#version 330 layout (triangles) in; layout (triangle_strip, max_vertices = 64) out; // Related to MAX_STEPS below uniform float anti_alias_width; uniform float flat_stroke; uniform float pixel_size; uniform float joint_type; uniform float frame_scale; in vec3 verts[3]; in float v_joint_angle[3]; in float v_stroke_width[3]; in vec4 v_color[3]; in vec3 v_unit_normal[3]; out vec4 color; out float dist_to_aaw; out float half_width_to_aaw; // Codes for joint types const int NO_JOINT = 0; const int AUTO_JOINT = 1; const int BEVEL_JOINT = 2; const int MITER_JOINT = 3; // When the cosine of the angle between // two vectors is larger than this, we // consider them aligned const float COS_THRESHOLD = 0.999; // Used to determine how many lines to break the curve into const float POLYLINE_FACTOR = 100; const int MAX_STEPS = 32; const float MITER_COS_ANGLE_THRESHOLD = -0.9; #INSERT emit_gl_Position.glsl #INSERT finalize_color.glsl vec3 point_on_quadratic(float t, vec3 c0, vec3 c1, vec3 c2){ return c0 + c1 * t + c2 * t * t; } vec3 tangent_on_quadratic(float t, vec3 c1, vec3 c2){ return c1 + 2 * c2 * t; } vec3 project(vec3 vect, vec3 unit_normal){ /* Project the vector onto the plane perpendicular to a given unit normal */ return vect - dot(vect, unit_normal) * unit_normal; } vec3 rotate_vector(vec3 vect, vec3 unit_normal, float angle){ vec3 perp = cross(unit_normal, vect); return cos(angle) * vect + sin(angle) * perp; } vec3 step_to_corner(vec3 point, vec3 tangent, vec3 unit_normal, float joint_angle, bool inside_curve, bool draw_flat){ /* Step the the left of a curve. First a perpendicular direction is calculated, then it is adjusted so as to make a joint. */ vec3 unit_tan = normalize(draw_flat ? tangent : project(tangent, unit_normal)); // Step to stroke width bound should be perpendicular // both to the tangent and the normal direction vec3 step = normalize(cross(unit_normal, unit_tan)); // For non-flat stroke, there can be glitches when the tangent direction // lines up very closely with the direction to the camera, treated here // as the unit normal. To avoid those, this smoothly transitions to a step // direction perpendicular to the true curve normal. if(joint_angle != 0){ float alignment = abs(dot(normalize(tangent), unit_normal)); float alignment_threshold = 0.97; // This could maybe be chosen in a more principled way based on stroke width if (alignment > alignment_threshold) { vec3 perp = normalize(cross(v_unit_normal[1], tangent)); step = mix(step, project(step, perp), smoothstep(alignment_threshold, 1.0, alignment)); } } if (inside_curve || int(joint_type) == NO_JOINT) return step; float cos_angle = cos(joint_angle); float sin_angle = sin(joint_angle); if (abs(cos_angle) > COS_THRESHOLD) return step; // Below here, figure out the adjustment to bevel or miter a joint if (!draw_flat){ // Figure out what joint product would be for everything projected onto // the plane perpendicular to the normal direction (which here would be to_camera) step = normalize(cross(unit_normal, unit_tan)); // Back to original step vec3 adj_tan = rotate_vector(tangent, v_unit_normal[1], joint_angle); adj_tan = project(adj_tan, unit_normal); cos_angle = dot(unit_tan, normalize(adj_tan)); sin_angle = sqrt(1 - cos_angle * cos_angle) * sign(joint_angle) * sign(dot(unit_normal, v_unit_normal[1])); } // If joint type is auto, it will bevel for cos(angle) > MITER_COS_ANGLE_THRESHOLD, // and smoothly transition to miter for those with sharper angles float miter_factor; if (joint_type == BEVEL_JOINT){ miter_factor = 0.0; }else if (joint_type == MITER_JOINT){ miter_factor = 1.0; }else { float mcat1 = MITER_COS_ANGLE_THRESHOLD; float mcat2 = mix(mcat1, -1.0, 0.5); miter_factor = smoothstep(mcat1, mcat2, cos_angle); } float shift = (cos_angle + mix(-1, 1, miter_factor)) / sin_angle; return step + shift * unit_tan; } void emit_point_with_width( vec3 point, vec3 tangent, float joint_angle, float width, vec4 joint_color, bool inside_curve, bool draw_flat ){ // Find unit normal vec3 unit_normal = draw_flat ? v_unit_normal[1] : normalize(camera_position - point); // Set styling color = finalize_color(joint_color, point, unit_normal); // Figure out the step from the point to the corners of the // triangle strip around the polyline vec3 step = step_to_corner(point, tangent, unit_normal, joint_angle, inside_curve, draw_flat); float aaw = max(anti_alias_width * pixel_size, 1e-8); // Emit two corners // The frag shader will receive a value from -1 to 1, // reflecting where in the stroke that point is for (int sign = -1; sign <= 1; sign += 2){ float dist_to_curve = sign * 0.5 * (width + aaw); emit_gl_Position(point + dist_to_curve * step); half_width_to_aaw = 0.5 * width / aaw; dist_to_aaw = dist_to_curve / aaw; EmitVertex(); } } void main() { // Curves are marked as ended when the handle after // the first anchor is set equal to that anchor if (verts[0] == verts[1]) return; // Check null stroke if (vec3(v_stroke_width[0], v_stroke_width[1], v_stroke_width[2]) == vec3(0.0, 0.0, 0.0)) return; if (vec3(v_color[0].a, v_color[1].a, v_color[2].a) == vec3(0.0, 0.0, 0.0)) return; bool draw_flat = bool(flat_stroke) || bool(is_fixed_in_frame); // Coefficients such that the quadratic bezier is c0 + c1 * t + c2 * t^2 vec3 c0 = verts[0]; vec3 c1 = 2 * (verts[1] - verts[0]); vec3 c2 = verts[0] - 2 * verts[1] + verts[2]; // Estimate how many line segment the curve should be divided into // based on the area of the triangle defined by these control points float area = 0.5 * length(cross(verts[1] - verts[0], verts[2] - verts[0])); int count = int(round(POLYLINE_FACTOR * sqrt(area) / frame_scale)); int n_steps = min(2 + count, MAX_STEPS); // Emit vertex pairs aroudn subdivided points for (int i = 0; i < MAX_STEPS; i++){ if (i >= n_steps) break; float t = float(i) / (n_steps - 1); // Point and tangent vec3 point = point_on_quadratic(t, c0, c1, c2); vec3 tangent = tangent_on_quadratic(t, c1, c2); // Style float stroke_width = mix(v_stroke_width[0], v_stroke_width[2], t); vec4 color = mix(v_color[0], v_color[2], t); // This is sent along to prevent needless joint creation bool inside_curve = (i > 0 && i < n_steps - 1); // Use middle joint product for inner points, flip sign for first one's cross product component float joint_angle; if (i == 0){ joint_angle = -v_joint_angle[0]; } else if (inside_curve){ joint_angle = 0; } else { joint_angle = v_joint_angle[2]; } emit_point_with_width( point, tangent, joint_angle, stroke_width, color, inside_curve, draw_flat ); } EndPrimitive(); }