Exercise: Formulate integer programming problems

1 Linear programming problem properties

Find necessary and sufficient conditions for the numbers s and t to make the linear programming problem

maximize
$$x_1 + x_2$$
 subject to
$$s \cdot x_1 + t \cdot x_2 \le 1$$

$$x_1, x_2 \ge 0$$

- (i) has an optimal solution,
- (ii) be infeasible,
- (iii) be unbounded.

2 LP formulation

A meat packing plant produces 480 hams, 400 pork bellies, and 230 picnic hams every day; each of these products can be sold either fresh or smoked. The total number of hams, bellies, and picnics that can be smoked during a normal working day is 420; in addition, up to 250 products can be smoked on overtime at a higher cost. The *net* profit are as follows.

	Fresh	Smoked on regular time	Smoked on overtime
Hams	\$8	\$14	\$11
Bellies	\$4	\$12	\$7
Picnics	\$4	\$13	\$9

The objective is to find the schedule that maximizes the total net profit. Formulate as an LP problem.

3 Variation of the knapsack problem

Suppose that you are interested in choosing a set of investments $\{1, \dots, 7\}$ using 0-1 variables. Model the following constraints:

- (i) You must choose at least one of them.
- (ii) You cannot invest in all of them.

4 Simplex method

Consider the linear programming problem:

Recall that during the lecture, we started at the feasible solution (x, y) = (0, 0), and then improved the objective value by fixing x = 0 and increasing y. Please run the simplex method by fixing y = 0 and increasing x.