximum matching in a graph
is a matching with the largest number of
edges among all matchings in the graph.
A matching M is called maximal if there
is no edge e in the graph such that M Ue is
also a matching. Every maximum match-
ing is also maximal M-augmenting path:
Let M be a matching. A path P is called
M-augmenting if

e the edges in P are alternatingly in
M and M,(M = E(G)\M

e the first and last edges of P are not
in M, and

e the first and last vertices, i.e, the
endpoints of P are not in M

Augmenting a matching M with an
M-augmenting path. Let P be the M-
augmenting path. To get a larger match-
ing M’

o If e € P\M, add it to M’
e Ifec PN M, don’t add it to M’
e Add every edge e € M\ P to M’

Claim: M’ is a matching Claim: M’ is
larger than M Lemma: M is maximum
<= 3 M-augmenting path

Bipartite graphs are those whose ver-
tices can be partitioned into two sets
such that no edge of the graph has
both its end-points in the same set.
Auxillary graph: To create an auxillary
graph, direct the edges of the bipartite
graph as follows:

o If e € M, direct it from right to left.
o If e ¢ M, direct it from left to right.

(If we were to start with an unmatched
vertex on the right, we would reverse the
directions listed above.)

Flow and Cuts Residual Network:
Let f be a flow in the network G = (V, A)
with capacities c. Define the residual net-
work Gy as: For every arc (v, w) in A:

o If f(v,w) < c(v,w), then (v,w) is
a forward arc in Gy of residual ca-
pacity e (v, w) = (v, w) — f(v,w)

o If f(v,w) > 0, then (w,v) is a back-
ward arc in Gy of residual capacity
cr(w,v) = f(v,w).

Ford-Fulkerson Algorithm
1: procedure MaxFlow(G, c)

order of a node: Amount of
childeren, order of a tree: order of root,

2: f : f(v, w) = 0 for all (v, w) inlusert(Hk): O(1), Union(H1,H2): O(1),

3: Construct residual network Gf

4: while There is a path P from s to

Gf do
min{cf (v, w) |
: for (v, w) in P do

5: x =

6

7: if (v, w) is forward arc then
8

9

(v, w) in P}

: f(v, w) = f(v, w) + x
. else

10: f(v, w) = f(v, w) - x
11: return £
Cut:

o SUT =V

e SNT =10

escSandteT

C(S,T) =
the

capacity of a cut:

E:UESJUETﬁhgw)exlc(vauo
flow of a cut is defined likewise.

Lemma: For every s-t cut (S, 7)), |f] <
£(S,T)

Theorem 3.3, Ford-Fulkerson: The
maximum value of flow in a network G
is equal to the capacity of a cut in the
smallest capacity.

Edmonds-Karp Algorithm

1: procedure MaxFlow(G, c)

2: £ : f(v, w) = 0 for all (v, w)
3: Construct residual network Gf
4: Find the shortest path P from s
t in Gf using BFS
5: if P exists then

6: x = min{cf (v, w) | (v, w) in P}
7: for (v, w) in P do

8: if (v, w) is forward arc then

9: f(v, w) = f(v, w) + x

10: else

11: f(v, w) = f(v, w) - x

Theorem 3.5 Edmonds-Karp algorithm
finds a maximum flow in a given flow
network in O(n - m?) time. m is the
amount of edges. Claim 3.6: In every it-
eration of flow augmentation, the length
of the augmenting path monotonically in-
creases. Claim 3.7: Each edge e € E(G)
becomes critical at most n/2 times

Amortized Analysis Aggregate meth

Decrease-Key(heap H, node x, key k)

Change key value of the node x into k
if k is smaller than key x’s parent p

Cut x from p
Cascading-Cut (H, p)
Update min(H)

Cascading-Cut (heap H, node p)

if p is not marked then
Mark p

else
Cut p from its parent g, unmark p
cas(H, q)

Decrease-Key can take O(m) = max
height of tree time.

Extract-Min(heap H)

Delete the min node y from H

for each child z of y do
The subtree rooted on z becomes a
new tree in H, unmark z
Consolidation (H)

Update min(H)

Consolidation(heap H)
for i = 0 to Max-degree(H) do
Pair the trees with order and make

the one with the larger root-key value

a new child of the other one

Extract-min takes O(Max-degree + t)
time and t is the number of trees.

Delete(heap H, node x)
Decrease-Key(H, x, -infty)
Extract-Min (H)

amortized Decrease-key is O(1),
Extract-min is O(Max-Degree).

Minimum Spanning Trees: In the
minimum spanning trees problem, we are
given a weighted undirected graph G =
(V,E,w). The goal is to find a subset
E’' C E of edges that connects all ver-
tices in V' such that the total weight of
the edges in E’ is minimized.

lemma If the weights are unique the
minimum spanning trees are also unique.
A light edge for a component C is an edge
(u, v) such that there is exactly one end-
point in C and has the minimum weight.

od:

Averag cost Accounting method: Prove
that > "a;, — > t; > 0 for all n.
Potential function: Phi that maps the
configuration of the data structure to
real number. Phiy > ®q for all i and
a; =t +0;, — P,

Fibonacci heaps Heap: insert:
O(log(n)), find-min: O(1), Extract-min
O(log(n)).

Boruvka’s algorithm
while F is not a spanning tree do
Add all light edges

Boruvka is O(|E|log |V|)

Prim’s algorithm
Start at a singleton T

Repeatedly adding the light edge of T

to F



O(|E|-log |E|) = O(|Ellog|V'|) and us-
ing fibbonacci heaps O(|E| + |V |log|V])
Kruskal(G):

Scan all edges by increasing weight
if an edge is light for some
component, add it to F

Total time complexity is dominated
by time of sorting the edges

Approximation Algorithms
ALG(I) }
OPT(I)

(max-

max{

(minimization) and maxl{gL%g;

approximation ratio:

imization) it is an a-approximation if the
approximation ratio is smaller than a.
String Matching:
Naief
NaiveMatch(A,P)

for k:=0 to n-m
if Checkmatch(A,k,P)
output k
return
Checkmatch(A,k,P)
for i :=0 to m-1
if A[k+i]l \neq P[il
return false
return true

looptijd O(nm) en gemmiddelde loop-
tijd is O(1).
Rabin-Karp

RK3(A,P)
ph := String2Int(P) % q
sh := String2Int(A[0...m-1]) % q
for k := 0 to n-m
if (ph == sh)

output k
if k < n—m
sh := A[k+m] + sh x 26 -
Alk] x 26™m % q
return

Gerandomiseerde algoritmes:
Las Vegas: Antwoord altijd correct
maar rekentijd is niet te voorspellen
Monte Carlo: Antwoord niet altijd cor-
rect maar rekentijd is te voorspellen Las
Vegas kan Monte Carlo worden en Las
Vegas kan Monte Carlo worden mits er
gecontroleerd kan worden of het antwoord
correct is.

Geometrische verdeling: P(X = k) =
(1—p)*~'pen E[X] =1/p.



