
Exercises - Single Source Shortest Paths -
Algoritmiek

Tutorial

1. Explorer: Consider a graph that contains m paths Pi for 1 ≤ i ≤ m,
each with infinite length, and has a vertex s connecting all Pi’s by being
adjacent to the first vertex of each Pi. More precisely, s is adjacent
to vertex vi,1 for 1 ≤ i ≤ m and vertex vi,j is adjacent to vi,j+1 for
1 ≤ i ≤ m and j ≥ 1. Someone left a treasure in one of the vertices in
the graph. Our goal is to design an algorithm that starts from vertex s
and is able to find the treasure. Keep in mind that there are infinite
number of vertices and any algorithm cannot reach the end of path Pi

for any i.

(a) Does DFS necessarily find the treasure? Why?
(b) Does BFS necessarily find the treasure? Why?

Solution:

(a) No. If DFS chooses a wrong path (having no treasure) to search
at the beginning, then it never reaches the end of the path since
the number of vertices planned to be searched is infinite, and thus
never reaches the path containing the treasure.

(b) Yes. The algorithm searches v1,1, v2,1, . . . , vm,1 firstly, and then
v1,2, v2,2, . . . , vm,2, and so on. It eventually finds the treasure.

2. Subpaths of shortest paths are shortest paths: Consider any
directed weighted graph G = (V, E) which has no negative cycle. Prove
that the subpaths of shortest paths are also shortest paths. More
formally, consider any shortest path from v0 to vk, v0 → v1 → · · · →
vk, for any 0 ≤ i ≤ j ≤ k, the subpath vi → vi+1 → · · · → vj is a
shortest path from vi to vj .
Solution:
See textbook Lemma 24.1

1

3. Shortest path subgraph: Show that the predecessor subgraph of
G = (V, E) after any single source shortest path algorithm is a tree.
(Note: the predecessor subgraph Gπ is defined as (V, Eπ), where Eπ =
{(π[v], v) | v ∈ V }.)
Solution:
By contradiction

4. Prove the correctness of Dijkstra’s algorithm formally.
Solution:
The correctness can be proven formally by induction in the number of
vertices v with f [v] = true that d[v] = δ(s, v).
When there is only one vertex with f -value is true, that is, there is
only the vertex s. The value d[s] = 0. It is correct since the path from
s to s has no edge.
Induction hypothesis: When there are k vertices with their f -value
as true, each of these vertices has its d-value equal to the minimum
distance of any path from s to it.
By the inductive hypothesis, consider the vertex u with f [u] = false
and the smallest d[u], which is chosen to be the k + 1-th vertex whose
f -value is going to be set as true.
Suppose for contradiction that the shortest path P from s to u has
length ℓ < d[u]. Since f [s] = true and f [u] = false at this moment,
there is at least one edge (x, y) where f [x] = true and f [y] = false.
Consider the first of these (x, y) edges on P . By the algorithm, d[y] ≤
d[x] + w(x, y) = δ(s, x) + w(x, y) = ℓ−w(Pyu) < d[u]−w(Pyu), where
Pyu is the sub-path from y to u on P . According to the algorithm,
u is chosen because d[u] ≤ d[y]. Thus, d[u] ≤ d[y] < d[u] − w(Pyu),
which contradicts the fact that all the edge weights are non-negative.
It completes the proof.

5. Path counting:

(a) Consider a DAG (directed acyclic graph) G = (V, E) and two
vertices s, t ∈ V , give an O(|V | + |E|)-time algorithm to count
the total number of paths from s to t. Analyze your algorithm
and give the correctness proof.

(b) Consider an arbitrary directed graph G = (V, E) with weighted
edges, where all the weights are non-negative. Given two vertices
s, t ∈ V , determine the number of shortest paths from a source
vertex s to the target vertex t. This algorithm should run in the
same time as Dijkstra’s algorithm.

2

Solution:

(a) The algorithm is described as follows.
Topologically sort the vertices of G
Remove the vertices before s and the vertices after t and their
incident edges
Set s.count = 1
for each vertex v, taken in topological-sorted order do

v.count = Σ(u,v)∈E u.count

return t.count

For each vertex v, we can go from s to u for some (u, v) ∈ E
and go from u to v to obtain a path from s to v. Thus the
number of paths from s to v, i.e., v.count, is the sum of u.count
for all (u, v) ∈ E. Since topological sort has no back edges, we
can count the number of paths in the order. Topological sort
takes O(|V | + |E|) and the for-loop takes O(|V | + |E|) so the
total runtime is O(|V |+ |E|).

(b) Run the Dijkstra algorithm on G and remove any edge that
is not a predecessor edge in the result shortest path tree. The
tree is a DAG. Using a similar procedure in (a), the number of
shortest paths from s to t is the final t.count.

6. Consider a directed graph G = (V, E) with non-negative edge lengths
and a starting vertex s ∈ V . The bottleneck of a path is defined as the
minimum length of one of its edges. Show how to compute correctly,
for each vertex v ∈ V , the maximum bottleneck of any s − v path.
Your algorithm should run in O(|V |2) time.
Solution:

Correctness. The correctness can be proven formally by induction
in the number of vertices v with f [v] = true that b[v] is indeed the
maximum bottleneck of any s− v path.
When there is only one vertex with f -value is true, that is, there is
only the vertex s. The value b[s] = ∞. It is correct since the path
from s to s has no edge.
Induction hypothesis: When there are k vertices with their f -value
as true, each of these vertices has its b-value equal to the maximum
bottleneck on any path from s to it.

3

Algorithm 1 ModifiedDIJKSTRA(s)
For every vertex v, initialize b[v]←∞, π[v]← ϕ, and f [v]← false
▷ b[v] is the lower bound of s− v path’s bottleneck, and f [v] indicates if
the bottleneck of s− v path is fixed
f [s]← true
while there is at least one vertex still unfinished do

u← the vertex with f [u] = false and the largest b[u]
f [u]← true
for all edges (u, v) do

if b[v] < min{b[u], w(u, v)} then
b[v]← min{b[u], w(u, v)}
π[v]← u

By the inductive hypothesis, consider the vertex u with f [u] = false
and the largest b[u], which is chosen to be the k + 1-th vertex whose
f -value is going to be set as true.
Suppose for contradiction that a path Q from s to u with bottleneck
q > b[u]. Since f [s] = true and f [u] = false, there is at least one
edge (x, y) where f [x] = true and f [y] = false. Consider the first of
these (x, y) edges on Q. Note that q ≤ b[x], which is the bottleneck
of the vertex x. Also, due to the algorithm’s update policy, b[y] ≥
min{b[x], w(x, y)} ≥ b[x]. According to the algorithm, u is chosen
because b[u] ≥ b[y]. Therefore, b[u] < q ≤ b[x] ≤ b[y] ≤ b[u], which
causes a contradiction. Thus the proof is completed.

4

