Efficient state mergin in symbolic execution

Program analysis technique that can explore multiple path at the same time
Using symbolic inputs

A use case is a test input for a certain path for unit tests. You can achieve a higher
code coverage then normal.

Introduction

Take a compiled program
Replace concrete inputs with symbolic values
Execute the program, maintain symbolic state
Build path conditions for each execution path
Use constraint solver path feasibility
External libraries an be called
- Can build concrete arguments for calls
Trade-offs
scalability is a big issue.
N of path is exponantial
You can make it more efficient by merging if-statements. Unfortunately it
increases symbolic expressions describing variables. The total cost of merging =
depends on future branch conditions and array indices.
Query count estimation
Proprocess program with lightweight static analysis
identify use-counts of variables from each location ¢.
- Mark variables as "hot" if likely to cause many queries if made symbolic
QCE
Statically approx future variable appearances after potential merge.
Only merge if count below current threshold a.
Use this heuristic to assess if merging would net a benefit
impacts only completion time, not soundness or completeness
Dynamic state merging
Efficiently combine
State merging
Search strategies
Dynammically identify merging opportunities
Insentive to search strategy
- without restrictions
DSM
When picking the next state in pick state, we check if some state «; is similar to a



predecessor a_2 of another state a_2 in the work list. Build a forwarding list. If
similar fast-forward to a;. Until no longer similar or caught up. It only prioritizes
some states. If not similar, return control to search strategy.
Experimental evaluation
The experimental values are up to exponential speedup. They ran experiments on
GNU Coreutils with programs for file processing and terminal control. He showed
a graph of the results. The Path ratio decreases when the tool index becomes
greater. When merging there is exponential improvement.
Conclusion
Merging reduces amount of states

Increases burden

QCE and DSM combined proven beneficial



